
 

 

 

  

  

Abstract— Plug-in hybrid electric vehicles (PHEV) are 

widely received as a promising means of green mobility by 

utilizing more battery power. Recently, we have proposed a 

scheme of two-scale spatial-domain dynamic programming 

(DP) as a nearly global optimization approach to trip based 

optimal power management for PHEV through the 

combination with traffic data and trip modeling. Previously, 

the segment-wise power demand and SOC change was 

calculated through numerical integration based on the average 

speed and acceleration of the segment, and lookup tables were 

obtained. When more parameters are involved into power 

management, such as road grade and load change, such 

process becomes very tedious. In this paper, the 

spatial-domain DP is improved by calculating the power 

demand and SOC change in an analytical manner. The power 

demand is first calculated based on length, initial speed, 

acceleration, road grade, payload and wind of a road segment. 

The SOC change is then calculated for different PSR. An 

adjustable segment scheme used of analytical function is 

developed in order to improve the computation efficiency of 

the optimal power management without losing much of fuel 

economy. Simulation study shows that incorporating 

additional trip information such as road grade and predictable 

payload change into the optimization can significantly 

improve the fuel economy. The computational efficiency is also 

evaluated. The proposed method can greatly facilitate the 

development of optimal power management strategy for 

PHEV with multiple information inputs. 

I. INTRODUCTION 

ybrid electric vehicle (HEV) has become an 

important means to sustainable mobility, by including 

two or more energy sources and associated energy 

converters [1-3]. Plug-in Hybrid Electric Vehicle (PHEV) 

is a new generation of HEV with higher battery capacity and 

the ability to be recharged from an external electrical outlet 

[4]. Compared to the conventional HEV, the PHEV can 

sustain a much longer all-electric range (AER) as more 

fossil fuel can be replaced by much cheaper grid electricity. 

PHEV has promise great improvement in reduction of fuel 

consumption [5]. However, the seemingly exciting numbers 

of high fuel economy are compromised by the tremendous 

battery cost. It is widely accepted that moderate size of 

battery pack is more realistic [6]. Optimal power 

management, i.e. optimizing the use of on-board battery 

energy, can thus make significant impact on fuel economy 

for limited battery size. For PHEV power management, it is 

desirable to use up the on-board battery power when the 
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vehicle reaches the trip destination as battery can be 

recharged. The charge depletion mode is thus appropriate in 

comparison with the typical charge sustaining mode for 

conventional HEV. Trip specific optimization will benefit 

the charge depleting operation of PHEV power 

management. 

HEV power management has been extensively studied 

from control and optimization perspectives in the past 

decade, such as the rule-based control [3] [7], driving mode 

classification [11] [12] and optimal control [13] [14]. To 

obtain the trip specific global optimization solution, the 

dynamic programming (DP) techniques have been 

investigated among others [15-19], based on the standard 

driving cycles provided by the government agencies 

collected by test vehicles. For actual vehicle operation, such 

solutions are limited due to the a priori nature of trip 

information. Also, the computational load is too high for 

on-board implementation. Other alternative approaches 

have also been studied. The equivalent consumption 

minimization strategy (ECMS) was developed in [20] based 

on the on-line adaptive estimation of an equivalence factor. 

In [21], an intelligent energy management scheme was 

presented by combining the driving cycle with accessories 

load, slope and wind drag. 

In the past couple of years, the research group of the 

authors has developed a nearly global optimal strategy 

PHEV power management, based on the incorporation of 

the trip information from Intelligent Transportation Systems 

(ITS) [22-24]. A two-scale DP algorithm has been 

developed for adapting to the actual traffic variation and 

improving the computation efficiency while maintaining the 

nearly global optimality for the power management. Later 

on, the trip modeling was improved by applying the 

advanced traffic flow theory. A gas-kinetic model and a 

Gipps car following model were applied to the highway 

segment and local road segment respectively. Also, the 

traffic signal sequence is used to synchronize the local road 

trip modeling. Although the two-scale DP scheme 

demonstrated significant reduction of computation time for 

segment-wise (or micro-scale) DP, the computation time for 

the macro-scale DP remains high as conventional as it still 

follows the time-domain framework. With such limitation, 

the macro-scale DP has to be performed on some external 

computational infrastructure, and the two-scale DP would 

be disabled for impromptu change of driving decision. To 

solve this problem, a spatial domain optimization was 

proposed as a computationally efficient improvement [25]. 

The electric vehicle (EV) mode is assumed for the 

significant deceleration and acceleration segments around 

traffic stops. The trip is segmented in approximately a 

certain length, with the power split ration (PSR) assumed 

constant for each segment. The power demand and the 

change of the battery state of charge (SOC) for different 
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power split ratio (PSR) are pre-calculated for each trip 

segment in numerical integration manner based on road 

segment length, average speed and acceleration/ 

deceleration. Lookup-table (LUT) based interpolation was 

applied. The DP problem can thus be set up in the spatial 

domain so as to obtain the optimal solution to power 

management. Dramatic improvement on computational 

efficiency was demonstrated, which indicates a promising 

perspective for the fully on-board implementation of the 

two-scale DP.  

A major drawback of the work in [25] is tedious process 

of numerical calculation of segment-wise power demand 

and SOC change. It becomes dramatically difficult when 

more parameters other than the speed profile are involved in 

power management, e.g. road grade and payload change 

(for service vehicles). All these information can have 

significant impact on the fuel economy [21], and thus 

should be incorporated. When more trip parameters are 

included, the numerical integration based calculation for 

power demand and SOC change becomes very tedious for 

development.  It is thus necessary to develop a generic 

method that fits the spatial domain DP based power 

management with multiple trip information. 

In this paper, we propose to obtain a closed-form 

analytical solution to the segment-wise power demand and 

SOC change. The segment-wise energy demand is first 

calculated based segment length, initial speed, 

acceleration/deceleration, road grade, payload and wind 

speed. Next, the SOC change, under the power demand and 

different choice of PSR, is calculated through a linearized 

battery model. The accuracy and the computational 

efficiency of the proposed method are evaluated by 

comparing with the numerical integration method. The 

proposed method is validated with a simulation example 

that illustrates the impact of road grade and payload change 

on the fuel economy.  

The remainder of this paper is organized as follows. The 

PHEV optimal power management is overviewed in Section 

II, along with the dynamic optimization and hybrid vehicle 

configuration. Section III presents the trip modeling with 

multiple trip information. The simulation study is presented 

in Section IV. The paper is concluded in Section V. 

II. OVERVIEW OF PHEV OPTIMAL POWER MANAGEMENT  

PHEV optimal power management relies on a dynamic 

model for the vehicle along with the power-train to compute 

the best control strategy. For a given driving cycle, the 

optimal operation strategy which minimizes fuel 

consumption, or combined fuel consumption and emissions 

can be obtained.  

A. Problem Formulation 

In the discrete-time format, the hybrid electric vehicle 

model can be expressed as 

  [ ]( 1) ( ), ( )x k f x k u k+ =                          (1) 

where x(k) is the state vector of the system, such as vehicle 

speed, transmission gear number, and battery SOC; u(k) is 

the vector of control variables such as desired output torque 

from the engine or motor, and gear shift command to the 

transmission. We focused our research on the fuel 

consumption as the main cost. Then, the optimization 

problem is to find the control input u(k) in order to minimize 

the following cost function: 
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where N is the duration of the driving cycle, L is the 

instantaneous cost including fuel consumption and engine- 

out NOx and particulate matter (PM) emissions. In the 

current study, only the fuel consumption is considered. 

During the optimization process, it is necessary to satisfy 

the following inequality and equality constraints with 

respect to the speed and torque demands and meanwhile to 

ensure safe/smooth operation of the engine/battery/motor. 
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where ωe is the engine speed, Te is the engine torque, Tm is 

the motor torque, SOC is the battery state of charge, vv is the 

vehicle velocity, vv_req is the requested velocity of the 

vehicle, and subscript min and max refer to the minimum 

and maximum value of the relevant variables, respectively.  

To make the DP algorithm feasible, a simplified but 

sufficiently complex vehicle model has been adopted [20]. 

B. DP Based Charge-Depletion Power Management 

DP is a general dynamic optimization approach which 

can provide globally optimal solution to the constrained 

nonlinear programming problems [26]. The optimal policy 

can solved from the sub-problems of optimization backward 

from the terminal condition. The (N−1)-th step minimizes 

{ }*

1
( 1)

[ ( 1)] min [ ( 1), ( 1)] [ ( )]
N

u N
J x N L x N u N G x N−

−
− = − − +    (4) 

while previous steps (0 < k < N−1) minimize 

{ }* *

1
( )

[ ( )] min [ ( ), ( )] [ ( 1)]k k
u k

J x k L x k u k J x k+= + +                   (5) 

where *[ ( )]
k

J x k  is the optimal cost-to-go function at state 

x(k) starting from time stage k. The above recursive 

equation is solved backward to find the control policy.  

As the numerical solution to DP, the quantization and 

interpolation from [27] has been adopted as in our previous 

study [22-24]. For PHEV, it is desirable to use the battery 

charge as much as possible, within the healthy range of SOC, 

when the vehicle reaches the destination. For most cases, the 

vehicle can be assumed fully charged to the highest healthy 

level, typically initial SOC of 0.8, while the healthy low 

level of terminal SOC is 0.3. The constraints to the DP 

procedure are the system dynamics throughout the trip to be 

made. The vehicle velocity profile should follow the driving 

cycles generated from trip model described in the next 

section, and the corresponding torque demands can then be 

obtained as reference for deriving the optimal power 

splitting policies throughout the trip. 
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III. TRIP MODELING USING MULTIPLE TRIP INFORMATION 

The purpose of the trip modeling is to find the driving 

cycle (e.g., travel speed, time, acceleration and 

deceleration) for each trip. A trip is defined as a driving path 

from an origin to a destination. For each trip, we can use 

path-finding algorithms inside the geographic information 

system (GIS) technology to search for the driving path and 

associated road information for each segment such as 

segment length, slope, speed limit and intersection/traffic 

light distribution. For arterial and express roads, historical 

and real-time traffic information can be obtained from 

roadside sensors. Traffic speed and flow information can be 

modeled based on such data [28] [29]. After the origin and 

destination of a trip are defined in the digital map, the trip 

model (i.e., driving cycle) can be generated based on the 

above-mentioned information.  

Figure 1 shows the map of the example trip, which is 

between two locations within the greater Milwaukee area in 

Wisconsin. The origin is 124 West Freistadt Road at 

Thiensville, while the end location is 3200 North Cramer 

Street in Milwaukee. The total travel time was estimated as 

2183 seconds, and the total distance is 27.2 km. The road 

elevation altitude is recorded by GPS. Then, the road grade 

can be calculated by the road altitude and road distance. 

Figure 2 shows the driving cycle with road grade 

information. The grade was within a range of ±2°. 

 

 
Fig.1. Route map of the example trip from www.mapquest.com 

 

 
Fig.2. Actual velocity profile and road grade profile 

A computationally efficient strategy is proposed in our 

previous work to reduce the computation time of 

conventional DP, which is based on a simple trip model and 

a LUT method. The simple trip model consists of three 

driving patterns: the constant acceleration rate (1.5 m/s2), 

constant braking deceleration rate (-2 m/s
2
) and the constant 

speed defined with speed limit. Therefore, there could be a 

large error between actual data and simple trip model. 

Besides, LUT methods become tedious when multiple trip 

information is involved, e.g. the road grade and payload 

change. In order to overcome such odds, an analytical 

solution of segment-wise energy consumption is developed 

in this paper. As the first step, the trip model is modified to 

fit the scenario of multiple trip information. 

In general, the road grade may change frequently at the 

actual road environment, especially in the mountain terrain. 

It has become a major impact on the fuel economy by using 

DP to obtain optimal power management. 

Road grade information can be integrated into the trip 

model by transforming the road grade from the time domain 

to the spatial domain. Note that spatial domain 

representation of road grade fits well with the GPS built-in 

information. Figure 3 illustrates the transformation from 

time domain to spatial domain. On the top left side, it is a 

road grade profile over the time domain. Then, the integral 

will be conducted along the profile of velocity and 

presented on the bottom left side. Finally, the road grade 

profile over the spatial domain is obtained by applying the 

interpolate method and presented on the top right side. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Transformation of road grade from time domain to spatial domain 
 

To overcome the huge database and the trip model error, 

a developed algorithm is proposed by using an analytical 

function. An acc/deceleration based trip model is proposed 

by transforming the velocity from the time domain to spatial 

domain. Figure 4 illustrates the idea of transformation, 

similar to that in Fig. 3. It can be seen that the pattern of 

sharply acceleration has been broadened significantly over 

spatial domain. Similarly, a plenty of information within 

this range can be detected and used to improve the accuracy 

of trip model. 

Based on the trip model with an assumption of constant 

acc/deceleration, the energy of resistance can be described 

as an analytical function over the spatial domain:      

( ) ( ) ( )

) ( )

1 2 1 cos
2
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where, M is the mass of the car body, 
eqmδ  is the mass 

factor, v is velocity, ρ is the air density, 
f

A is the effective 

area of vehicle, 
d

C is the aerodynamic drag factor, 
r

µ is the 

coefficient of rolling resistance, Θ is the road grade, g = 

9.8m/s
2
. 
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Fig. 4. Transformation of acc/deceleration based trip  

from time domain to spatial domain 

The following transformation from the time domain to 

spatial domain should be satisfied: 
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Then, the energy is obtained: 
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                     (10) 

Since the resistance energy is calculated over the spatial 

domain, the trip model can be divided into some 

segmentation with a pre-defined length: 

1n nL s s+∆ = −                                                                     (11) 

In each segment, an average velocity 
avgv  between upstream 

and downstream data is used to match the continuous profile 

(shown as Fig. 4): 

1

2

n n
navg

v v
v + +

=                                                                   (12) 

Finally, the influence of velocity, acc/deceleration and 

road grade is lumped together, and the power for each 

segment can be obtained: 
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A. Trip Modeling and Changeable Segment Scheme 

In this section, an example route was studied according to 

above modeling approach of A and B. Based on the traffic 

information, the route in Fig.2 is divided into three different 

road portions: 1) interstate expressway (I-43 South) with 

speed limit of 105 km/h, 2) local highway with speed limit 

of 64 km/h, 3) urban street with speed limit of 48 km/h.  

Historical traffic data of 10 weekdays in early January 

2007 from WisTransPortal were used to model the portion 

of interstate expressway. A traffic data based freeway trip 

model was obtained, shown as the dashed line in Fig. 5. 

Since this plot is time based, the two profiles are off by the 

time delay due to different travel time on the freeway 

portion. 

 
Fig.5. Comparison of traffic data based freeway trip model and actual data 

The tendency of different road types can be identified 

from the traffic data based freeway trip model. Then, a 

detailed trip model is generated by dividing the route into 12 

parts, as the solid lines in Fig. 6. Section 1 (0~250 second) 

and 12 (1600~2183 second) are the urban streets, Section 2 

(250~760 second) is the local highway, Sections 3 through 

11 (760~1600 second) are the I-43S freeway. Comparing 

with conventional simple trip model, more acc/deceleration 

information with respect to the part of interstate expressway 

has been considered in detailed trip model. It consists of 3 

parts of sharply acceleration, 2 parts of sharply deceleration 

and 1 part of smooth acceleration. Finally, both of the 

detailed trip model and the road grade are transformed from 

the time domain into spatial domain, shown as Fig. 6.  

 
Fig. 6. Trip modeling and segmentation for the example trip 

The multi-information fusion based power management 

scheme has thus been obtained in the spatial domain, which 

can be applied to DP algorithm by dividing the detailed trip 

model into different constant-speed segment length. A 

changeable segment scheme is developed by regulating the 

length of segment with respect to various traffic patterns. 

Comparing with the uniform segment length what we have 

applied in previous study, it can be an effective way to save 

time and reduce the error of fuel economy at a whole trip. 

The basic principle of changeable segment scheme can be 

summarized as two issues:  

1) The sharply traffic pattern is assigned with finest 

segmentation to obtain more detailed information,  

2) The smooth traffic pattern is assigned with roughest 
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segmentation to save computing time on the other hand.  

Since the detailed trip model has been divided into 

several segments with constant acc/deceleration, the 

segment length can be defined as following piece-wise 

function:  
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where ( )i∆ ∗ is the actual segment length for Part_i, ∗ is the 

absolute value of “*”, 
il∆ is desired segment length for Part 

_i, 1,2, , 1,2, ,12j i= =L L , a is the acc/deceleration, 
intv  is 

the initial velocity at the beginning of acc/deceleration, 
ipartt  

is the time interval for Part_i, ( ) ( )2
1 24 , 0.17s m s mα α= =  

are two coefficients which can be obtained by experience. 

IV. SIMULATION RESULTS 

The simulation used the same SUV model from the 

ADVISOR program as in our previous. Two issues of power 

management strategies are implemented: 1) the road grade 

impact on the fuel economy, 2) the evaluation of 

computational efficiency for different segment length based 

on the detailed trip model. All issues were studied with the 

initial and terminal battery SOC of 0.8 and 0.3, respectively. 

The operating case by applying the conventional DP to the 

velocity and road grade profile over time domain has been 

simulated as a benchmark. 

A. Simulation of Road Grade Impact on Fuel Economy 

In order to evaluate the impact of different road grade on 

the fuel economy, four basic cases are considered in this 

issue: 1) road grade = 0°, 2) actual road grade, 3) positive 

road grade only (by flattening the descent segments of the 

actual road grade), 4) negative road grade only (by 

flattening the ascent segments of the actual road grade (i.e. 

making the trip downhill overall)). Furthermore, two other 

interesting cases were discussed since the power splitting 

ratio (P.S.R, i.e. control algorithm) of Case1 has been 

obtained. Case5: the P.S.R obtained from Case1 is directly 

applied to Case2, Case6: the P.S.R obtained from Case 1 is 

directly applied to Case3, Case7: the P.S.R obtained from 

Case 1 is directly applied to Case4. The simulation results of 

SOC, P.S.R and power profile over the spatial domain for 

the first four cases are compared in the Fig.7. 

The positive parts of power profile indicate that the 

resistant power needs to be conquered by the engine and 

motor. The negative parts of power profile indicate the 

regeneration power caused by the road grade with negative 

degree, which can be stored in the battery. The collected 

fuel economy and fuel economy ratio are shown in Table I. 

The results show that the road grade takes a great impact 

on the fuel economy both at ascend, descend and also the 

random conditions. Particularly, the fuel economy ratio of 

Case5, 6 and 7 confirms that the fuel economy could be 

worsen if the P.S.R, which is obtained from DP without 

considering the road grade, is applied directly into the actual 

road condition with grade. The simulation results convince 

us that the road grade should be considered further in order 

to obtain an efficient control system. 
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Fig.7. Simulation results of different road grade  

TABLE I  

COMPARISON OF DIFFERENT ROAD GRADE IMPACT ON THE FUEL ECONOMY 

                          Fuel economy (L/100km) FE ratio 

Case 1 3.4495   

Case 2 3.4336     

Case 3 3.9113    

Case 4 2.1239   

Case 5 3.8875 13.22% degradation 

Case 6 4.4626 14.1% degradation 

Case 7 2.5591 20.49% degradation 

B. Simulation of Segment Length Impact on 

Computational Efficiency 

The advantage of detailed trip model is that the route can 

be divided into different sub-segmentation over the spatial 

domain, and hence reduces the computation task 

significantly by applying changeable segment length to 

different operating conditions respectively. In this issue, six 

cases were considered based on a uniform condition of road 

grade=actual degree. Case1: conventional DP was applied 

directly to the detailed trip model, Case2~5: the route of 

detailed trip model was divided into a number of equivalent 

segment length=100m, 200m, 400m, 600m, Case6: the 

route of detailed trip model was divided into a number of 

different lengths by using the changeable segment scheme. 

Based on the equation (15) and (16), the segment length 

from Part_1 to Part_12 are 400m, 800m, 200m, 300m, 

100m, 200m, 100m, 600m, 100m, 500m, 300m, 900m. The 

collected fuel economy, computing time and their ratio are 

shown in the Table II.  

Figure 8 shows that the computation time was greatly 

reduced by increasing the length of trip segmentation. The 

conventional DP took about 31 hours (111,640 seconds) to 
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handle whole trip for getting the macro-scale SOC profile, 

while the analytical function approach based on the detailed 

trip model saved more than three hundred of computation 

task. On the other hand, the deviation of fuel economy and 

SOC is limited within a bearable range. Compared with 

equivalent segment scheme, the variable segment scheme 

represents much reduction of computation time, whereas the 

deviation of fuel economy and SOC less than before. 

TABLE II 

IMPACT OF SEGMENT LENGTH ON FUEL ECONOMY AND COMPUTATION TIME 

FErel: Relative difference in FE compared with conventional DP. 

CT: Computing time as percentage of conventional DP. 

 
Fig.8. Comparison of different segment lengths impact on  

fuel economy and computation time over bar chart 

V. CONCLUSION 

In this paper, a multiple trip information fused framework 

is proposed for the trip based optimal power management 

for PHEV. The idea of spatial domain DP is retained, while 

the segment-wise computation of energy consumption is 

determined in an analytical rather than numerical manner. 

Simulation results have supported the validness of the 

proposed method. Such improvement will greatly help the 

development of spatial domain DP for the trip based PHEV 

power management, especially when more trip information 

is involved in the optimization process, such as road grade 

and payload variation.  
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FE 

(L/100km) 

Computing 

Time 

FErel 

(%) 

CT 

(%) 

Conventional DP 3.4336 111640 0 100 

About 100 m 3.4871 31028 1.56 27.7 

About 200 m 3.5220 6170 2.57 5.53 

About 400 m 3.6807 1540 7.2 1.38 

About 600 m 3.8012 580 10.7 0.52 

Changeable segment length 3.5205 610 2.53 0.55 
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