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Abstract— We present conditions under which a general class
of multiagent systems subject to noise can reach agreement in
expected value with probability one. The noise can be induced
by the fact that each agent takes erroneous measurements
of neighbors’ positions. The class of systems considered may
be nonlinear and requires that the diameter of the agents be
bounded for all possible error measurements. The convergence
result is related to previous work on the robustness of the
rendezvous algorithm and the stability of multiagent systems
with periodic connectivity. We illustrate the results in terms of
a modified discrete-time Kuramoto system, which is amended
to guarantee the system requirements.

I. INTRODUCTION

The last years are witnessing an intense research activity

in the area of cooperative control of multiagent systems and

its applications to multi-vehicle sensor networks; see e.g. [1].

A main driving theme is the characterization of the system

stability and robustness properties under different metrics.

For example, recent work has been devoted to the analysis

of multiagent systems under switching graphs [2], [3], [4],

[5], [6], asynchrony and delays [7], [8]. Robustness to noise,

and how multiagent behavior is affected by the network size

is also the subject of recent work; e.g. see [9], [10], [4],

[11] on the input-to-state stability properties of consensus

algorithms, and the degradation of formation control systems

subject to noise.

Motivated by this, we look for general conditions that

guarantee a class of discrete-time multiagent systems con-

verge to an agreement state in expected value with proba-

bility one. For example, the systems can be subject to noise

due to agents taking erroneous measurements of neighbors’

positions. We assume that the possible disturbances belong

to a compact space, and that the expected value of the

measurements correspond to true position values. The class

of systems considered here may be non-linear and extend

the class of multiagent systems considered previously. A

restriction that we impose to ensure a technical requirement

is that the diameter of agents be upper bounded for any

possible error measurement. We illustrate the results in terms

of a discrete-time Kuramoto system introduced in [12]. This

system is further modified in order to satisfy the assumptions

of the main result of the paper. Simulations show that conver-

gence occurs as predicted independently of this restriction.

The paper is organized as follows. In Section II we

present some notation, preliminary concepts on graphs, and

on multiagent systems modeled through set-valued maps. In

particular, we revisit a discrete-time version of a Kuramoto
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oscillator from [12]; which is briefly analyzed using the

tools described. In Section III, we present the class of

multiagent systems subject to noise on which we focus

and introduce a modified version of the Kuramoto oscillator

system as an example. Section IV contains the main results

of the paper which are then used to analyze the modified

Kuramoto system. Section V presents simulations results and

Section VI includes some concluding remarks.

II. NOTATION AND PRELIMINARY DEFINITIONS

A. Preliminaries on geometric notions and graphs

In this subsection, we introduce some notation and pre-

liminary concepts employed throughout the paper, see [13]

for a more information on these.

In the sequel, X will either represent a (convex) subset of

R
d, for some d ≥ 0. Consider a set of points p1, . . . , pn ∈

X , its convex hull is defined as co(p1, . . . , pn) =
{λ1p1 + · · · + λnpn| λi ≥ 0,

∑n

i=1 λi = 1}. We will use

tuples P = (p1, . . . , pn) ∈ Xn to refer to the positions of the

multiagent system in space. The algorithms we will consider

are synchronous, implemented in discrete time over a time

schedule m = 0, 1, 2, 3, . . . , and give rise to point sequences

{Pm = (p1,m, . . . , pn,m) ∈ Xn}m≥0.

A (directed) graph over a finite set of nodes V is a

pair G = (V,E), with E = {(i, j)| i, j ∈ V, i 6= j} ⊆
V ×V \diag(V ×V ). The graph is undirected when (i, j) ∈ E
if and only if (j, i) ∈ E. A proximity graph function G(P )
associates to a point set VP = {p1, . . . , pn} ⊂ X an

undirected graph with vertex set VP and edge set EG(VP ) ⊆
VP × VP \ diag(VP × VP ). In other words, the edge set

of a proximity graph may depend on the location of its

vertices. We will also consider proximity graphs subject

to link failures, GF (P ). These are graphs on P with an

edge set that may also be dependent on the location of the

vertices. However, given (pi, pj) in GF (P ), the reversed edge

(pj , pi) may not be in GF (P ). In other words, GF (P ) is a

directed graph. We will use these graphs to capture sensing

or communication failures. When elements in the set P are

indexed by i ∈ {1, . . . , n} = V , the graph GF (P ) can be

associated with a graph G over V in a natural way. With

a slight abuse of notation, we will sometimes identify these

two objects. We denote the set of neighbors of agent pi in

GF (P ) by:

Ni(GF ) = {j ∈ {1, . . . , n}| (pi, pj) ∈ EGF (P )} ,

and the cardinality of Ni(GF ) will be denoted as ni =
|Ni(GF )|. Given a sequence of graphs {GF,m}m≥0, we will

use the shorthand notation Ni,m ≡ Ni(GF,m). We will

denote the set of proximity graphs with failures as GPF. With
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a slight abuse of notation, the set GPF(P ) will represent the

set of directed graphs over n vertices.

We recall some concepts from Functional Analysis next.

Let F = {f : Y → Z} be a family of functions defined over

metric spaces (Y, dY ) and (Z, dZ). Let ‖ · ‖Y (resp. ‖ · ‖Z)

denote the associated norm on Y (resp. on Z). A sequence

{fn}n≥0 ⊆ F converges uniformly to f ∈ F if for all ǫ >
0 there is a nǫ > 0 (independently of y ∈ Y ) such that

∀n ≥ nǫ we have that ‖fn(y) − f(y)‖Z ≤ ǫ. The family

F is uniformly bounded in Y if there is a constant K ≥ 0
such that supy∈Y ‖f(y)‖Z ≤ K for all f ∈ F . The family

F is equicontinuous if for all y0 ∈ Y and ǫ > 0, there exists

a δy0
> 0 such that ‖f(y0) − f(y)‖Z < ǫ for all f ∈ F

and y ∈ Y with ‖y0 − y‖Y < δ. The theorem of Ascoli-

Arzela is the Bolzano-Weierstrass analogue for sequences of

functions: every equicontinuous family {fm}m≥0 that is also

uniformly bounded, has a uniformly convergent subsequence

{fmk
} ⊆ {fm}.

B. Multiagent dynamics and Kuramoto oscillators

Here we present models of multiagent systems using set-

valued maps and an associated convergence result. As an ex-

ample, we describe a discrete-time Kuramoto multioscillator

taken from [12]. We also point out how to partially prove a

conjecture from [14] regarding the system convergence.

Given P0 ∈ Xd, a proximity graph G, and a map f :
Xn → Xn, we define a multiagent system evolution as:

Pm = f(Pm−1,G(Pm−1)) =

(f1(Pm−1,N1(G(Pm−1))), . . . , fn(Pm−1,Nn(G(Pm−1)))) .

Observe that local multiagent interactions are introduced by

the fact that fi(P,G) ≡ fi(pi, pj1 , . . . , pjni
) where pjl

, l ∈
{1, . . . , ni} are the neighbors of agent i in the graph G(P ).
To capture the possible failures in communication or sensing,

we can employ a set-valued map Tf : Xn
⇉ Xn such that

Pm ∈ Tf (Pm−1) = {f(Pm−1, G) | , G ⊆ G(Pm−1)} .

A set-valued map Tf is closed if for any sequences Pk, Qk

such that Qk ∈ Tf (Pk) and Qk → Q, Pk → P , we have

that Q ∈ Tf (P ). It is easy to see that, provided that f(P,G)
is continuous in P for every fixed G, the set-valued map

Tf is closed. A LaSalle invariance principle is available for

multiagent systems as follows; see [13] for more information.

Lemma 1 ([13]): Let T : Xn
⇉ Xn be a set-valued

map defining a discrete-time multiagent dynamical system.

Assume that:

(i) there is a set W ⊆ Xn that is strongly positively

invariant under T ;

(ii) there exists a function V : Xn → R that is non-

increasing along T on W .

(iii) all evolutions of the dynamical system with initial

conditions in W are bounded; and

(iv) T is nonempty and closed at W and V is continuous

on W .

Let M denote the largest weakly positively invariant set

contained in {p ∈ W | ∃ p′ ∈ T (p) such that V (p′) =

V (p)}. Then there exists a c ∈ R such that all evolutions

with initial conditions in W approach the set M ∩ V −1(c).
Example 2 (Discrete-time Kuramoto oscillators):

The Kuramoto system was proposed in [15] to model

synchronization in a population of oscillators. Different

conditions for the stability of the system under switching

graphs have recently been provided [16], [17], [2], [18]. A

motivation for the study of the Kuramoto oscillators has

been the coordination of multiple underwater vehicles [19],

[12]. Since the communication among vehicles occurs

naturally at discrete instants of time K∆T , the following

discrete-time version of the algorithm was proposed in [12].

Consider an initial condition θ1,0, . . . , θn,0. For every

k ∈ {1, . . . , n} and m ≥ 0,

θk,m+1 = θk,m+
K∆T

|Nk,m| + 1

∑

i∈Nk,m

sin(θi,m−θj,m) mod 2π ,

(1)

where a particular identification of S as subset of R is chosen;

i.e. S ≡ [θ∗, θ∗ + 2π), for some origin θ∗, and the sum is

understood modulo 2π. Observe that, if the initial conditions

for the oscillators satisfy −π ≤ θi,0 − θj,0 ≤ π for all i, j ∈
{1, . . . , n}, then sin(θi,0 − θj,0) = λij(0)(θi,0 − θj,0), with

0 ≤ λij(0) ≤ 1. Thus, for any choice of origin θ∗, we have

that the system (1) satisfies:

θk,1 = θk,0 +
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0)(θi,0 − θk,0)

= θk,0



1 −
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0)





+
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0)θi,0 .

The above linear combination is a convex combination if

0 ≤
K∆T

|Nk,0| + 1
λik(0) ≤ 1, ∀ i ∈ Nk,0

0 ≤ 1 −
K∆T

|Nk,0| + 1

∑

i∈Nk,0

λik(0) ≤ 1 .

This is true provided that K∆T ∈ [0, 2]. In other words,

θi,1 ∈ co(θ1,0, . . . , θn,0) ⊆ [θ∗ − π, θ∗ + π) and thus −π ≤
θi,1 − θj,1 ≤ π. In this way, the oscillator states remain in

the set [θ∗ − π, θ∗ + π) for all t, the system (1) is well

defined as a system in R and it is not necessary to consider

the modulo operation. Observe that if different agents choose

different coordinates (determined by a different origin θ′∗),

in order to implement equation (1), then it holds that θ′i,m =
θi,m − θ∗ + θ′∗ for all m ≥ 0. That is, the evolutions are

the same except for the origin translation. Without lose of

generality, we will assume that agents make use of a common

origin in S to implement (1).

This system was analyzed in [12] and, under the assump-

tion of all-to-all communication, it is seen that all agents’

states get aligned for K∆T ∈ [0, 2] under bounded delays

for almost all initial conditions. The following result shows
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an application of Lemma 1 and proves a partial conjecture

stated in [12].

Proposition 3: Consider the discrete-time Kuramoto sys-

tem (1), with K∆T ∈ [0, 2]. Let θ1,0, . . . , θn,0 be an

initial condition such that π < θi,0 − θj,0 < π for all

i, j ∈ {1, . . . , n}. Let {Gm}m≥0, be the sequence of prox-

imity graphs with failures used to obtain the evolution of

{θi,m}m≥0, i ∈ {1, . . . , n}. If there exists M > 0 such

that GkM is strongly connected for every k ≥ 1, then

limm→∞ θk,m = θ∗.

Proof: A sketch of the proof is given next. The system

can be described with the help of a set-valued map TKura =
(T1, . . . , Tn) : Xn

⇉ Xn as:

θi,m+1 = Ti(θ1,m, . . . , θn,m)

= {θi,m +
K∆T

|Nk(G)| + 1

∑

i∈Nk(G)

sin(θi,m − θj,m) |G ∈ GPF}

In particular, the evolution of the oscillators under a par-

ticular choice of {Gm}m≥0 is contained into the set of

evolutions that is possible under the set-valued map. If

−π < θi,m − θj,m < π, then it can be seen that θi,m+1 ∈
co(θ1,m, . . . , θn,m), and −π < θi,m+1 − θj,m+1 < π
(see the above discussion for m = 0). Thus the set

W = co(θ1(0), . . . , θn(0))n is (strongly positively) invari-

ant under the set-valued map TKura. Because we have that

co(θ1,m+1, . . . , θn,m+1) ⊆ co(θ1,m, . . . , θn,m), one can see

that the function diam : Xn → R, diam(θ1, . . . θn) =
maxi,j(θi − θj) is decreasing along TKura on W . Note also

that diam is continuous on W . Finally, since for every fixed

graph the function θi + K∆T
|Nk(G)|+1

∑

i∈Nk(G) sin(θi − θj) is

continuous in θ1, . . . , θn, then TKura is closed on W . By

Theorem 1, we have convergence to the largest invariant set

M such that:

M ⊆ {θ ∈ W | ∃ θ′ ∈ TKura(θ) s.t. diam(θ′) = diam(θ)}.

It can be proved by contradiction that M ⊆ diag([−π, π]n).
Otherwise, take (θ1, . . . , θn) ∈ M such that

diam(θ1, . . . , θn) > 0 and consider it as initial condition for

TKura. It must be that the θi determining the diameter of

co(θ1, . . . , θn) remains stationary under TKura. Otherwise the

diameter of co(θ1, . . . , θn) will decrease strictly since when

the θi move, they strictly move to the interior of the convex

hull of neighbors. By hypothesis for all Mk > 0, GMk is

strongly connected. It can be argued that this implies that

one of the agents determining diam(θ1, . . . , θn), say i, will

have a neighbor under GMk, for some k ≥ 0, say j, with

θi,Mk 6= θj,Mk. Since |θi,m − θj,m| < π for all m ≥ 0, then

sin(θi,Mk − θj,Mk) 6= 0 and necessarily θi,Mk will strictly

move to the interior of co(θi,0, . . . , θn,0). Thus the diameter

of the set will be strictly decreased, which is a contradiction

with the fact that it is constant on M . Thus, it must be that

M ⊆ diag([−π, π]n). Also, since [−π, π]n is a compact

set, it must be that {θk,m} converge to a point in M .

III. A CLASS OF RANDOM MULTIAGENT SYSTEMS

In this section, we present the class of multiagent systems

subject to noise that we consider in this paper. As an

example, we introduce a modified version of the discrete-

time Kuramoto system.

Consider a group of n agents, with states denoted by P =
(p1, . . . , pn) ∈ Xn, i ∈ {1, . . . , n}. Let (Ω,F , P) be a com-

pact probability space with Ω ⊆ R
e for some integer e, and

denote by R = {R : Ω → Xn| R is a Random Variable}
the set of random variables over Ω. We will denote the

components of R ∈ R as R = (R1, . . . , Rn). A se-

quence of random variables will be denoted by {Rm =
(R1,m, . . . , Rn,m)}m≥0.

Let us identify an initial multiagent configuration, P0 =
(p1,0, . . . , pn,0) ∈ Xn, with the constant random variable

R0(ω) = P0, ω ∈ Ω. Now, given a map F : Xn ×
GPF → R, we can define a discrete-time Markov process

as Rm+1 = F (Rm(ωm),Gm(Rm(ωm))), m ≥ 1, taking

R0 as initial condition1. In this way, a sequence of random

outcomes, {ωm}m≥0, graphs {Gm}m≥0, and an initial con-

dition, P0, give rise to a particular sequence of multiagent

states {Rm(ωm) = Pm = (p1,m, . . . , pn,m)}m≥0. To fix

ideas, the outcome ωm ∈ Ω will correspond to arbitrary

errors in e.g. measuring agents’ positions. That is, pi,m+1

will depend on the previous positions pi,m and the sensed

position of neighbors as pi
j,m = si(pj,m, ω), where si :

X × Ω → X is the sensing function of agent i. For

example, si(pj,m, ω) = pj,m + ωi
j , where ω = (ωi

j) ∈ Ω.

In this way, depending on the error outcome ω, we will

get different new positions Rm+1(ω). For every agent, we

denote the set of neighbors’ sensed positions at time m as

Si,m =
{

pi
j,m = si(pj,m, ωm)| j ∈ Nj,m , ωm = (ωi

j,m)
}

.

In order to consider arbitrary proximity graphs with fail-

ures, we will make use of a set-valued map TF : Xn
⇉ R

such that:

Rm+1 ∈ TF (Rm(ωm)) = {F (Rm(ωm)), G)| G ∈ GPF} .
(2)

The map F : Xn × GPF → R and a fixed graph G
give rise to another map FG : Xn × Ω → Xn such

that FG(P, ω) = F (P,G)(ω). We will use the notation

FG(P, ω) = (FG,1(P, ω), . . . , FG,n(P, ω)).
The type of multiagent algorithms that we consider will

satisfy the following properties:

Assumption 1: (i) FG,i(P, ω), i ∈ {1, . . . , n}, is con-

tinuous in (P, ω), for every G,

(ii) FG(P, ω) is invariant modulo points in the diagonal

of X . That is, FG(P + (q, . . . , q), ω) = FG(P, ω) +
(q, . . . , q) for all (q, . . . , q) ∈ diag(Xn).

(iii) the sequence {Rm}m≥0, obtained through TF and a

given P0 will satisfy ‖Ri,m(ω)−Rj,m(ω)‖ ≤ CP0
for

some positive constant CP0
,

(iv) for every m ≥ 0, we have that pi,m+1 ∈ co(Si,m ∪
{pi,m}). More precisely, when there is j ∈ Ni,m

such that pj,m 6= pi,m, and a certain constraint

set Ci(pi,m,Si,m) 6= ∅, then pi,m+1 ∈ co(Si,m ∪

1Since we are dealing with random variables, we can understand the
equality Rm+1 = F (Rm(ωm),Gm(Rm(ωm))) in the almost sure sense.
That is, Rm+1(ω) = F (Rm(ωm),Gm(Rm(ωm)))(ω) for all ω except
for possibly for a set of probability (or measure) zero.
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{pi,m}) \ Si,m ∪ {pi,m}. When Ci(pi,m,Si,m) = ∅,

then pi,m+1 = pi,m.

Given a map F : Xn × GPF → R, we consider an

associated map F : Xn × GPF → R such that

F (P,G(P )) = F (P,G(P ))

− (π1(F (P,G(P ))), . . . , π1(F (P,G(P )))),

where π1 : Xn → X is the natural projection. An alternative

way of describing the algorithm defined through map F that

satisfies Assumption 1 (ii) is the following:

Rm+1 ∈ TF (Rm(ωm)) , m ≥ 0 , (3)

where TF : Xn
⇉ R is given by

TF (P ) = {F (P ,G) |G ⊆ G(P )} ,

To see this, suppose that P 0 = P0, and the specific sequences

of graphs {Gm}m≥0, and events {ωm}m≥0 chosen to obtain

{Rm} and {Rm} are the same. Then we have that Rm =
Rm − (π1(Rm), . . . , π1(Rm)), for all m ≥ 1. We will

make use of this relationship to prove our convergence

results in the next section. Alternatively, using the notation

of FG(P, ω) ≡ F (P,G)(ω), we have that Rm+1(ω) =
FGm

(Rm(ωm), ω), m ≥ 1.

Example 4 (Modified discrete-time Kuramoto system):

Suppose that every agent k ∈ {1, . . . , n} can only take noisy

measurements of neighbors i according to θk
i = θi + ωk

i ,

with ωk
i e.g. uniformly distributed over [−σ, σ], for some

σ > 0.

As a consequence of the noise, the direct implementation

of the discrete-time Kuramoto update law (1), could make

agents’ get out of the invariant region −π < θi − θk < π.

Suppose that π < θi,0 − θj,0 < π for all i, j ∈ {1, . . . , n}.

Then, the update law in (1) can be modified to guarantee

−π < θi,m − θj,m < π for all m ≥ 0. In what follows we

use the notation Φm(ω) = (φ1,m(ω), . . . , φn,m(ω)) to refer

to the random variables obtained through the algorithm, and

Θm = (θ1,m, . . . , θn,m) to refer to the specific multiagent

states the system evolves through. In this way, φi,m(ωm) =
θi,m. Then, Φm+1(ω) = (φ1,m+1(ω), . . . , φn,m+1(ω)) is

obtained as:

φk,m+1(ω) = Fk(Φm(ωm), Gm)(ω) =

θk,m +
K∆T

|Nk(Gm)| + 1

∑

i∈Nk(Gm)

sin(θ
k

i,m − θk,m) ,

where θ
k

i,m = θi,m +ωk
i if −π < θk

i,m−θk,m < π, otherwise

θ
k

i,m = θk,m. Observe that this condition on the definition of

θ
k

i,m defines a constraint set, Ck(θk,m,Sk), for each agent.

In other words, Ck(θk,m,Sk) = ∅ if |θi,m +ωk
i − θk,m| ≥ π

for all i ∈ Nk,m, otherwise Ck(θi,m,Sk) = X .

It is easy to see that all conditions of Assumption 1 (i)

through (iii) are satisfied. To see that condition (iv) holds,

we can rewrite the system as:

φk,m+1(ω) = bkk,mθk,m +
∑

i∈Nk(Gm)

bik,mθ
k

i,m ,

for some constants 0 ≤ bij,m ≤ 1 (see reasoning before

Proposition 3). It can be seen that whenever θ
k

i,m 6= θk,m,

then θk,m+1 ∈ co(Sk, θk,m) \ Sk ∪ {θk,m}. Because of the

definition of C(kθk,m,Sk) taken and the algorithm definition,

condition (iv) holds.

IV. CONVERGENCE RESULTS

This section contains the main convergence results for

a multiagent system satisfying Assumption 1 (i)–(iv). The

proofs of the following theorems and results are contained

in an extended version of this paper; see [20], where we

also analyze related circumcenter algorithms subject to noisy

measurements.

Proposition 5: Consider a multiagent system defined

through a set-valued map as in (2) and (3), satisfying

Assumption 1. Let {Rm}m≥0 be the sequence obtained

through it from the initial condition P0 ∈ Xn. Then, the

family of functions {Rm}m≥0 is uniformly bounded in Ω
and is equicontinuous.

Given a discrete-time Markov process, we define an

omega-limit set for it as follows.

Definition 1: Consider a discrete-time Markov process

{Rm(ω)}, we define its omega-limit set as

Ω(Rm) = {R : Ω → Xn random variable |

∃ {Rmk
} ⊆ {Rm} such that Rmk

→ R

uniformly in Ω} . (4)

Observe that since a sequence {Rm} satisfying Assump-

tion 1 (iii) is uniformly bounded and equicontinuous, by

the Ascoli-Arzela theorem, there is always a subsequence

{Rmk
} that is uniformly convergent {Rmk

} → R. In this

way, R ∈ Φ(Rmk
) 6= ∅.

Suppose that {Rm}m≥0 is determined from the set-valued

map TF , the initial condition P0 and a sequence of outcomes

{ωm}m≥0. We say that Ω(Rm) is (weakly) invariant with

respect to TF if for every R ∈ Ω(Rm) there exist ω ∈ Ω,

and R′ ∈ T (R(ω)) such that R′ ∈ Φ(Rm). The following

result holds.

Theorem 6: Let TF be a set-valued map as in (3) associ-

ated with a map as in 2 satisfying Assumption 1. The omega-

limit set of the discrete-time Markov process (3) defined

in (4) is invariant with respect to TF .

Theorem 7: Let p1,0, . . . , pn,0 ∈ X be the ini-

tial positions of a multiagent system. Let {Rm(ω) =
(R1,m(ω), . . . , Rn,m(ω))}m≥0 denote the discrete-time

Markov process obtained by applying a set-valued map

algorithm as in (3), associated with a map F satisfying

Assumption 1. Then {Rm} converges to the largest (weakly

positively) invariant set, M, contained in

{R random variable |∃T (R(ω))

for some ω ∈ Ω and diam(E[R′]) = diam(E[R])}.

A. Analysis of the modified discrete-time Kuramoto system

From Theorem 7, we would like to conclude that in

fact limm→∞ diam(E[Rm]) = c = 0, so that we have

multiagent agreement in expected values. Due to the fact that
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Ci(pi,m,Si,m) may be empty for all i ∈ {1, . . . , n}, agents

may remain stationary and limm→∞ diam(E[Rm]) > 0. As

long as one can prove that Ci(pi,m,Si,m) 6= ∅ and the multi-

agent system is connected infinitely often then agreement in

expected value will follow. In the next subsection, we prove

this holds for the modified Kuramoto system. For simplicity

we use sequences of undirected graphs. The result can be

extended to the case of directed graphs as in Proposition 3

and also for graphs that are jointly connected over a fixed

time window.

Theorem 8: Consider the modified discrete-time Ku-

ramoto system proposed in Example 4 and the associated

Markov process {Φm}m≥0 obtained from an initial condition

Θ0 = (θ1,0, . . . , θn,0) such that |θi,0 − θj,0| < π for all

i, j ∈ {1, . . . , n}. Let {Gm}m≥0 be the sequence of graphs

used to obtain {Φm}m≥0 and suppose that there is M > 0
such that GkM is connected for all m ≥ 0. Then we have

that limm→∞ E[Φm] = 0 with probability one.

Proof. By Theorem 7 we have that limm→∞ E[Φm] =
c and that Φm converges almost surely to M ∩
(diam ◦E)−1(c). Using a contradiction argument we see next

that if R ∈ M then diam(E[R]) = 0 with probability one.

Let Φ ∈ M and consider the initial condition Θ =
E[Φ] = (θ1, . . . , θn) for the Kuramoto system. By the weak

invariance property, it must be that we can always find a

sequence such that diam(E[Rm]) = c for all m ≥ 0. We

will show that, with probability one, for all sequences chosen

there is m0 > 0 such that diam(E[Rm0
] < c unless c = 0.

Suppose that diam(Θ) > 0. By the algorithm defini-

tion, this implies that all the agents i that determine the

diameter of the set co(θ1,m, . . . , θn,m) must remain station-

ary. Otherwise, the diameter diam(E[Φm]) will decrease

strictly. In particular, there exists an agent i such that

θi ∈ ∂(co{θ1, . . . , θn}), with θi determining the diameter

of co{θ1, . . . , θn}, for which there is an agent j connected

to i an infinite number of times. Recall that the algorithm

update law makes |θj,m − θi,m| < π hold for all m ≥ 0.

The measurement model error assumes that θi
j,m is uni-

formly distributed over a disk of radius σ centered at θj,m.

Let α > and 0 < σ − α < π then, with probability

one, there is an infinite number of time instants for which

|θi
j,m − θi,m| ≤ π − σ + α < π. To see this, observe that:

P(|θi
j,m−θi,m| ≤ π − σ + α) =

{

1, if |θj,m − θi,m| ≤ π − 2σ,
1

πσ2

∫

D
d P > 0, otherwise,

where D = [θj,m−σ, θj,m+σ]∩[θi,m−π+σ−α, θi,m+π−
σ+α] = [θj,m−σ, θi,m+π−σ+α]. Since θi,m−π+σ−α <
θj,m + σ is equivalent to θi,m − θj,m < π + α, then

D 6= ∅. Denote by P(|θi,m − θi
j,m| ≤ r − σ + α) =

a > 0 and let us compute the probability of the event

A =
{

∃m > 0| |θi,m − θi
j,m| ≤ r − σ + α

}

. In fact, we

can write A as the disjoint union of events Am, m ≥ 0:

A = ∪∞
m=0Am = ∪∞

m=0{|θi,s − θi
j,s| > r − σ + α,

∀s ≤ m − 1, and |θi,m − θi
j,m| ≤ r − σ + α} .

In this way,

P (A) =

∞
∑

m=0

P (Am) =

∞
∑

m=0

a(1 − a)m =
a

1 − (1 − a)
= 1.

Therefore, there exists a time m > 0 such that agent i makes

a measurement of agent j ∈ Ni,m and |θi,m − θi
j,m| <

π. Thus, we have that Ci(θi,mSi,m) 6= ∅ and θi,m+1 ∈
co(θi,m, θi

j,m|j ∈ Nj,m) \ {θi,m} ∪ {θi
j,m|j ∈ Nj,m}. This

implies that θi,m strictly moves inside the convex hull of the

θk, with probability one.

In all, we have proven that w.p.1 diam(E[Φm]) <
diam(E[Φ]) for some m > 0. Since diam(E[Φm]) =
diam(E[Φ]) for all m ≥ 0 by the invariance property of

the omega limit set, we obtain a contradiction.

V. SIMULATIONS

Figure 2 shows a run of the diameter of a multi-oscillator

system that evolves under the modified Kuramoto dynamics.

The proximity graph considered is the Gdisk(r) proximity

graph, for r = 1, which is subject to random failures every

4 time steps. The number of oscillators is n = 15, and

σ = 0.5. As it can be seen in this figure the algorithm

behaves as expected from the analysis. Oscillators converge

to a practical stability ball that wanders in space. This

behavior is representative of what we have seen in many

repeated simulations with different initial conditions and

relations r/σ > 1, as long as connectivity is guaranteed

periodically.
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Fig. 1. Diameter evolution of a group of oscillators implementing a
modified Kuramoto system with the Gdisk(r).

The size of the stability ball is very much affected by

the sparsity of the connectivity graph. Figure ?? presents

a run of the diameter of a multi-oscillator system that is

connected through the Delaunay graph in R. In this particular

simulation, n = 15 and σ = 0.05. We have observed in

simulations that with this type of graph, the size of the

stability ball is typically much larger and increases with the

addition of more agents.
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Fig. 2. Diameter evolution of a group of oscillators implementing a
modified Kuramoto system with the Delaunay graph.

Simulations also show that even for initial conditions not

satisfying the condition |θi(0) − θj(0)| ≤ π, convergence is

possible provided there is frequent multiagent connectivity.

Notice that the states θ1, . . . , θn such that θi = θj + kijπ,

with kij ∈ {0, 1} constitute equilibrium points of the

deterministic Kuramoto system. However, except for the case

of kij = 0 for all i, j, all these states are unstable. Any

perturbation will bring the system out of these bad equilibria.

Therefore, it is very reasonable to expect that the current

analysis for the modified Kuramoto system can be carried

over to full sphere, S.

VI. CONCLUSIONS

This paper presents some convergence results for mul-

tiagent systems subject to noise. The analysis makes use

of a stochastic analogue of the LaSalle invariance principle

for switching systems. Provided periodic connectivity of the

multiagent system occurs, we can conclude that the expected

value of the diameter of the multiagent system converges to

zero with probability one. Future work will be devoted to

study the effect of random graphs and multiagent connections

in probability. We will also investigate the possible extension

of the results to the sphere and its consequences for the

modified Kuramoto system.
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