
 

  
Abstract—This paper presents the development and application 
of an Active Disturbance Rejection Controller (ADRC) to 
regulate the frequency error for a three-area interconnected 
power system. As the interconnected power system transmits the 
power from one area to another, the system frequency will 
inevitably deviate from a scheduled frequency, resulting in a 
frequency error. A control system is essential to correct the 
deviation in the presences of external disturbances and structural 
uncertainties to ensure a safe and smooth operation of the power 
system. ADRC can extract the information of the disturbance 
from input and output data of the system and actively 
compensate for the disturbance in real time. In addition, it has 
the advantages of simple structure, few tuning parameters, and 
robustness against parameter uncertainties over the traditional 
PID controllers used in current power industry. The effectives of 
the controller are validated by both simulation results and a 
frequency-domain analysis of the control system.  
 

Index Terms—load frequency error, active disturbance 
rejection based control, robustness, power system. 
 

I. INTRODUCTION 
nterconnected electric power generation systems utilize tie-
lines to transmit power from one area to another, either 
scheduled via a contract or in support during a system 

disturbance [1]. The “quality” of the power generating system 
is defined by three factors: constancy of frequency, constancy 
of voltage and level of reliability [2]. In actual power system 
operations, the load is changing continuously and randomly, 
resulting in deviations of the load frequency and the tie-line 
power between any two areas from scheduled generation 
quantities. Therefore, a Load Frequency Controller (LFC) is 
widely used to ensure a good quality of the power systems 
through regulating the deviations.  

The tie-line deviations from scheduled values are defined as 
Area Control Error (ACE). It is a summation of the tie-line 
power deviation tiePΔ  and the frequency deviation fΔ  
multiplied by a bias factor B [2]. The LFC is employed in each 
area of the interconnected power systems to drive the ACE to 
zero.   

A traditional LFC is performed by an Automatic Generation 
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Control (AGC) through changing load reference inputs of 
governors of selected units in the control area, and then 
adjusting their outputs [1, 3-4] to track the reference inputs. 
However, the reference signal is generally varying with 
environmental variations that degrade the performance of the 
AGC greatly. In addition, multiple proportional and integral 
parameters of the AGC make it very difficult to tune in the 
real world. Decentralizing the power system using modern 
control method such as Linear Quadratic Gaussian (LQG) [5], 
state feedback [6] and H infinity [7] can possibly reduce the 
size of the inter-connected power system. But the structures of 
these controllers are too complicated to be implemented for 
industry practices. Recently, a process utilizing Linear Matrix 
Inequalities (LMI) [8] or Genetic Algorithms LMI (GALMI) 
[9] to tune the parameters of Proportional Integral Derivative 
(PID) controllers has been developed for the multiple-area 
power systems. Although the GALMI based PID controllers 
are simple and effective to some extent, they react passively to 
the disturbances in the power system, such as temperature and 
humidity change, machine wear and tear, and other 
unpredictable frictional forces. 

This paper aims to develop a practical Active Disturbance 
Rejection Control (ADRC) solution to solve the LFC problem. 
Compared to conventional PID controllers, ADRC is a 
technology that actively anticipates and fights disturbances 
before they affect system operation. The basic idea of ADRC 
is using an Extended State Observer (ESO) to estimate and 
cancel the generalized disturbance (all the input efforts 
excluding the control effort) of the system in order to simplify 
the control problem. The designed controller based on this 
concept is easy to tune [10], does not need an accurate model 
[10], is able to be decentralized [11] and has a notable 
robustness [12-13] against unexpected disturbances and 
structural uncertainties. The ADRC has been applied to many 
micro and mechanical systems [10-15]. It is the first time that 
we modified it and applied it to the LFC problem of a power 
system. A decentralized robust LFC controller based on the 
idea of the ADRC is introduced in the paper to reduce the 
ACE to zero.  

This paper is organized as follows. The dynamic model of 
the generation power system is explicated in section II. The 
design of LFC using the ADRC is introduced in section III. 
Simulation results of the control system are given in section 
IV. The performance analysis is in section V. Concluding 
remarks are made in the last section of this paper. 
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II. DYNAMIC MODEL OF THE MULTIPLE-AREA POWER 
SYSTEMS 

  We will design the LFC controller based on a three-area 
interconnected power system. A dynamic model of one-area 
power system is shown in Fig. 1. The model consists of three 
generation units, each of which is composed of three major 
parts: governor, turbine and generator. Governor catches load 
change error and outputs valve position (PV). The physical 
limitation of the valve position change is represented by a rate 
limiter in the figure. Turbine turns natural power into 
mechanical torque, which drives the generator to generate 
electric power. A common non-reheat turbine unit is employed 
in the paper. All generators in one area response coherently, so 
they are represented by an equivalent generator [2].  Droop 
characteristic is provided to change the speed setting of the 
governor so that several governors can operate in parallel. Tie-
line power deviation is proportional to the integral of the 
frequency difference between the two areas connected with 
the tie-line. The ACE output defined in previous section is 
equal to tieB f PΔ + Δ as shown in the figure.  

For the conveniences of the controller design and the 
performance analysis, we focus on Laplace transform 
representation of the system in this section. Let y(t) denote the 
ACE output of the system, and u(t) the control input to the 
system. The Laplace transform of the system model is  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )P D f DY s G s U s G s Pl s G s f s= + Δ + Δ ,   (1) 

where 
( ) ( ) ( )P PG s Num s Den s= ,                          (2) 
( ) ( ) ( )D DG s Num s Den s= ,                          (3) 
( ) ( ) ( )f fG s Num s Den s= ,                          (4) 

In (2), (3) and (4),  
1 2 3 2 1 3 3 1 2 1( ) ( )( )P areaNum s H H H H H H B s Tα α α= + + + ,  (5) 

1 2 3 1( ) ( )( )D areaNum s H H H B s T= − + ,                  (6) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

2 3 1 1 3 2 1 2 3 1 2 3

1 2 3 1

( ) ( )

( ) ,
f

area

Num s T H H R H H R H H R H H H H s

TH H H B s T s

= − + + +

+ +
 (7) 

2 3 1 1 3 2 1 2 3

1 2 3

( )Den s H H s R H H s R H H s R
H H H H

= + +
+

,         (8) 

where 
 12 13T T T= + ; 
 1 1 1( 1)( 1)g chH T s T s= + + ; 

 2 2 2( 1)( 1)g chH T s T s= + + ; 

 3 3 3( 1)( 1)g chH T s T s= + + ; 

 2
1 1area areaH M s D s T= + + . 

where 
 Δ  deviation from nominal values; 
 f  area frequency; 
 Df  area interconnection signal; 
 D  load damping constant; 
  (for one generation company); 
 M  inertia constant; 
  (for one generation company); 
 ijT  tie-line synchronizing coefficient between area i & j; 
 Pl  power load change; 
 tieP  tie-line power flow; 
 mP  mechanical power; 
 chT  turbine time constant; 
 VP  governor valve position; 
 gT  governor time constant; 
 R  speed regulation characteristic; 
 α  ramp rate factor; 
 CP  load reference setpoint; 
 B  composite frequency response characteristic; 
  (for one generation company); 
 1areaD   area load damping constant; 
 1areaM   area inertia constant; 
 1areaB area composite frequency response characteristic; 

Fig. 1.  Dynamic model of one-area power system 
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In the next section, a LFC controller will be designed based 

on the system model given in (1-8). The design objective is to 
reduce the ACE to zero in the presences of disturbances and 
parameter variations. 

III.  CONTROLLER DESIGN 
In general, an nth order plant can be represented by (9): 

 ( )ny d bu= +                                      (9) 
where y is the output of the system, u is the control signal, b is 
the controller gain. The generalized disturbance, denoted as d, 
includes all the input efforts of the system excluding the 
control effort [15]. If this generalized disturbance can be 
estimated and cancelled, the system will be simplified to an nth 
order-integral plant, which is easy to control. A practical way 
to estimate d in real time is to use the ESO. The idea of ESO is 
to treat the d as an extended state of a state space model of the 
system and to use an augmented Luenberger observer to 
estimate the state. 

In detail, the Laplace transform of the plant (1) can be 
rewritten as: 

 
( )( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
fD

D
P P P

Num sNum sDen s Y s U s Pl s f s
Num s Num s Num s

= + Δ + Δ , (10) 

 
where ( )PNum s and ( )Den s  are fifth-order and eighth-order 
polynomials respectively. Conducting a polynomial long 
division on ( ) ( )PDen s Num s yields 
 

                      3 2
0 1 2 3 ( )leftb s b s b s b G s+ + + + ,                  (11) 

 
where b0, b1, b2, b3 are the coefficients of the quotient, and 
Gleft(s) is a remainder that is given by 
 

( )4 3 2
0 1 2 3 4( ) ( )left PG s a s a s a s a s a Num s= + + + + ,     (12) 

 
Replacing the left side of (10) with (11) and (12) gives 

3 2
0 1 2 3

( )
( ) ( ( )) ( ) ( )

( )

( )
( ) ( ),

( )

D
left

p

f
D

p

Num s
b s Y s b s b s b G s Y s Pl s

Num s

Num s
F s U s

Num s

= − − − − + Δ

+ Δ +

   (13) 

Taking all the terms excluding U(s) on the right side of (13) as 
d(s), and transforming (13) from frequency domain to time 
domain produces  
 

 y d bu= +&&& ,                                 (14) 
 

where d includes all the information of y&& , y& , y , 

( ) ( )leftG s Y s⎡ ⎤⎣ ⎦
-1L and external disturbances including the 

terms of PlΔ  and DfΔ , and b=b0. Substituting the plant 
parameters into b, we have  

33 3

1 111 1,
j j i ii g ch area g ch areaii j j i

b T T B T T Mα
=

= = ≠

= Π∑ ∑ ,    (15) 

 
It is assumed that d is locally Lipschitz in the argument and 

bounded within the domain of interests. Let 1x y= , 2x y= & , 

3x y= && , 4x d= , the state space equations of the model 
represented by (13) and (14) are: 

 
x Ax Bu Eh
y Cx

= + +
=

&
                             (16) 

where 
1

2

3

4

x
x

x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0
0

0

B
b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0
0
0
1

E

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, h d= & , 

[ ]1 0 0 0C = . 
From (16), a state space model of the system with the 
extended state can be written as: 
 

ˆ( )
ˆ
z Az Bu L y y
y Cz

= + + −
=

&
                      (17) 

 

where ŷ is the estimated y , [ ]1 2 3 4, , , Tz z z z z= is the 
estimated state vector of x, L is the observer gain vector and 

[ ]1 2 3 4, , , TL β β β β= . For simplifying the tuning process, the 
parameters in L  are chosen as 

4
O
i

i i
β ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 1, , 4i = L ,                    (18) 

so as to make all the eigenvalues of the ESO equal to –ωO  
[15]. With accurate estimations of the ESO, z4 will track d 
closely, that is, 4

ˆz d d= ≈ . 
For the LFC problem, the control goal is to reduce the ACE 

to zero. Therefore, the reference signal to the ACE output is 
chosen as 0r = . Then the feedback control law based on the 
estimation results of the ESO is: 

 

0 4( ) /u u z b= −                             (19) 
 

where u0 is a PDD controller and 
 

0 1 1 2 2 3 3( )u k r z k z k z= − − − ,                  (20) 
 

where the difference between the reference signal r and the 
estimated ACE output z1 is defined as the tracking error e. In 
(20), the controller gains are selected as  

43
4

i
i Ck

i
ω −⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 1, ,3i = L ,                         (21)  
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In this way, the only tuning parameter of the controller is the 
controller bandwidth ωC and all the closed-loop poles are set 
to -ωC [15]. 

Replacing u in (14) with (19) will yield 
 

00 )/)ˆ(( ubdubdy ≈−+=&&& ,               (22) 
 

Then the original complicated system model is simplified as a 
triple integrator as shown in (22). Using the ADRC controller 
consisting of (19), (20), and (21), the tracking error e will be 
driven to zero.  

IV. SIMULATION RESULT 
The ADRC is implemented on the three-area power system 

in Fig.1 with the parameters listed in Appendix. In this 
section, the simulation results of the ADRC controller are 
compared with the results of the GALMI tuned PI controller in 
[9] when three different power load changes are applied to the 
three areas of the power system respectively. The load 
changes are functioning as external disturbances to the system. 
They are ideal to test the robustness of the two controllers 
against disturbances. The controller parameters for both the 
ADRC and the GALMI are listed in Table I and Table II. 

 
TABLE I:  ADRC PARAMETERS 

 
 Order of ESO ωC ωO b 

Area 1 3 5 20 228 
Area 2 3 5 20 234 
Area 3 3 5 20 282 

 
TABLE II:  PI CONTROL PARAMETERS FROM GALMI DESIGN [9] 

 
 Area 1 Area 2 Area 3 

Kp -3.27E-04 -6.96E-04 -1.60E-04 
Ki -0.3334 -0.3435 -0.3398 

 
In case one, a random load change is added to each area of 

the power systems as shown in Fig.2, where 1PlΔ  denotes the 
random load change for area 1, 2PlΔ  the random load change 
for area 2, and 3PlΔ  the random load change for area 3. Fig.3 
shows the ACE, load frequency deviation fΔ  and the 
difference between control effort and load disturbance, which 
is ePΔ ( e CP P PlΔ = Δ − Δ ). In Fig.3, both the ADRC and the 
GALMI tuned PI controller compensate the load fluctuations 
rapidly, that is, the ePΔ s are driven to zeroes under the control 
efforts. However, the ACE, fΔ , and ePΔ  of the ADRC 
controller have less magnitudes (the peak errors of the ACE 
and fΔ  for the ADRC are no more than 0.05%) than the 
GALMI tuned PI controller.  

In case two, a step load change with large amplitude is 
added to each area. The amplitudes of the load changes for the 
three areas are 1 100Pl MWΔ = , 2 80Pl MWΔ = , and 

3 50Pl MWΔ =  respectively. The ACE, fΔ  and control effort 
for both controllers are shown in Fig. 4. The ADRC 
demonstrates smaller oscillations and faster responses in the 

ACE and fΔ than that of the GALMI tuned PI controller. 
However, the control effort of the ADRC shows an overshoot 
at the switching edge of the load change since it takes a short 
time for the ESO to approximate the disturbance. Nevertheless 
the overshoot magnitude of the ADRC is reasonable. So it will 
not affect the implementation of the controller in practice.   
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Fig.2. Random load changes for case one 
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Fig. 3.    System response for case 1 

 
In case three, two large, step-input load changes are added 

to areas 2 and 3 with the magnitudes of 2 100Pl MWΔ = and 

3 50Pl MWΔ = , while the controllers of areas 2 and 3 are 
assumed to be out of services. This case is to test the reliability 
of the controlled system in tough situation. From the results 
shown in Fig. 5, we can see that the ACE and the fΔ in areas 
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2 and 3 can not converge to zeroes but only be bounded under 
this situation. Though the ACE and fΔ are still driven to 
zeroes in area 1 under both the ADRC and the PI controller. 
Similarly, ADRC produces smaller oscillations and faster 
response in the results of the ACE and fΔ than the PI 
controller. However, the control effort of the ADRC is a little 
bit bigger than the GALMI tuned PI controller. 
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Fig. 4.  System response for case 2 

V. STABILITY ANALYSIS 
In this section, the stability analysis of the closed-loop 

power control system in one area is presented. 
The transfer function between load reference signal and 

ACE has been given by (2). The Laplace transform of the ESO 
in (17) is 

 
 ( ) ( ) ( ) ( ) ( )sZ s A LC Z s BU s LY s= − + +          (23) 

 
The Laplace transform of the PDD controller in (20) is 

 
 1( ) ( ) ( )U s k R s b KZ s b= − ,                  (24) 

 
where [ ]1 2 3 1K k k k= . 

Substituting the ( )U s  in (23) with (24) yields 
 

[ ] [ ]1
1( ) ( ) ( ) ( )Z s T s Bk R s b LY s−= + ,          (25) 

 
where ( )T s sI A LC BK b= − + + . 
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Fig. 5.  System response for case 3 

 
Replacing the ( )Z s  in (24) with (25) gives 
 

( ) ( ) ( ) ( ) ( ) ( )PF EC ECU s G s G s R s G s Y s= − ,         (26) 
 

where ( )ECG s  is represented by 

[ ] 1( ) ( )ECG s K T s L b−= ,                    (27) 
 

and ( )PFG s  is a pre-filter represented by 
 

    [ ]( ) [ ]( )1
1 1( ) ( ) ( )PFG s k b K T s B bK T s L− −⎡ ⎤= −

⎣ ⎦
.   (28) 

 
The closed-loop control system for the one-area power 

system is constructed in Fig. 6. 

 
Fig. 6.  Block diagram of the closed-loop control system 

 
The transfer function of the open-loop system is: 
 

( ) ( ) ( )PO ECG s G s G s=                     (29) 
 

The frequency responses of the open-loop transfer function 
( )OG s  with varying area inertial constants ( 1areaM ) are shown 

in Fig. 7 and the corresponding stability margins are listed in 
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Table III. In Fig.7 and Table III, the inertia constant is 
changing from 0.5M to 2M while the controller gains and 
observer gains are remained unchanged. Such a big change of 
the inertia constant seldom happens in power systems and can 
be taken as an extreme condition. However, the ADRC can 
still stabilize the power system with positive stability gains.  
This demonstrates not only the stability of the control system 
but also the strong robustness of the ADRC against parameter 
uncertainties.  

VI. CONCLUSION REMARKS 
This paper presents the development and application of the 

ADRC to a complicated three-area interconnected power 
system. Such a system has zeros in its transfer function, 
making the controller design different from other systems in 
[10-15]. For the first time, the generalized disturbance of the 
ADRC is extended to include the derivatives of the control 
input in the system model. Our simulation results successfully 
demonstrate that the ADRC not only compensates the external 
load changes, but also regulates both the ACE and frequency 
deviations in the three areas. In addition, the ADRC is shown 
to be superior to the existing GALMI tuned PI controller in 
smaller ACE and fΔ and faster responses of the closed-loop 
system. The frequency-domain analysis further validates the 
strong robustness of the controller against parameter variations 
and external disturbances.  
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APPENDIX 
The parameter values of the power system from [9] are 

given as follows. The ramp rate factor 

trequiremenregulation
rateRamp min5×

=α
, in which the regulation requirement 

for each area is 100MW, and the Ramp rate is given in the 
Table IV. The tie-line synchronizing coefficients between any 
two areas are 12 0.2 ./T pu rad= ,

23 0.12 ./T pu rad= , and 31 0.25 ./T pu rad= . 
The other parameters of the power plant are given in Table IV.  
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TABLE III 
STABILITY MARGINS WITH DIFFERENT 1areaM  

 
 Gain Margin (dB) Phase Margin (dB) 

1 0.4867areaM =  11.2 77.4 

11 2 0.2434areaarea MM =′′ =  5.14 53.8 

1 12 0.9734area areaM M′ = =  17.3 40.2 

 
TABLE IV 

GENERATING UNIT PARAMETERS 
 

Parameters Generation Companies 
MVA base 
(1000MW) 1 2 3 4 5 6 7 8 9 

D (pu/Hz) 0.01500.01400.0150 0.0160 0.0140 0.01400.01500.01600.0150
M (pu.sec) 0.16670.12000.2000 0.2017 0.1500 0.19600.12470.16670.1870
Tch (sec) 0.4 0.36 0.42 0.44 0.32 0.40 0.30 0.40 0.41 
Tg (sec) 0.08 0.06 0.07 0.06 0.06 0.08 0.07 0.07 0.08 

R (Hz/pu) 3.00 3.00 3.30 2.7273 2.6667 2.50 2.8235 3.00 2.9412
B (pu/Hz) 0.34830.34730.3180 0.3827 0.3890 0.41400.36920.34930.3550

α  0.4 0.4 0.2 0.6 0 0.4 0 0.5 0.5 
Ramp rate 
(MW/min) 8 8 4 12 0 8 0 10 10 
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