\mathcal{L}_{1} Adaptive Output Feedback Controller for Non Strictly Positive Real Multi-Input Multi-Output Systems in the Presence of Unknown Nonlinearities

Chengyu Cao and Naira Hovakimyan

Abstract

This paper presents an extension of the \mathcal{L}_{1} adaptive output feedback controller to Multi-input Multi-output (MIMO) systems in the presence of nonlinear time-varying uncertainties without restricting the rate of their variation. As compared to earlier results in this direction, a new piece-wise continuous adaptive law is introduced along with a low-pass filtered control signal that allows for achieving arbitrarily close tracking of the input and the output signals of a reference system, the transfer function of which is not required to be strictly positive real (SPR). Stability of this reference system is proved using small-gain type argument. The performance bounds between the closed-loop reference system and the closedloop \mathcal{L}_{1} adaptive system can be rendered arbitrarily small by appropriate selection of the underlying filter and by reducing the time-step of integration. Simulations verify the theoretical findings.

I. Introduction

This paper extends the results of [1] to multi-input multioutput (MIMO) systems that do not verify the SPR condition for their input-output transfer function. Similar to [1], the \mathcal{L}_{∞}-norms of both input/output error signals between the closed-loop adaptive system and the reference system can be rendered arbitrarily small by reducing the step-size of integration. The key difference from the earlier results in [2], [3] is the new piece-wise continuous adaptive law. The adaptive control is defined as output of a low-pass filter, resulting in a continuous signal despite the discontinuity of the adaptive law. For a brief literature review refer to [1]-[3].

The paper is organized as follows. Section II gives the problem formulation. In Section III, the closed-loop reference system is introduced. In Section IV, some preliminary results are developed towards the definition of the \mathcal{L}_{1} adaptive controller. In Section V, the novel \mathcal{L}_{1} adaptive control architecture is presented. Stability and uniform performance bounds are presented in Section VI. In Section VII, simulation results are presented, while Section VIII concludes the paper. The small-gain theorem and some basic definitions from linear systems theory used throughout the paper are given in Appendix. Unless otherwise mentioned, $\|\cdot\|$ will be used for the 2 -norm of the vector. Finally, for a given matrix $M \in \mathbb{R}^{m \times n}$, we let $\|M\|_{a}=\sqrt{\lambda_{\max }\left(M^{\top} M\right)}$. We notice that $\|M x\| \leq\|M\|_{a}\|x\|$, for any $x \in \mathbb{R}^{n}$. Definitions

Research is supported by AFOSR under Contract No. FA9550-08-1-0135 and by NASA under contracts NNX08AB97A and NNX08AC81A.

Chengyu Cao is with University of Connecticut, Storrs, CT 06269; ccao@engr.uconn.edu
N. Hovakimyan are with University of Illinois at Urbana-Champaign, Urbana, IL 61801; nhovakim@illinois.edu
of \mathcal{L}_{∞}-norm of signals and \mathcal{L}_{1}-norm of systems can be found in [2], [3].

II. Problem Formulation

Consider the following MIMO system:

$$
\begin{align*}
\dot{x}(t) & =A_{m} x(t)+u(t)+f(t, y(t)), \quad x(0)=x_{0} \tag{1}\\
y(t) & =C x(t), \quad y_{0}=y(0)=C x_{0}
\end{align*}
$$

where $x(t) \in \mathbb{R}^{n}$ is the system state (not measured), $u(t) \in$ \mathbb{R}^{n} is the input, $y(t) \in \mathbb{R}^{m}$ is regulated (measured) output, $A_{m} \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times n}$ are given matrices, with A_{m} being Hurwitz and C being full row rank, $f(t, y)$: $\mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is an unknown nonlinear map, subject to following assumptions.

Assumption 1: [Semiglobal Lipschitz condition] For any $\delta>0$, there exist $L_{\delta}>0$ and $B>0$ such that $\| f(t, y)-$ $f(t, \bar{y})\left\|_{\infty} \leq L_{\delta}\right\| y-\bar{y}\left\|_{\infty},\right\| f(t, 0) \|_{\infty} \leq B$, for all $\|y\|_{\infty} \leq$ δ and $\|\bar{y}\|_{\infty} \leq \delta$, uniformly in $t \geq 0$.

Assumption 2: [Semiglobal uniform boundedness of partial derivatives] For any $\delta>0$, the partial derivatives of $f(t, y)$ w.r.t. t and y are piece-wise continuous and bounded for any $\|y\|_{\infty} \leq \delta$.

Remark 1: To streamline the subsequent derivations, in (1) the input matrix of the system has been set to identity. However, any full rank matrix B can be straightforwardly accommodated in the design below.

The control objective is to design an adaptive controller to ensure that, for a given bounded piece-wise continuous reference input $r(t) \in \mathbb{R}^{n}, y(t)$ tracks the response $y_{\text {des }}(t) \in$ \mathbb{R}^{n} of the following desired system:

$$
\begin{align*}
\dot{x}_{d e s}(t) & =A_{m} x_{d e s}(t)+r(t) \\
y_{d e s}(t) & =C x_{\text {des }}(t), \quad x_{\text {des }}(0)=\hat{x}_{0} \tag{2}
\end{align*}
$$

where $x_{\text {des }}(t) \in \mathbb{R}^{n}$, and \hat{x}_{0} is such that $C \hat{x}_{0}=y_{0}$. Obviously, \hat{x}_{0} is not uniquely defined.

III. CLosed-Loop Reference System

Consider the following closed-loop reference system:

$$
\begin{align*}
\dot{x}_{r e f}(t) & =A_{m} x_{r e f}(t)+u_{r e f}(t)+f\left(t, y_{r e f}(t)\right) \tag{3}\\
y_{r e f}(t) & =C x_{r e f}(t), \quad x_{r e f}(0)=\hat{x}_{0} \\
u_{r e f}(s) & =r(s)-F(s) \sigma_{r e f}(s) \tag{4}
\end{align*}
$$

where $\sigma_{r e f}(s)$ is the Laplace transformation of $f\left(t, y_{r e f}(t)\right)$, and $F(s)$ is a low-pass filter with its DC gain $F(0)=1$. Let $H(s)=C\left(s \mathbb{I}-A_{m}\right)^{-1}$. For the proof of stability and
uniform performance bounds the choice of $F(s)$ needs to ensure that there exists positive ρ_{r} such that

$$
\begin{equation*}
\|G(s)\|_{\mathcal{L}_{1}}<\frac{\rho_{r}-\|H(s)\|_{\mathcal{L}_{1}}\left(\|r\|_{\mathcal{L}_{\infty}}+\left\|\hat{x}_{0}\right\|_{\infty}\right)}{\rho_{r} L_{\rho_{r}}+B} \tag{5}
\end{equation*}
$$

where $G(s)=H(s)(1-F(s))$, and positive γ_{1} such that

$$
\begin{equation*}
\gamma_{1}\left(1-L_{\rho}\|G(s)\|_{\mathcal{L}_{1}}\right)>\|G(s)\|_{\mathcal{L}_{1}}\left\|\hat{x}_{0}-x_{0}\right\|_{\infty}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\rho_{r}+\gamma_{1} \tag{7}
\end{equation*}
$$

Since $H(s)$ is strictly proper and stable, $G(s)=H(s)(1-$ $F(s))$ is also strictly proper and stable.

Remark 2: The condition (5) is equivalent to the existence of ρ_{r} such that $\rho_{r}\left(1-\|G(s)\|_{\mathcal{L}_{1}} L_{\rho_{r}}\right)>\|H(s)\|_{\mathcal{L}_{1}}\left(\|r\|_{\mathcal{L}_{\infty}}+\right.$ $\left.\left\|\hat{x}_{0}\right\|_{\infty}\right)+B\|G(s)\|_{\mathcal{L}_{1}}$, which can always be satisfied if $\|G(s)\|_{\mathcal{L}_{1}}$ is small enough. Increasing the bandwidth of $F(s)$ will ensure that $\|G(s)\|_{\mathcal{L}_{1}}$ can be rendered arbitrarily small. We notice that for (5) to hold one needs to ensure that

$$
\begin{equation*}
L_{\rho_{r}}\|G(s)\|_{\mathcal{L}_{1}}<1 \tag{8}
\end{equation*}
$$

Since L_{ρ} is continuous w.r.t. ρ, it follows from (8) that there always exists γ_{1} such that $L_{\rho_{r}+\gamma_{1}}\|G(s)\|_{\mathcal{L}_{1}}<1$. Thus, the condition in (6) can be verified by reducing $\|G(s)\|_{\mathcal{L}_{1}}$, which further implies that the constant γ_{1} satisfying (6) can assume arbitrarily small values.

Lemma 1: If $F(s)$ verifies the condition in (5) and $\left\|y_{0}\right\|_{\mathcal{L}_{\infty}}<\rho_{r}$, then

$$
\begin{equation*}
\left\|y_{r e f}\right\|_{\mathcal{L}_{\infty}}<\rho_{r} \tag{9}
\end{equation*}
$$

where ρ_{r} is introduced in (5).

IV. Preliminaries for the Main Result

Since A_{m} is Hurwitz, there exists $P=P^{\top}>0$ that satisfies the algebraic Lyapunov equation $A_{m}^{\top} P+P A_{m}=$ $-Q, \quad Q>0$. From the properties of P it follows that there exits non-singular \sqrt{P} such that $P=(\sqrt{P})^{\top} \sqrt{P}$. Given the matrix $C(\sqrt{P})^{-1}$, let D be a $(n-m) \times n$ matrix that contains the null space of $C(\sqrt{P})^{-1}$:

$$
\begin{equation*}
D\left(C(\sqrt{P})^{-1}\right)^{\top}=0 \tag{10}
\end{equation*}
$$

and further let $\Lambda=\left[\begin{array}{c}C \\ D \sqrt{P}\end{array}\right]$.
Lemma 2: For any $\xi=\left[\begin{array}{l}y \\ z\end{array}\right] \in \mathbb{R}^{n}$, where $y \in \mathbb{R}^{m}$ and $z \in \mathbb{R}^{n-m}$, there exist positive definite $P_{1} \in \mathbb{R}^{m \times m}$ and $P_{2} \in \mathbb{R}^{(n-m) \times(n-m)}$ such that $\xi^{\top}\left(\Lambda^{-1}\right)^{\top} P \Lambda^{-1} \xi=$ $y^{\top} P_{1} y+z^{\top} P_{2} z$.
Let T be any positive constant, $\mathbf{I}_{m \times m} \in \mathbb{R}^{m \times m}$ be the identity matrix, and $\mathbf{0}_{m \times(n-m)} \in \mathbb{R}^{m \times(n-m)}$ be a zero matrix. Let $\phi(T) \in \mathbb{R}^{m \times(n-m)}$ be a matrix, which consists of $m+1$ to n columns of $\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}$ and let

$$
\begin{equation*}
\kappa(T)=\int_{0}^{T}\left\|\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(T-\tau)} \Lambda\right\|_{a} d \tau \tag{11}
\end{equation*}
$$

Further, define

$$
\begin{align*}
\varsigma(T)= & \|\phi(T)\|_{a} \sqrt{\frac{\alpha}{\lambda_{\max }\left(P_{2}\right)}}+\kappa(T) \Delta, \\
\alpha= & \max \left\{\lambda_{\max }\left(\Lambda^{-\top} P \Lambda^{-1}\right)\left(\frac{2 \Delta\left\|\Lambda^{-\top} P\right\|_{a}}{\lambda_{\min }\left(\Lambda^{-\top} Q \Lambda^{-1}\right)}\right)^{2},\right. \\
& \left.\lambda_{\max }\left(P_{2}\right)\left\|\Lambda\left(\hat{x}_{0}-x_{0}\right)\right\|^{2}\right\} \tag{12}
\end{align*}
$$

where $\Delta=\rho L_{\rho}+B$. Letting $\left[\begin{array}{ll}\mathbf{I}_{m \times m} & \mathbf{0}_{m \times(n-m)}\end{array}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t}=\left[\begin{array}{ll}\eta_{1}(t) & \eta_{2}(t)\end{array}\right]$, where $\eta_{1}(t) \in \mathbb{R}^{m \times m}$ is comprised of the first m columns of $\left[\begin{array}{ll}\mathbf{I}_{m \times m} & \mathbf{0}_{m \times(n-m)}\end{array}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t}$ and $\eta_{2}(t) \in \mathbb{R}^{m \times(n-m)}$ contains the remaining $(n-m)$ columns, we introduce the following functions
$\beta_{1}(T)=\max _{t \in[0, T]}\left\|\eta_{1}(t)\right\|_{a}, \quad \beta_{2}(T)=\max _{t \in[0, T]}\left\|\eta_{2}(t)\right\|_{a}$.
Further, let $\Phi(T)$ be the $n \times n$ matrix

$$
\begin{gather*}
\Phi(T)=\int_{0}^{T} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(T-\tau)} \Lambda d \tau \\
=\Lambda A_{m}^{-1}\left(\mathrm{e}^{A_{m} T}-\mathbb{I}\right) \tag{14}\\
\beta_{3}(T)=\max _{t \in[0, T]} \eta_{3}(t), \quad \beta_{4}(T)=\max _{t \in[0, T]} \eta_{4}(t) \tag{15}
\end{gather*}
$$

where

$$
\begin{aligned}
\eta_{3}(t)= & \int_{0}^{t} \|\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \Phi^{-1}(T) \\
& \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right]^{\top} \|_{a} d \tau \\
\eta_{4}(t)= & \int_{0}^{t}\left\|\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda\right\|_{a} d \tau
\end{aligned}
$$

Finally, let

$$
\begin{align*}
\gamma_{0}(T)= & \beta_{1}(T) \varsigma(T)+\beta_{2}(T) \sqrt{\frac{\alpha}{\lambda_{\max }\left(P_{2}\right)}}+ \\
& \beta_{3}(T) \varsigma(T)+\beta_{4}(T) \Delta \tag{16}
\end{align*}
$$

Lemma 3: The following limiting relationship is true: $\lim _{T \rightarrow 0} \gamma_{0}(T)=0$.

V. \mathcal{L}_{1} Adaptive Output Feedback Controller

We consider the following state predictor (or passive identifier):

$$
\begin{equation*}
\dot{\hat{x}}(t)=A_{m} \hat{x}(t)+u(t)+\hat{\sigma}(t), \hat{y}(t)=C \hat{x}(t), \hat{x}(0)=\hat{x}_{0} \tag{17}
\end{equation*}
$$

where $\hat{\sigma}(t) \in \mathbb{R}^{n}$ is the vector of adaptive parameters. Letting $\tilde{y}(t)=\hat{y}(t)-y(t)$, the update law for $\hat{\sigma}(t)$ is given by

$$
\begin{align*}
\hat{\sigma}(t) & =\hat{\sigma}(i T), \quad t \in[i T,(i+1) T) \\
\hat{\sigma}(i T) & =-\Phi^{-1}(T) \mu(i T), \quad i=0,1,2, \cdots \tag{18}
\end{align*}
$$

where $\Phi(T)$ is defined in (14), and $\mu(i T)=$ $\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}\left[\begin{array}{c}\tilde{y}(i T) \\ \mathbf{0}_{(n-m) \times 1}\end{array}\right], \quad i=0,1,2,3, \cdots$. The control signal is the output of the low-pass filter:

$$
\begin{equation*}
u(s)=r(s)-F(s) \hat{\sigma}(s) \tag{19}
\end{equation*}
$$

The \mathcal{L}_{1} adaptive controller consists of (17), (18) and (19), subject to the condition in (5)-(6).

Let $\tilde{x}(t)=\hat{x}(t)-x(t)$. The error dynamics between (1) and (17) are

$$
\begin{align*}
\dot{\tilde{x}}(t) & =A_{m} \tilde{x}(t)+\hat{\sigma}(t)-f(t, y(t)), \tag{20}\\
\tilde{y}(t) & =C \tilde{x}(t), \quad \tilde{x}(0)=\hat{x}_{0}-x_{0} . \tag{21}
\end{align*}
$$

Lemma 4: Let $e(t)=y(t)-y_{\text {ref }}(t)$. If

$$
\begin{equation*}
\left\|y_{t}\right\|_{\mathcal{L}_{\infty}} \leq \rho \tag{22}
\end{equation*}
$$

where ρ is defined in (6), then

$$
\begin{equation*}
\left\|e_{t}\right\|_{\mathcal{L}_{\infty}} \leq \frac{\|F(s)\|_{\mathcal{L}_{1}}\left\|\tilde{y}_{t}\right\|_{\mathcal{L}_{\infty}}+\|G(s)\|_{\mathcal{L}_{1}}\left\|\hat{x}_{0}-x_{0}\right\|_{\infty}}{1-L_{\rho}\|G(s)\|_{\mathcal{L}_{1}}} . \tag{23}
\end{equation*}
$$

VI. Analysis of \mathcal{L}_{1} AdAptive Controller

Consider the state transformation $\tilde{\xi}=\Lambda \tilde{x}$. It follows from (21) that

$$
\begin{align*}
\dot{\tilde{\xi}}(t) & =\Lambda A_{m} \Lambda^{-1} \tilde{\xi}(t)+\Lambda \hat{\sigma}(t)-\Lambda \sigma(t) \tag{24}\\
\tilde{y}(t) & =\left[\tilde{\xi}_{1}(t) \cdots \tilde{\xi}_{m}(t)\right]^{\top}, \quad \tilde{\xi}(0)=\Lambda\left(\hat{x}_{0}-x_{0}\right) \tag{25}
\end{align*}
$$

with $\tilde{y}(0)=0$.
Theorem 1: Given the system in (1) and the \mathcal{L}_{1} adaptive controller in (17), (18), (19) subject to (5), if we choose T to ensure

$$
\begin{equation*}
\gamma_{0}(T)<\bar{\gamma} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\gamma}=\frac{\gamma_{1}\left(1-L_{\rho}\|G(s)\|_{\mathcal{L}_{1}}\right)-\|G(s)\|_{\mathcal{L}_{1}}\left\|\hat{x}_{0}-x_{0}\right\|_{\infty}}{\|F(s)\|_{\mathcal{L}_{1}}} \tag{27}
\end{equation*}
$$

and γ_{1} is an arbitrary positive constant introduced in (7), then

$$
\begin{align*}
\|\tilde{y}\|_{\mathcal{L}_{\infty}} & <\bar{\gamma} \tag{28}\\
\left\|y-y_{r e f}\right\|_{\mathcal{L}_{\infty}} & <\gamma_{1} \tag{29}\\
\left\|u-u_{r e f}\right\|_{\mathcal{L}_{\infty}} & <\gamma_{2} \tag{30}
\end{align*}
$$

with $\gamma_{2}=L_{\rho}\|F(s)\|_{\mathcal{L}_{1}} \gamma_{1}+\|F(s)\|_{\mathcal{L}_{1}} \bar{\gamma}$.
Thus, if one omits the initialization error of the state predictor, the tracking error between $y(t)$ and $y_{\text {ref }}(t)$, as well between $u(t)$ and $u_{r e f}(t)$, is uniformly bounded by a constant proportional to T. The transient due to nonzero initialization error can be reduced by increasing the bandwidth of $F(s)$, and arbitrary improvement of the tracking performance can be further achieved by uniformly reducing T.

Remark 3: Notice that the parameter T is the fixed timestep in the definition of the adaptive law. The adaptive parameters in $\hat{\sigma}(t) \in \mathbb{R}^{n}$ take constant values during $[i T,(i+$ 1) T) for every $i=0,1, \cdots$. Reducing T imposes hardware (CPU) requirements, and Theorem 1 further implies that the performance limitations are consistent with the hardware limitations. This in turn is consistent with the earlier results in Refs. [1], [2], where improvement of the transient performance was achieved by increasing the adaptation rate in the continuous-time adaptive laws.

Remark 4: We notice that the following ideal control signal $u_{\text {ideal }}(t)=r(t)-\sigma_{r e f}(t)$ is the one that leads to desired system response in (2) by canceling the uncertainties exactly. Thus, the reference system in (3)-(4) has a different response as compared to the ideal one. It only cancels the uncertainties within the bandwidth of $C(s)$, which can be selected compatible with the control channel specifications. This is exactly what one can hope to achieve with any feedback in the presence of uncertainties.

Remark 5: Consider the system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+u(t), \quad y(t)=C x(t) \tag{31}
\end{equation*}
$$

where A is unknown. If the system is observable, then there exists L and a Hurwitz A_{m} such that $A_{m}=A-L C$. Hence, the system in (31) can be transformed into $\dot{x}(t)=$ $A_{m} x(t)+u(t)+L y(t), y(t)=C x(t)$, which is a particular case of the system in (1). Thus, if the system is known to be output feedback observable, the \mathcal{L}_{1} adaptive controller can be applied to ensure guaranteed transient and steady-state performance.

VII. Simulations

Consider the system $\dot{x}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3\end{array}\right]+u(t)+$
$f(t, y(t)), y(t)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] x(t), y_{0}=\left[\begin{array}{ll}-1 & -1\end{array}\right]^{\top}$, where $f(t, y(t))$ is unknown nonlinear function. Let the desired system be: $\dot{x}_{\text {des }}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3\end{array}\right]+r(t)$, $y_{\text {des }}(t)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] x_{\text {des }}(t), x_{\text {des }}(0)=\hat{x}(0)=\left[\begin{array}{ll}-1 & - \\ \end{array}\right.$ $\left.\begin{array}{ll}1 & 0\end{array}\right]^{\top}$, where $r(t)$ is given reference input and $x_{\text {des }}(0)$ is chosen such that $C x_{d e s}(0)=y_{0}=\left[\begin{array}{ll}-1 & -1\end{array}\right]^{\top}$. We consider the \mathcal{L}_{1} adaptive output feedback controller defined via (17), (18) and (19), where $F(s)=\frac{100}{s+100}, T=10^{-4}$.

Fig. 1. Performance for $r(t)=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]$ and $f(t, y(t))=\left[y_{1}(t)+\right.$ $\left.\sin (0.1 t) \quad y_{2}^{2}(t)+\cos (0.3 t)\right]^{\top} \quad \sin \left(y_{1}(t)\right)$.

Fig. 2. Performance for $r(t)=[\sin (t)-\sin (t) \quad \cos (t)]$ and $f(t, y(t))=$ $\left[y_{1}(t)+\sin (0.1 t) \quad y_{2}^{2}(t)+\cos (0.3 t)\right]^{\top} \quad \sin \left(y_{1}(t)\right)$.

First, let $f(t, y(t))=\left[\begin{array}{c}y_{1}(t)+\sin (0.1 t) \\ y_{2}^{2}(t)+\cos (0.3 t) \\ \sin \left(y_{1}(t)\right)\end{array}\right]$, and $x(0)=$ $\left[\begin{array}{ccc}-1 & -1 & -1\end{array}\right]^{\top}$. The simulation results of \mathcal{L}_{1} adaptive controller are shown in Figs 1(a)-1(b) for $r(t)=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{\top}$. The simulation results in Figs 2(a)-2(b) correspond to $r(t)=$ $\left[\begin{array}{ccc}\sin (t) & -\sin (t) & \cos (t)\end{array}\right]^{\top}$. We notice that $y(t)$ and $y_{\text {des }}(t)$ are almost the same for all $t \geq 0$, including the transient phase.
Next, we consider a different nonlinear uncertainty $f(t, y(t))=\left[\begin{array}{c}e^{y_{1}(t)}+0.5 \sin (0.5 t) \\ y_{2}^{2}(t)+\cos (0.5 t) \\ \sin \left(y_{1}(t)\right)\end{array}\right]$. The simulation results of \mathcal{L}_{1} adaptive controller are shown in Figs 3(a)-3(b) for $r(t)=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{\top}$. The simulation results in Figs 4(a)-4(b) correspond to $r(t)=\left[\begin{array}{lll}\sin (t) & -\sin (t) & \cos (t)\end{array}\right]^{\top}$. We note that $y(t)$ and $y_{\text {des }}(t)$ are almost the same, independent of different nonlinearities. The \mathcal{L}_{1} adaptive controller ensures desired tracking performance in the presence of unknown nonlinearities for different reference inputs without any retuning.

ViII. Conclusions

We presented the \mathcal{L}_{1} adaptive output feedback controller for MIMO reference systems that do not verify the SPR condition for their input-output transfer function. The new piece-wise constant adaptive law along with low-pass filtered control signal ensures uniform performance bounds for system's both input/output signals simultaneously. The performance bounds can be systematically improved by reducing the integration time-step.

Fig. 3. Performance for $r(t)=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]$ and $f(t, y(t))=\left[\exp \left(y_{1}(t)\right)+\right.$ $\left.0.5 \sin (0.5 t) \quad y_{2}^{2}(t)+\cos (0.5 t) \quad \sin \left(y_{1}(t)\right)\right]^{\top}$.

Fig. 4. Performance for $r(t)=[\sin (t)-\sin (t) \cos (t)]$ and $f(t, y(t))=$ $\left[\exp \left(y_{1}(t)\right)+0.5 \sin (0.5 t) \quad y_{2}^{2}(t)+\cos (0.5 t) \quad \sin \left(y_{1}(t)\right)\right]^{\top}$.

REFERENCES

[1] C. Cao and N. Hovakimyan. ${ }^{"} \mathcal{L}_{1}$ Adaptive Output Feedback Controller for Non-Strictly Positive Real Reference Systems with Applications to Aerospace Examples". AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, HI, 2008. Accepted AIAA Journal of Guidance, Control and Dynamics, 2009.
[2] C. Cao and N. Hovakimyan. Design and analysis of a novel \mathcal{L}_{1} adaptive control architecture with guaranteed transient performance. IEEE Transactions on Automatic Control, 53:586-591, March 2008.
[3] C. Cao and N. Hovakimyan. \mathcal{L}_{1} adaptive output feedback controller for systems of unknown dimension. IEEE Transactions on Automatic Control, 53:815-821, 2008.

IX. Appendix

Proof of Lemma 1. It follows from (3)-(4) that

$$
\begin{equation*}
y_{r e f}(s)=H(s)\left(r(s)+\hat{x}_{0}+(1-F(s)) \sigma_{r e f}(s)\right) . \tag{32}
\end{equation*}
$$

If (9) is not true, since $\left\|y_{r e f}(0)\right\|_{\infty}=\left\|C x_{r e f}(0)\right\|_{\infty}<\rho_{r}$ and $y_{r e f}(t)$ is continuous, there exists t such that

$$
\begin{align*}
\left\|y_{r e f_{t}}\right\|_{\mathcal{L}_{\infty}} & \leq \rho_{r} \tag{33}\\
y_{r e f}(t) & =\rho_{r} \tag{34}
\end{align*}
$$

Using Assumption 1 and the upper bound in (33), we arrive at the following upper bound

$$
\begin{equation*}
\left\|\sigma_{r e f_{t}}\right\|_{\mathcal{L}_{\infty}} \leq L_{\rho_{r}}\left\|y_{r e f_{t}}\right\|_{\mathcal{L}_{\infty}}+B \tag{35}
\end{equation*}
$$

Substituting (35) into (32), and noticing that $\left\|r_{t}\right\|_{\mathcal{L}_{\infty}} \leq\|r\|_{\mathcal{L}_{\infty}}$, we obtain $\left\|y_{\text {ref }}\right\|_{\mathcal{L}_{\infty}} \leq\|G(s)\|_{\mathcal{L}_{1}}\left(L_{\rho_{r}} \rho_{r}+B\right)+\|H(s)\|_{\mathcal{L}_{1}}\|r\|_{\mathcal{L}_{\infty}}+$ $\|H(s)\| \mathcal{L}_{1}\left\|\hat{x}_{0}\right\|_{\infty}$. The condition in (5) can be solved for ρ_{r} to obtain the following upper bound $\|G(s)\|_{\mathcal{L}_{1}} L_{\rho_{r}} \rho_{r}+$ $\|H(s)\|_{\mathcal{L}_{1}}\left(\|r\|_{\mathcal{L}_{\infty}}+\left\|\hat{x}_{0}\right\|_{\infty}\right)+\|G(s)\|_{\mathcal{L}_{1}} B<\rho_{r}$, which implies that $\left\|y_{r e f_{t}}\right\|_{\mathcal{L}_{\infty}}<\rho_{r}$, and contradicts (34). This proves (9).

Proof of Lemma 2. Using $P=(\sqrt{P})^{\top} \sqrt{P}$, one can write $\xi^{\top}\left(\Lambda^{-1}\right)^{\top} P \Lambda^{-1} \xi=\xi^{\top}\left(\sqrt{P} \Lambda^{-1}\right)^{\top}\left(\sqrt{P} \Lambda^{-1}\right) \xi$. We notice that $\Lambda(\sqrt{P})^{-1}=\left[\begin{array}{c}C(\sqrt{P})^{-1} \\ D\end{array}\right]$. Let $Q_{1}=$ $\left(C(\sqrt{P})^{-1}\right)\left(C(\sqrt{P})^{-1}\right)^{\top}, Q_{2}=D D^{\top}$. From (10) we have $\left(\Lambda(\sqrt{P})^{-1}\right)\left(\Lambda(\sqrt{P})^{-1}\right)^{\top}=\left[\begin{array}{cc}Q_{1} & 0 \\ 0 & Q_{2}\end{array}\right]$. Non-singularity of Λ and \sqrt{P} implies that $\left(\Lambda(\sqrt{P})^{-1}\right)\left(\Lambda(\sqrt{P})^{-1}\right)^{\top}$ is nonsingular, and therefore Q_{1} and Q_{2} are also non-singular. Hence, $\left.\left(\sqrt{P} \Lambda^{-1}\right)^{\top}\left(\sqrt{P} \Lambda^{-1}\right)=\left(\Lambda(\sqrt{P})^{-1}\right)\left(\Lambda(\sqrt{P})^{-1}\right)^{\top}\right)^{-1}=$ $\left(\Lambda(\sqrt{P})^{-1}\right)^{-\top}\left(\sqrt{P} \Lambda^{-1}\right)=\left[\begin{array}{cc}Q_{1}^{-1} & 0 \\ 0 & Q_{2}^{-1}\end{array}\right]$. Denoting $P_{1}=$ Q_{1}^{-1} and $P_{2}=Q_{2}^{-1}$, completes the proof.

Proof of Lemma 3. Notice that since $\beta_{1}(T), \beta_{3}(T), \Delta$ and α are bounded, it is sufficient to prove that

$$
\begin{align*}
\lim _{T \rightarrow 0} \varsigma(T) & =0 \tag{36}\\
\lim _{T \rightarrow 0} \beta_{2}(T) & =0 \tag{37}\\
\lim _{T \rightarrow 0} \beta_{4}(T) & =0 \tag{38}
\end{align*}
$$

Since $\lim _{T \rightarrow 0}\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}=\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right]$, then $\lim _{T \rightarrow 0}^{T \rightarrow 0} \phi(T)=\mathbf{0}_{m \times(n-m)}$, which implies $\lim _{T \rightarrow 0}\|\phi(T)\|_{a}=0$. Further, it follows from the definition of $\kappa(T)$ in (11) that $\lim _{T \rightarrow 0} \kappa(T)=0$. Since Δ and α are bounded, $\lim _{T \rightarrow 0} \varsigma(T)=$ $\stackrel{T}{T \rightarrow 0}$ which proves (36). Since $\eta_{2}(t)$ is continuous, it follows from (13) that $\lim _{T \rightarrow 0} \beta_{2}(T)=\lim _{t \rightarrow 0}\left\|\eta_{2}(t)\right\|_{a}$. Since $\lim _{t \rightarrow 0}\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t}=\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right]$, we have $\lim _{t \rightarrow 0}\left\|\eta_{2}(t)\right\|=0$, which proves (37). Similarly $\lim _{T \rightarrow 0} \beta_{4}(T)=$ $\lim _{t \rightarrow 0}\left\|\eta_{4}(t)\right\|=0$, which proves (38). Boundedness of Δ, α and $\beta_{3}(T)$ implies $\lim _{T \rightarrow 0}\left(\beta_{1}(T) \varsigma(T)+\beta_{2}(T) \sqrt{\frac{\alpha}{\lambda_{\max }\left(P_{2}\right)}}+\right.$ $\left.\beta_{3}(T)_{\varsigma}(T)+\beta_{4}(T) \Delta\right)=0$, which completes the proof.

Proof of Lemma 4. Let $\tilde{\sigma}(s)=\hat{\sigma}(s)-\sigma(s)$, where $\sigma(t)=$ $f(t, y(t))$. It follows from (21) that

$$
\begin{equation*}
\tilde{y}(s)=H(s) \tilde{\sigma}(s)+H(s)\left(\hat{x}_{0}-x_{0}\right) . \tag{39}
\end{equation*}
$$

It follows from (19) that

$$
\begin{equation*}
u(s)=r(s)-F(s) \sigma(s)-F(s) \tilde{\sigma}(s) \tag{40}
\end{equation*}
$$

and the system in (1) consequently takes the form: $y(s)=$ $H(s)\left(r(s)+x_{0}+(1-F(s)) \sigma(s)-F(s) \tilde{\sigma}(s)\right)$. Using the expression for $y_{r e f}(s)$ from (32), and letting $d_{e}(s)$ be the Laplace transform of $d_{e}(t)=f(t, y(t))-f\left(t, y_{r e f}(t)\right)$, one can derive

$$
\begin{equation*}
e(s)=H(s)\left((1-F(s)) d_{e}(s)+x_{0}-\hat{x}_{0}-F(s) \tilde{\sigma}(s)\right) . \tag{41}
\end{equation*}
$$

It follows from Assumption 1 and (22) that $\left\|d_{e_{t}}\right\|_{\mathcal{L}_{\infty}} \leq$ $L_{\rho}\|e\|_{\infty}$. Hence, it follows from (39) and (41) that $\left\|e_{t}\right\|_{\mathcal{L}_{\infty}} \leq$ $L_{\rho}\|G(s)\|_{\mathcal{L}_{1}}\left\|e_{t}\right\|_{\mathcal{L}_{\infty}}+\|F(s)\| \mathcal{L}_{1}\|\tilde{y}\|_{\mathcal{L}_{\infty}}+\|G(s)\| \mathcal{L}_{1}\left\|\hat{x}_{0}-x_{0}\right\|_{\infty}$, which proves (23).

Proof of Theorem 1. The proof will be done by contradiction. Assume that (29) is not true. Then, since $\left\|y(0)-y_{r e f}(0)\right\|_{\infty}=$ $0 \leq \gamma_{1}, y(t), y_{r e f}(t)$, are continuous, there exists $\tau \geq 0$ such that

$$
\begin{equation*}
\left\|y(\tau)-y_{r e f}(\tau)\right\|_{\infty}=\gamma_{1} \tag{42}
\end{equation*}
$$

while

$$
\begin{equation*}
\left\|\left(y-y_{r e f}\right)_{\tau}\right\|_{\mathcal{L}_{\infty}} \leq \gamma_{1} \tag{43}
\end{equation*}
$$

At first, we will prove that if (43) holds, then

$$
\begin{equation*}
\left\|\tilde{y}_{\tau}\right\|_{\mathcal{L}_{\infty}} \leq \bar{\gamma} \tag{44}
\end{equation*}
$$

We prove the bound in (44) by a contradiction argument. Since $\tilde{y}(0)=0$ and $\tilde{y}(t)$ is continuous, then assuming the opposite implies that there exists $t^{\prime} \leq \tau$ such that $\|\tilde{y}(t)\|<\bar{\gamma}, \quad \forall 0 \leq$ $t<t^{\prime},\left\|\tilde{y}\left(t^{\prime}\right)\right\|=\bar{\gamma}$, which leads to

$$
\begin{equation*}
\left\|\tilde{y}_{t^{\prime}}\right\|_{\mathcal{L}_{\infty}}=\bar{\gamma} \tag{45}
\end{equation*}
$$

It follows from (43) that $\left\|y_{t^{\prime}}\right\|_{\mathcal{L}_{\infty}} \leq \rho$, and hence Assumption 1 implies that

$$
\begin{equation*}
\left\|\sigma_{t^{\prime}}\right\|_{\mathcal{L}_{\infty}} \leq \Delta \tag{46}
\end{equation*}
$$

It follows from (24) that

$$
\begin{align*}
& \tilde{\xi}(i T+t)=\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t} \tilde{\xi}(i T)+\int_{i T}^{i T+t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(i T+t-\tau)} \\
& \Lambda \hat{\sigma}(i T) d \tau-\int_{i T}^{i T+t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(i T+t-\tau)} \Lambda \sigma(\tau) d \tau \tag{47}\\
& =\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t} \tilde{\xi}(i T)+\int_{0}^{t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \hat{\sigma}(i T) d \tau \\
& -\int_{0}^{t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \sigma(i T+\tau) d \tau
\end{align*}
$$

Since $\tilde{\xi}(i T)=\left[\begin{array}{c}\tilde{y}(i T) \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ \tilde{z}(i T)\end{array}\right]$, it follows from (47) that

$$
\begin{equation*}
\tilde{\xi}(i T+t)=\chi(i T+t)+\zeta(i T+t) \tag{48}
\end{equation*}
$$

where $\chi(i T+t)=\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t}\left[\begin{array}{c}\tilde{y}(i T) \\ 0\end{array}\right]+$ $\int_{0}^{t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \hat{\sigma}(i T) d \tau, \zeta(i T+t)=\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t}\left[\begin{array}{c}0 \\ \tilde{z}(i T)\end{array}\right]-$ $\int_{0}^{t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \sigma(i T+\tau) d \tau$. In what follows, we prove that for all $i T \leq t^{\prime}$ one has

$$
\begin{align*}
\|\tilde{y}(i T)\| & \leq \varsigma(T), \tag{49}\\
\tilde{z}^{\top}(i T) P_{2} \tilde{z}(i T) & \leq \alpha, \tag{50}
\end{align*}
$$

where $\varsigma(T)$ and α are defined in (12). Since $\tilde{\xi}_{1}(0)=0$, it is straightforward that $\|\tilde{y}(0)\| \leq \varsigma(T)$. We further note that $\tilde{z}^{\top}(0) P_{2} \tilde{z}(0) \leq$ $\lambda_{\max }\left(P_{2}\right)\|\tilde{z}(0)\|^{2} \leq \lambda_{\max }\left(P_{2}\right)\|\tilde{\xi}(0)\|^{2} \leq \lambda_{\max }\left(P_{2}\right) \| \Lambda\left(\hat{x}_{0}-\right.$ $\left.x_{0}\right) \|^{2} \leq \alpha$. For any $(j+1) T \leq t^{\prime}$, we will prove that if

$$
\begin{align*}
\|\tilde{y}(j T)\| & \leq \varsigma(T), \tag{51}\\
\tilde{z}^{\top}(j T) P_{2} \tilde{z}(j T) & \leq \alpha, \tag{52}
\end{align*}
$$

then (51)-(52) hold for $j+1$ too. Hence, (49)-(50) hold for all $i T \leq t^{\prime}$.

Assume (51)-(52) hold for j, and in addition, $(j+1) T \leq t^{\prime}$. It follows from (48) that $\tilde{\xi}((j+1) T)=\chi((j+1) T)+\zeta((j+1) T)$, where

$$
\begin{align*}
& \chi((j+1) T)=\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}\left[\begin{array}{c}
\tilde{y}(j T) \\
0
\end{array}\right] \\
& +\int_{0}^{T} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(T-\tau)} \Lambda \hat{\sigma}(j T) d \tau \tag{53}\\
& \zeta((j+1) T)=\mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}\left[\begin{array}{c}
0 \\
\tilde{z}(j T)
\end{array}\right] \\
& -\int_{0}^{T} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(T-\tau)} \Lambda \sigma(j T+\tau) d \tau \tag{54}
\end{align*}
$$

Substituting the adaptive law from (18) in (53), we have

$$
\begin{equation*}
\chi((j+1) T)=0 \tag{55}
\end{equation*}
$$

It follows from the definition of $\zeta(i T+t)$ in (48) that $\zeta(t)$ is the solution of the following dynamics:

$$
\begin{align*}
& \dot{\zeta}(t)=\Lambda A_{m} \Lambda^{-1} \zeta(t)-\Lambda \sigma(t), \tag{56}\\
& \zeta(j T)=\left[\begin{array}{c}
0 \\
\tilde{z}(j T)
\end{array}\right], \quad t \in[j T,(j+1) T] . \tag{57}
\end{align*}
$$

Consider the following function $V(\zeta(t))=\zeta^{\top}(t) \Lambda^{-\top} P \Lambda^{-1} \zeta(t)$ over $t \in[i T, \quad(i \pm 1) T]$. Since Λ is non-singular and P is positive definite, $\Lambda^{-\top} P \Lambda^{-1}$ is positive definite and, hence, $V(\zeta)$ is a positive definite function. It follows from (56) that over $t \in[j T,(j+1) T], \dot{V}(t)=\zeta^{\top}(t) \Lambda^{-\top} P \Lambda^{-1} \Lambda A_{m} \Lambda^{-1} \zeta(t)+$ $\zeta^{\top}(t) \Lambda^{-\top} A_{m}^{\top} \Lambda^{\top} \Lambda^{-\top} P^{\top} \Lambda^{-1} \zeta(t)-2 \zeta^{\top}(t) \Lambda^{-\top} P \Lambda^{-1} \Lambda \sigma(t)=$ $-\zeta^{\top}(t) \Lambda^{-\top^{m}} Q \Lambda^{-1} \zeta(t)-2 \zeta^{\top}(t) \Lambda^{-\top} P \sigma(t)$. Using the upper bound from (46), over $t \in[i T,(i+1) T]$ one can derive

$$
\begin{equation*}
\dot{V}(t) \leq-\lambda_{\min }\left(\Lambda^{-\top} Q \Lambda^{-1}\right)\|\zeta(t)\|^{2}+2\|\zeta(t)\|\left\|\Lambda^{-\top} P\right\|_{a} \Delta . \tag{58}
\end{equation*}
$$

Notice that for all $t \in[j T,(j+1) T]$, if

$$
\begin{equation*}
V(t) \geq \alpha \tag{59}
\end{equation*}
$$

we have $\|\zeta(t)\| \geq \sqrt{\frac{\alpha}{\lambda_{\max }\left(\Lambda^{-\top} P \Lambda^{-1}\right)}} \geq \frac{2 \Delta\left\|\Lambda^{-\top} P\right\|_{a}}{\lambda_{\min }\left(\Lambda^{-\top} Q \Lambda^{-1}\right)}$, and the upper bound in (58) yields

$$
\begin{equation*}
\dot{V}(t) \leq 0 \tag{60}
\end{equation*}
$$

It follows from Lemma 2 and the relationship in (57) that $V(\zeta(j T))=\tilde{z}^{\top}(j T) P_{2} \tilde{z}(j T)$, which further along with the upper bound in (52) leads to the following

$$
\begin{equation*}
V(\zeta(j T)) \leq \alpha \tag{61}
\end{equation*}
$$

It follows from (59)-(60) and (61) that $V(t) \leq \alpha, \forall t \in[j T,(j+$ 1) T, and therefore

$$
\begin{equation*}
V((j+1) T)=\zeta^{\top}((j+1) T)\left(\Lambda^{-\top} P \Lambda^{-1}\right) \zeta((j+1) T) \leq \alpha \tag{62}
\end{equation*}
$$

Since

$$
\begin{equation*}
\tilde{\xi}((j+1) T)=\chi((j+1) T)+\zeta((j+1) T) \tag{63}
\end{equation*}
$$

the equality in (55) and the upper bound in (62) lead to the following inequality $\tilde{\xi}^{\top}((j+1) T)\left(\Lambda^{-\top} P \Lambda^{-1}\right) \tilde{\xi}((j+1) T) \leq \alpha$. Using the result of Lemma 2 one can derive that $\tilde{z}^{\top}((i+1) T) P_{2} \tilde{z}((i+1) T) \leq$ $\tilde{\xi}^{\top}((i+1) T)\left(\Lambda^{-\top} P \Lambda^{-1}\right) \tilde{\xi}((i+1) T) \leq \alpha$, which implies that the upper bound in (52) holds for $j+1$.

It follows from (25), (55) and (63) that $\tilde{y}((j+1) T)=$ $\left[\mathbf{I}_{m \times m} \mathbf{0}_{m \times(n-m)}\right] \zeta((j+1) T)$, and the definition of $\zeta((j+1) T)$ in (54) leads to the following expression: $\tilde{y}((j+1) T)=\left[\begin{array}{ll}\mathbf{I}_{m \times m} & \mathbf{0}_{m \times(n-m)}\end{array}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} T}\left[\begin{array}{c}0 \\ \tilde{z}(j T)\end{array}\right]-$
 upper bounds in (46) and (52) allow for the following upper bound: $\|\tilde{y}((j+1) T)\| \leq\|\phi(T)\| \quad\|\tilde{z}(i T)\|+$ $\int_{0}^{T}\left\|\left[\begin{array}{ll}\mathbf{I}_{m \times m} & \left.\mathbf{0}_{m \times(n-m)}\right]\end{array}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(T-\tau)} \Lambda\right\|_{a}\|\sigma(j T+\tau)\| d \tau \leq$ $\|\phi(T)\| \sqrt{\frac{\alpha}{\lambda_{\max }\left(P_{2}\right)}}+\kappa(T) \Delta=\varsigma(T)$, where $\phi(T)$ and $\kappa(T)$ are defined in (11), and $\varsigma(T)$ is defined in (12). This confirms the upper bound in (51) for $j+1$. Hence, (49)-(50) hold for all $i T \leq t^{\prime}$.

For all $i T+t \leq t^{\prime}$, where $0 \leq t \leq T$, using the expression from (47) we can write that $\tilde{y}(i T+t)=\left[\begin{array}{l}\mathbf{I}_{m \times m} \\ \left.\mathbf{0}_{m \times(n-m)}\right] \mathrm{e}^{\Lambda A_{m} \Lambda^{-1} t} \tilde{\xi}(i T)+ \\ +\end{array}\right.$ $\left[\mathbf{I}_{m \times m} \quad \mathbf{0}_{m \times(n-m)}\right] \int_{0}^{t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \hat{\sigma}(i T) d \tau$ $\left[\begin{array}{ll}\mathbf{I}_{m \times m} & \mathbf{0}_{m \times(n-m)}\end{array}\right] \int_{0}^{t} \mathrm{e}^{\Lambda A_{m} \Lambda^{-1}(t-\tau)} \Lambda \sigma(i T+\tau) d \tau$. The upper bound in (46) and definitions of $\eta_{1}(t), \eta_{2}(t), \eta_{3}(t)$ and
$\eta_{4}(t)$ allow for the following upper bound $\|\tilde{y}(i T+t)\| \leq$ $\left\|\eta_{1}(t)\right\|_{a}\|\tilde{y}(i T)\|+\left\|\eta_{2}(t)\right\|_{a}\|\tilde{z}(i T)\|+\eta_{3}(t)\|\tilde{y}(i T)\|+\eta_{4}(t) \bar{\Delta}$. Taking into consideration (51)-(52) and recalling the definitions of $\beta_{1}(T), \quad \beta_{2}(T), \quad \beta_{3}(T), \quad \beta_{4}(T)$ in (13)-(15), for all $0 \leq t \leq T$ and for any non-negative integer i subject to $i T+t \leq t^{\prime}$, we have $\|\tilde{y}(i T+t)\| \leq$ $\beta_{1}(T) \varsigma(T)+\beta_{2}(T) \sqrt{\frac{\alpha}{\lambda_{\max }\left(P_{2}\right)}}+\beta_{3}(T) \varsigma(T)+\beta_{4}(T) \Delta$. Since the right hand side coincides with the definition of $\gamma_{0}(T)$ in (16), then for all $t \in\left[0, t^{\prime}\right]$ we have $\|\tilde{y}(t)\| \leq \gamma_{0}(T)$, which along with the assumption on T introduced in (26) yields $\left\|\tilde{y}_{t^{\prime}}\right\|_{\mathcal{L}_{\infty}}<\bar{\gamma}$. This clearly contradicts the statement in (45). Therefore, $\left\|\tilde{y}_{\tau}\right\|_{\mathcal{L}_{\infty}}<\bar{\gamma}$, which proves (44).

It follows from (43) that $\left\|y_{\tau}\right\|_{\mathcal{L}_{\infty}}<\rho$, and hence Lemma 4 implies that $\left\|e_{\tau}\right\|_{\mathcal{L}_{\infty}} \leq \frac{\|F(s)\|\left\|_{\mathcal{L}_{1}}\right\| \tilde{y}_{\star}\left\|_{\mathcal{L}}+\right\| G(s)\left\|_{\mathcal{L}_{1}}\right\| \hat{x}_{0}-x_{0} \|_{\infty}}{1-L_{\rho}\|H(s)(1-F(s))\|_{\mathcal{L}_{1}}}$. Further, it follows from (27) and (44) that $\left\|y_{\tau}\right\|_{\mathcal{L}_{\infty}}<\gamma_{1}$, which contradicts (42). Hence, (29) has to be true. Further, since (44) holds for any $\tau,(28)$ is proved.

It follows from (40) and (4) that $u(s)-u_{r e f}(s)=-F(s) d_{e}(s)-$ $F(s) \tilde{\sigma}(s)$. It follows from Assumption 1 and the upper bound in (29) that $\left\|u-u_{r e f}\right\|_{\mathcal{L}_{\infty}} \leq L_{\rho}\|F(s)\|_{\mathcal{L}_{1}}\left\|y-y_{r e f}\right\|_{\mathcal{L}_{\infty}}+$ $\|F(s)\|_{\mathcal{L}_{1}}\|\tilde{y}\|_{\mathcal{L}_{\infty}}$, which along with (28)-(29) leads to the second bound in (30). The proof is complete.

