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Abstract— Repetitive control (RC) is a feedback-based ap-
proach useful for tracking periodic reference trajectories, for
example in scanning applications. The major challenges with
RC include closed-loop stability, robustness, and minimizing
the steady-state tracking error. In piezo-based nanopositioning
systems, the hysteresis effect can limit the performance of RC
designed based on a linear dynamics model. An enhanced
discrete-time repetitive controller is combined with an inverse-
hysteresis compensator based on the Prandtl-Ishlinskii (P-I)
model for hysteresis. The feasibility of the inverse model and the
performance of the RC system with the inverse compensator are
investigated experimentally. Measured results from a flexure-
guided nanopositioner show that hysteresis compensation leads
to improvement in the stability margin and rate of convergence
of the tracking error for the closed-loop RC system. For
scanning at 25 Hz, the maximum tracking error is 1.72%.

I. INTRODUCTION

Repetitive control (RC) is based on the Internal Model
Principle [1], where a signal generator is incorporated into
a feedback control loop for tracking periodic reference
trajectories [2]. This control method is useful in scanning
probe microscopes (SPMs), for example in atomic force
microscopes (AFMs) [3], where a nanopositioning stage
scans the AFM probe in a repetitive fashion relative to a
sample surface. Precise tracking of a periodic trajectory is
important in applications such as AFM imaging and probe-
based nano-pattern generation. However, during positioning
the tracking error caused by hysteresis and dynamic effects
in the piezoactuator leads to significant positioning error [4].
For operations that are repetitive, the tracking error repeats
from one operating cycle to the next and limits the perfor-
mance of SPMs. Therefore, precise control of the positioning
is needed to obtain high-resolution, undistorted images of the
sample and for fabricating uniformly distributed patterns of
nano-sized features for the growth of novel structures.

The repetitive tracking error in piezo-based nanoposi-
tioning systems is addressed by designing an enhanced
discrete-time repetitive controller combined with an inverse
Prandtl-Ishlinskii (P-I) hysteresis compensator. The inverse
P-I compensator minimizes the hysteresis effect to linearize
the system for RC implementation; and it also improves the
performance of the RC feedback system, where the RC is
designed based a linear dynamics model of the piezoactuator.
The main contributions include (1) a detailed design of a
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discrete-time RC system for AFM, (2) a feasibility study of
an inverse P-I model for hysteresis, and (3) the experimental
investigation of the closed-loop system’s performance.

Repetitive and iteration-based control methods can reduce
the tracking error from one operating cycle to the next in
nanopositioning systems. For instance, the iterative learn-
ing control (ILC) method [5] is effective for minimizing
hysteresis and dynamic effects in piezoactuators, and has
been widely applied to SPMs [6]. Typically, the ILC method
requires resetting the initial conditions at the start of each
iteration step. For systems with hysteresis, the input voltage
can be cycled (as described in [7]) to re-initialize the system.
On the other hand, RC does not require resetting the initial
conditions, but the period of the reference trajectory must
be known a priori [2]. In SPM applications such as imaging
and patterning, the reference signal’s period is often known
in advance. Model-based ILC approaches [5] often require
relatively accurate models, and thus add additional chal-
lenges in situations where the system dynamics change over
time; under cyclic loading [8], for example. The feedback
mechanism in RC provides robustness, but the method is
most suited for tracking periodic reference trajectories. The
RC method has been applied to address run-out issues in
disk drive systems [9], [10] and to improve the performance
of machine tools [11]. Past work on RC for piezo-based
systems and SPMs is limited, but it includes a feedback-
linearized controller [12] and a polynomial-based hysteresis
inverse compensator [13] combined with RC. Herein, RC
is studied for repetitive scanning operations in piezo-based
nanopositioning systems where hysteresis is significant.

The major challenges with RC design are stability, ro-
bustness, and good steady-state tracking performance. In
particular, the effects of hysteresis can lead to poor stability
margins [14], and subsequently poor tracking performance.
The hysteresis effect is treated as a rate-independent, input
nonlinearity and it is characterized by Prandtl-Ishlinkskii
model [15], [16], [17]. An inverse compensator based on the
P-I model is proposed to minimize the hysteresis effect in
piezoactuators for improving the performance of a discrete-
time repetitive controller. The RC system is designed based
on the linear dynamics model of the piezoactuator; and it
incorporates two linear phase compensators for tuning the
RC’s performance. The control system is experimentally
evaluated on a flexure-guided nanopositioner.
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II. AN ENHANCED DISCRETE-TIME REPETITIVE

CONTROLLER FOR LINEAR SYSTEMS

Let R(z) be the z transform of a given periodic reference
trajectory with period Tp. For tracking such a trajectory, a
repetitive controller contains a signal generator with period
Tp as shown in Fig. 1(a) [2]. The plug-in RC under con-
sideration employs the pure delay z−N in the inner loop
to create the signal generator, where N = Tp/Ts and Ts

is the sampling period. By ‘plug-in’, it is meant that the
RC is added to an existing feedback-controlled system, such
as a pre-existing PID feedback controller typically used in
nanopositioning systems. RC can easily be augmented to an
existing feedback controller improved tracking.
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Fig. 1. (a) The block diagram of repetitive control system where the
reference trajectory and output are denoted by R(z) and Y (z), respectively.
The RC block consists of two linear phase-lead compensators, P1(z) and
P2(z), to enhance performance. (b) An equivalent block diagram (a) for
stability analysis, where E(z) is the tracking error.

The input-output dynamics of the positioning system is
assumed to be linear and represented by G(z), where z =
ejωTs , for ω ε (0, π/Ts). (It is pointed out that the input-
output behavior of piezo-based nanopositioners consist of
hysteresis and dynamic effects. The hysteresis effect will be
treated in the next section.) A typical feedback controller is
denoted by Gc(z); Q(z) is a low-pass filter for robustness;
krc is the RC gain; and P1(z) = zm1 and P2(z) = zm2 ,
where m1, m2 are non-negative integers, are positive phase-
lead compensators to enhance the performance of the RC
feedback system. Particularly, the phase lead compensators
zm1 and zm2 are given by θ1,2(jω) = m1,2Ts. By inspection,
the transfer function of the signal generator that relates E(z)
to A(z) in Fig. 1(a) is given by

A(z)
E(z)

=
Q(z)P1(z)z−N

1 − Q(z)P1(z)z−N
=

Q(z)z(−N+m1)

1 − Q(z)z(−N+m1)
. (1)

In the absence of the low-pass filter Q(z) and positive
phase lead P1(z) = zm1 , the poles of the signal generator
are 1−z−N = 0, which implies infinite gain at the harmonics
of the periodic reference trajectory. Such large gains are what
gives the RC its ability to track periodic trajectories.

Practical RC design incorporates a low-pass filter Q(z) be-
cause the large gain at high frequencies can lead to instability
of the closed-loop system. For simplicity, a standard low-pass

filter of the form Q(z) = a
z+b , where |a|+|b| = 1, is chosen.

Alternatively, a zero-phase filter can also be used [18].
The stability of the RC system is presented as follows. Let

F (z) = Q(z)z(−N+m1) and G0(z) = Gc(z)G(z). Consider
the following assumptions:

Assumption 1: The reference trajectory R(z) is periodic.
Assumption 2: The closed-loop system without the RC

loop is asymptotically stable, i.e., 1 + Gc(z)G(z) = 0 has
no roots outside of the unit circle in the z-plane.

Theorem 1 (Stability of RC): Let Assumption 1 and 2
hold. If |Q(ejωTs)|≤1 for ω ε (0, π/Ts), 1−F (z) is bounded
input, bounded output stable, and

0 < krc <
2 cos[θT (ω) + θ2(ω)]

A(ω)
, (2)

−π/2 < [θT (ω) + θ2(ω)] < π/2, (3)

then the RC feedback system shown in Fig. 1(a) is asymp-
totically stable.

Proof: The stability is shown by applying the Small
Gain Theorem [19]. First, the transfer function relating the
reference trajectory R(z) and the tracking error E(z) is

Src(z) =
E(z)
R(z)

=
[1 − F (z)]S(z)

1 − F (z)[1 − krcP (z)G0(z)S(z)]
, (4)

where S(z) = 1/(1 + G0(z)) is the sensitivity function
of the feedback system without the repetitive controller.
Furthermore, let T (z) represent the complimentary sensitive
function of the closed-loop feedback system without RC,
that is, T (z) = G0(z)S(z). Using Eq. (4), the RC block
diagram in Fig. 1(a) is simplified to the equivalent intercon-
nected system shown in Fig. 1(b). Referring to Fig. 1(b), by
Assumption 2, S(z) has no poles outside the unit circle in
the z-plane, so it is stable. Replacing z = ejωTs , and since
1−F (z) stable, the positive feedback closed-loop system in
Fig. 1(b) is asymptotically stable when

|F (z)[1 − krcP2(z)G0(z)S(z)]| =
|F (ejωTs)[1 − krce

jθ2(ω)G0(ejωTs)S(ejωTs)]| < 1, (5)

for all ω ε (0, π/Ts), where the phase lead θ2(ω) = m2Ts.
Noting that |Q(ejωTs)|≤1 and replacing the complimen-

tary sensitive function of the closed-loop system without RC
with T (ejωTs) = A(ω)ejθT (ω), where A(ω) > 0 and θT (ω)
are the magnitude and phase of T (ejωTs), respectively,
Eq. (5) can be simplified to

|1 − krcA(ω)ej[θT (ω)+θ2(ω)]| < 1. (6)

Observing that ejθ = cos(θ) + j sin(θ) and krc > 0, Eq. (6)
gives

−2krcA(ω)cos[θT (ω) + θ2(ω)] + k2
rcA

2(ω) < 0, (7)

hence,

0 < krc <
2 cos[θT (ω) + θ2(ω)]

A(ω)
and

−π/2 < [θT (ω) + θ2(ω)] < π/2.

This completes the proof.
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Fig. 2. (a) A cascade model structure for hysteresis and dynamic effects in
piezoactuators. The hysteresis is denoted by H, while the linear dynamics is
represented by G(z). (b) The modified RC feedback system with an inverse
P-I hysteresis compensator H−1 for minimizing hysteresis.

It is noted that the lead compensator P1(z) compensates
for the phase lag caused by the low-pass filter Q(z), and thus
can be used to improve the tracking performance [3], [20].
Because N >> m1, the modified delay z−N+m1 is causal
and can be easily implemented digitally. Additionally, the
lead compensator P2(z) and RC gain krc can be adjusted to
improve closed-loop robustness and the rate of convergence
of the tracking error, respectively.

III. THE PRANDTL-ISHLINSKII HYSTERESIS MODEL FOR

FEEDFORWARD COMPENSATION

The design of RC described in the previous section is
based on the assumption that the system is linear. In practice,
however, the input-output behavior of piezo-based nanoposi-
tioning systems exhibits hysteresis and dynamic effects [6].
Hysteresis can affect, for example, closed-loop stability if
not accounted for [14]. To enable the application of the
proposed RC design, the hysteresis effect is modeled and
inverted for feedforward compensation. It is pointed out that
charge control can also be used to minimize the hysteresis
behavior [21]. However, the model-based approach was pre-
ferred over developing a charge control circuit. Specifically,
the hysteresis and dynamic effects are described by a cascade
model as depicted in Fig. 2(a). The range-dependent hystere-
sis effect is treated as a rate-independent, input nonlinearity
denoted by H[·]. The linear transfer function model G(z)
represents the structural (vibrational) dynamics and creep
effect [4]. The hysteresis is modeled by the Prandtl-Ishlinskii
approach, and an inverse model is developed based on the
P-I model structure.

The Prandtl-Ishlinskii model is an operator-type model
which has recently been investigated to model hysteresis in
piezoactuators [15], [16], [17]. In this model, the output is
characterized by the play operator shown in Fig. 3 [15]. Let
the input u be continuous and monotone over the interval
ti ∈ Ti � [ti, ti+n], for n = 1, 2, · · · , N . Herein, the play
operator Pr is defined as

Pr[u](0) = pr(f(0), 0) = 0, (8)

Pr[u](t) = pr(f(t), pr[f ](ti)), (9)

where
pr(f(t), pr[f ](ti)) = max(f − r,min(f + r, pr[f ](ti−1))),

f(t) = g0u(t) + g1 (with g0, g1 constants), and u(t) is the
input. The play operator’s threshold is denoted by r and

three examples are shown in Fig. 3(a). The output v(t) is
a weighted sum of play operators,

v(t) = H[u](t) � kf(t) +
∫ R

0

d(r)Pr[u](t)dr, (10)

where k is a positive constant and d(r) is density function
that affects the shape and size of the hysteresis curve.
Compared to the Preisach hysteresis model, the P-I model is
less computationally demanding to implement and invert for
feedforward control. An example hysteresis curve generated
from the P-I model for a piezoactuator is shown in Fig. 3(b).

u

r1 r2 r3

(a) (b)r H[u]

u

P [u]

Fig. 3. (a) The play operator with threshold r. (b) The output of the
Prandtl-Ishlinskii hysteresis model for a piezoactuator.

An inverse of the P-I model is proposed based on the
observation of the shape of the input versus output curve
shown in Fig. 4(a) (u vs. v plot). For such a curve, the
inverse-play-type operator shown in Fig. 4(b) is proposed
for constructing the inverse model.

r1 r2 r3

inv ,rH           [v] P      [v]

v v

-1(a) (b)u=

‘ ‘ ‘

‘

Fig. 4. (a) Input versus measured output plot. (b) A play-type operator for
the inverse model with threshold r′.

Therefore, the inverse-play operator shown in Fig. 4(b) is
described by

Pinv,r′ [v](0) = pinv,r′(h(0), 0) = 0,
Pinv,r′ [v](t) = pinv,r′(h(ti),Pinv,r′ [h](ti)); (11)

where pinv,r′(h(t), pinv,r′ [h](ti)) = max(−h −
r′,min(−h + r′, pinv,r′ [h](ti−1))) and r′ denotes the
threshold of the inverse-play operator. Then, the output of
the inverse hysteresis model is given by

H−1[v](t) � kinvh(t) +
∫ R

0

dinv(r′)Pinv,r′ [v](t)dr′. (12)

The function h(t) = g′0v(t)+g′1, where v(t) is the output of
the hysteresis behavior and g′0, g

′
1 are constants.

IV. EXPERIMENTAL RESULTS

Experiments were done to (1) model the hysteresis behav-
ior and validate the model for a piezoactuator, (2) determine
the inverse hysteresis model and apply it for feedforward hys-
teresis compensation, and (3) combine the inverse hysteresis
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model with the proposed repetitive controller for tracking
periodic reference trajectories.

A. The Experimental Nanopositioning System
The experimental system is a flexure-guided, serial-

kinematic, two-axis nanopositioner optimized for scanning
operations with an approximate range of motion of 10 µm ×
10 µm. Figure 5 is a photograph of the scanner and the details
of the scanner are found in [22]. Simulation and experimental
results are presented for the fast scanning axis (x-direction).
A linear dynamics model G(z) of the stack-piezoactuator
was obtained for RC design and simulation.

x

y

Fig. 5. Experimental piezo-based nanopositioner [22].

B. Hysteresis Modeling
The coefficients of the forward and inverse models can

be determined using input-output data. First, the density
function is given by d(r) = λe−δr, where the threshold
values are r = ρj, for j = 1, 2, · · · , n and the parameters
λ, δ, ρ, k are constants. Finally, eight play operators were
chosen (n = 8), and the parameters g0, g1, λ, δ, ρ, k were
obtained by curve fitting the measured input-output response
from the piezoactuator using the nonlinear least-square op-
timization toolbox in Matlab.

For example, the output displacement of the piezoactuator
was measured by sending a triangle input signal u(t) to the
piezo-amplifier. The amplitude was 2 V for seven cycles,
then the amplitude was decreased to zero after two cycles.
The frequency of the input was 1 Hz to avoid exciting
the positioner’s resonances. The range of motion was ap-
proximately 10 µm. Then the parameters of the hysteresis
model were computed from the measured input-output data
using the Matlab optimization toolbox. The parameters are
g0 = 0.7938, g1 = 0.0295, λ = 0.0211, δ = −6.2904,
ρ = 0.0919, and k = 1.

The measured and model outputs are compared in Fig. 6,
where the inset figure shows the hysteresis curves. The
results show good agreement between the measured and
model output, where the maximum error was less than 2.5%
of the total range. To validate the cascade model structure
shown in Fig. 2(a), experiments and simulation results are
compared for ±4 µm range of motion at 1, 10, 25 Hz
scanning as shown in Fig. 7, plots (a1) through (c2). The
maximum tracking error over one period of the triangle scan
is less than 2% as indicated in plots (a2), (b2), and (c2).
The accuracy of the cascade model for a 100 Hz sinusoidal
scanning motion is shown in Fig. 7(d1) and (d2), where the
maximum error is less than 2.5% between the model and
measured response.

Fig. 6. Comparison of measured hysteresis and P-I hysteresis model output.

0 0.2 0.6 1
−4

−2

0

2

4

D
is

pl
ac

em
en

t (
µm

) 1 Hz

 

 

0 0.02 0.06 0.1−4

−2

0

2

4
10 Hz 

 

0 10 20 30 40
−4

−2

0

2

4
25 Hz 

 

 

0 2 6 10
− 4

−2

0

2

4
100 Hz
Sine wave 

 

Measured output  Simulated (for HG)

0 0.2 0.6 1
−1
0
1
2

Time (s)

Er
ro

r (
%

)

0 0.02 0.06 0.1−1
0
1
2

Time (s)

−1
0
1
2

Time (ms)

−2
0
2

Time (ms)

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

D
is

pl
ac

em
en

t (
µm

)

D
is

pl
ac

em
en

t (
µm

)
D

is
pl

ac
em

en
t (

µm
)

Er
ro

r (
%

)

Er
ro

r (
%

)
Er

ro
r (

%
)

0 10 20 30 40 0 2 6 10

Fig. 7. Experimental validation of cascade P-I hysteresis H and linear
dynamics G(z) model. (a1) and (a2) Displacement and error vs. time
between measured (solid line) and model output (dash line) at 1 Hz (triangle
trajectory); (b1) and (b2) the comparison for 10 Hz scanning; (c1) and (c2)
the comparison for 25 Hz scanning; and (d1) and (d2) the comparison of
sinusoidal scanning at 100 Hz.

C. Inversion-Based Hysteresis Compensation
The hysteresis effect was compensated for using the

proposed P-I inverse hysteresis model. The inverse model
was obtained using the measured input-output data from
the forward model. The density function was chosen as
dinv(r′) = λ′e−δ′r′

, where r′ is the threshold of the inverse-
play operator. Similar to the forward model, the threshold
values are given by r′ = ρ′j, for j = 1, 2, · · · , 8, and the pa-
rameters λ′, δ′, ρ′, k′ are real constants. Using the measured
input-output data, the parameters of the inverse model were
found using the nonlinear least-square optimization toolbox
in Matlab. The values are g′0 = 1.1435, g′1 = −0.2900,
λ′ = 0.0211, δ′ = −1.766, ρ′ = 0.526, and k′ = 1.

The results of the inversion-based feedforward controller
minimizing hysteresis are shown in Fig. 8. The computed
inverse model is depicted in Fig. 8(a). A comparison of
the hysteresis curves with (solid line) and without (dash
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Fig. 8. (a) Inverse hysteresis model. (b) The hysteresis curves for
the piezoactuator with (solid line) and without (dash line) feedforward
compensation.
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Fig. 9. Validating cascade model by compensating for hysteresis. Com-
parison of output vs. input plots and error for: (a1) and (a2) 1 Hz triangular
trajectory; (b1) and (b2) 10 Hz triangular trajectory; (c1) and (c2) 25 Hz
triangular trajectory; and (d1) and (d2) 100 Hz sinusoidal trajectory.

line) feedforward compensation is shown in Fig. 8(b). It
can be seen that the inversion-based feedforward controller
minimizes the hysteresis behavior, subsequently linearizing
the piezoactuator’s response.

To further validate the cascade model structure, as well as
the quality of the inverse model, the feedforward controller
was applied to compensate for hysteresis over different fre-
quency ranges. By compensating for hysteresis, the measured
response is dominated by the dynamic effects G(z) [see
Fig. 2(a)]. Figure 9 shows the measured and simulated
outputs versus input plots for a triangle scan profile at 1,
10, 25 Hz and a 100 Hz sinusoidal trajectory. The maximum
error is less than 2.5% and 2% for 25 Hz and 100 Hz,
respectively. The results show that the hysteresis effect can
be compensated for using the proposed inverse model, thus
linearizing the piezoactuator’s response.

D. Closed-Loop Stability Evaluation
Hysteresis and its effect on closed-loop stability was

experimentally evaluated and compared to simulation results
before implementing the repetitive controller. A PID con-
troller was designed based on the linear dynamics model
G(z). The controller transfer function is given by Gc(z) =
Kp + Ki

(
z

z−1

)
+ Kd

(
z−1

z

)
, where the Ziegler-Nichols

method was used to tune the controller parameters to Kp =
8.5, Ki = 1, and Kd = 4.

The simulated results of the effect of hysteresis on the
performance of the PID-controlled system is shown in
Fig. 10(a1) and (a2). It can be seen that for a stable PID
controller designed based on the linear model, introducing
hysteresis effect (using the P-I model) causes the perfor-
mance of the controller to deteriorate. The tracking results
in Fig. 10(a1) and (a2) show oscillations in the response for
tracking a 25 Hz triangle trajectory. As shown in simulation,
incorporating the P-I inverse model the stability is recovered
[dash line in Fig. 10(a1) and (a2)].
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Fig. 10. The effect of hysteresis on the closed-loop stability for tracking
25 Hz triangle trajectory. (a1) and (a2) simulation results comparing PID
control of the linear dynamics G(z) (dotted line); PID control of the
hysteresis H and dynamics G(z) model (solid line); and PID combined
with H−1 controller (dash line). (b1) and (b2) experimental results.

Experimental results confirm that hysteresis leads to low
stability margins as shown in Fig. 10(b1) and (b2). The
closed-loop system’s error becomes appreciably large at
approximately 0.75 s, and is unstable. By integrating the P-
I inverse to account for the hysteresis, stability is achieved
and the performance of the experimental system matches the
simulated response of the PID for the linear dynamics. There-
fore, it is evident from the experimental results that hysteresis
leads to low stability margin and can make the closed-loop
system unstable when a PID controller is designed based on
a linear model.

E. Tracking Results of RC with Hysteresis Compensation
In this experiment, the PID and feedforward hysteresis

compensator were combined with the proposed RC con-
troller. The repetitive controller was designed based on the
linear dynamic model G(z) of piezoactuator as described in
Section II. The PID gains were tuned for the piezoactuator
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system, where Kp = 1, Ki = 1, and Kd = 4. The RC gain
was selected as krc = 1.5 [satisfying condition (2)] and the
two phase lead compensators zm1 and zm2 were chosen as
m1 = 6 and m2 = 0. The cut-off frequency for the low-
pass filter Q(z) was 250 Hz. The RC, PID, and P-I inverse
compensator were implemented using Matlab’s xPC Target
environment with a sampling frequency of 10 kHz.

The tracking error versus time results are shown in Fig. 11,
plots (a), (b), and (c), and error measures are listed in Table I.
Triangle reference trajectories at 5, 10, and 25 Hz were
applied to the control system. As shown, by integrating
the hysteresis compensator, the maximum tracking error of
the PID controller is reduced from 14.89% to 9.17% at
25 Hz. Simply using PID with RC, the tracking error is
further reduced to 2.19% at 25 Hz. Finally, the addition of
the hysteresis compensator lowers the maximum tracking
to 1.72%. One advantage of the hysteresis compensator
is the tracking error of the closed-loop system converges
approximately 40% faster, from 0.35 s compared to 0.2 s as
shown in Fig. 11(c). The measured steady-state displacement
vs. time for the piezoactuator in Fig. 11(d) shows good
tracking performance for the overall closed-loop system for
tracking a periodic triangle reference trajectory.
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Fig. 11. Experimentally measured tracking error comparing (a) PID with
and without H−1; (b) PID and RC (without H−1); (c) PID+RC and
PID+RC+H−1; and (d) snapshot of steady-state displacement vs. time.

TABLE I

TRACKING ERROR REPORTED AS PERCENTAGE OF TOTAL RANGE.

Controller 5 Hz 10 Hz 25 Hz
emax erms emax erms emax erms

PID 3.54 2.67 6.63 5.43 14.89 14.29
PID+H−1 2.28 1.61 4.07 3.25 9.17 8.38
PID+RC 0.46 0.14 0.73 0.23 2.19 0.79

PID+RC+H−1 0.42 0.13 0.62 0.22 1.72 0.68

V. CONCLUSIONS

A discrete-time repetitive controller was designed based on
a linear dynamics model of the piezoactuator. The hysteresis
effect was modeled by the Prandtl-Ishlinskii method and an
inverse compensator was proposed to minimize the hysteresis

effect. Experimental results showed good tracking perfor-
mance for the closed-loop system where at 25 Hz scanning,
the maximum tracking error was 1.72%.
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