
 
 

 

  

Abstract—This paper investigates the design problem of 
robust Fault-Tolerant Control (FTC) by using on-line control 
re-allocation for a class of uncertain systems and its application 
to flight tracking control. The design procedure consists of two 
parts: robust fault-tolerant baseline controller design, and 
realization of a control re-allocation scheme. The baseline 
controller is obtained by an iterative LMI method, which not 
only stabilizes the uncertain system but also provides sufficient 
robustness to allow for an effective operation of the Fault 
Detection and Diagnosis (FDD) subsystem in the event of 
actuator failures. The re-allocation scheme redesigns an optimal 
control law without requiring reconfiguration of the baseline 
controller, and compensates for actuator saturation via 
Cascaded Generalized Inverse (CGI) method. Simulation results 
show the effectiveness of the proposed approach.  

I. INTRODUCTION 
T is well known that any control system will inevitably be 
subject to component failures such as actuator and/or sensor 

faults which can bring performance degradation, and even 
instability. This has ignited enormous research activities in 
Fault-Tolerant Control (FTC) with the objective of 
maintaining overall closed-loop system stability and 
acceptable performance in the event of such failures. 
Generally speaking, the FTC design approaches can be 
categorized into two main classes: passive [1]-[3] and active 
(see [4] and the references therein). The passive approach 
needs a prior knowledge of fault modes to obtain a fixed 
controller which is applied to both normal and fault cases. 
Therefore, the Passive FTC (PFTC) which does not require 
on-line Fault Detection and Diagnosis (FDD) and control 
reconfiguration, implements easier than Active FTC (AFTC). 
Nevertheless, PFTC yields more conservativeness as the 
number of presumed faults increase. On the contrary, AFTC 
compensates for component failures either by switching a set 
of pre-computed control laws or loading a new redesign 
control strategy on-line. It is obvious that the accurate system 
 

S. J. Ye is with the School of Automation, Northwest Polytechnical 
University, Xi’an, Shaanxi, 710072, China and the Department of 
Mechanical and Industrial Engineering, Concordia University, Montreal, 
Quebec H3G 1M8, Canada (e-mail: yesijun@gmail.com).  

Y. M. Zhang is with the Department of Mechanical and Industrial 
Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada 
(e-mail: ymzhang@encs.concordia.ca). 

X. M. Wang is with the School of Automation, Northwest Polytechnical 
University, Xi’an, Shaanxi, 710072, China (e-mail: wxmin@nwpu.edu.cn). 

C. A. Rabbath is with the Defence Research and Development Canada, 
Valcartier, Quebec G3J 1X5, Canada (email: 
camille-alain.rabbath@drdc-rddc.gc.ca). 

state and parameters should be obtained for control 
reconfiguration by FDD. Unfortunately, there is very limited 
time available for FDD and control reconfiguration in the 
post-fault control system, especially for flight control of 
aerobatic and fighter aircraft. 

To solve the above-mentioned problems of PFTC and 
AFTC, a new architecture for FTC System (FTCS) that 
includes a robust fault-tolerant baseline controller and on-line 
control re-allocation is proposed. Control Allocation (CA) is 
an approach to manage actuator redundancy for different 
control strategies handling actuator faults [5]-[9], [12], [14]. 
Recent works [5], [12] and [14] show that the effectiveness of 
control re-allocation methods for FTC when control surfaces 
are partially lost or jammed. However, these works neither 
focus on the design approach for the baseline controller nor 
investigate the effects of baseline controller to the 
performance of control re-allocation on FTCS.   

In this paper, the robust baseline controller is achieved by 
an iterative LMI algorithm, which not only stabilizes the 
uncertain system but also provides sufficient robustness to 
allow more time to the computation of the FDD function in the 
event of actuator failures. Subsequently, an on-line control 
re-allocation scheme is designed based on the Pseudo-Inverse 
Method (PIM) and the Cascaded Generalized Inverse (CGI) 
method without requiring reconfiguration of the baseline 
controller. The novel FTCS including robust baseline 
controller and CA has been applied to the fully nonlinear 
ADMIRE fighter aircraft model. 

II. PRELIMINARIES AND PROBLEM FORMULATION 
To demonstrate the function and placement of the baseline 

controller and control re-allocation in the new FTCS, the 
general structure of the FTCS for flight tracking control is 
shown in Fig. 1. 

 
Fig. 1.  General structure of the new FTCS.
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Consider an uncertain linear time-invariant (LTI) system of 
the form  

  
( ) [ ( )] ( ) [ ( )] ( ) [ ( )] ( )
( ) ( )

x t A A t x t B B t u t G G t w t
y t Cx t

= + Δ + + Δ + + Δ⎧
⎨ =⎩

&
  (1) 

where ( ) nx t ∈R is the state, ( ) mu t ∈R is the control input, 

( ) hw t ∈R  is the disturbance input and ( ) py t ∈R  is the 
output. A, B, C and G are known real constant matrices with 
appropriate dimensions, which describe the nominal system. 

( )A tΔ , ( )B tΔ  and ( )G tΔ  are real-valued time-varying 
matrix functions representing the norm-bounded parameter 
uncertainties.  

         ( ) ,  ( ) ,  ( )a a b b g gA E t F B E t F G E t FΔ = Δ Δ = Δ Δ = Δ    (2) 

where ( ) ( )T t t IΔ Δ ≤  [10]. 
Then, the system (1) with actuator faults is represented as: 

 
( ) [ ( )] ( ) [ ( )] ( ) [ ( )] ( )
( ) ( )

Lx t A A t x t B B t u t G G t w t
y t Cx t

ω= + Δ + + Δ + + Δ⎧
⎨ =⎩

&
 (3) 

where Lω is modeled by control effectiveness factors and 
satisfying 

       
1 2  { [ ,  ],,  , 

                  [ ,  ],    = 1, 2, ,  }
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m

diag

i m
L

ω ω ω ω ω
ω ω ω

∈ Θ =

∈

−

K

K

K

       (4)  

For every fault mode, Liω  and Liω represent the lower and 
upper bounds of Liω , respectively. Partial loss of control 
effectiveness is given by 0 1Li< <ω . 0Liω =  means total 
outage of the ith actuator and 1Liω =  denotes a healthy ith 
actuator.  

Consider the autopilot command in Fig. 1 as a reference 
signal. The selected output Sy(t) tracks the reference signal 

( ) lr t ∈R  without steady-state error, that is 
                  lim  ( ) 0,      ( ) ( ) ( )

t
e t e t r t Sy t

→∞
= = −                    (5) 

where e(t) is tracking error and l PS ×∈R  is a known constant 
matrix to select the output. It is well known that the tracking 
error integral action of a controller can effectively eliminate 
the steady-state tracking error [3]. In order to obtain a robust 
fault-tolerant controller with state feedback plus integral 
action of the tracking error, we restructure the system (3) as an 
augmented system based on the standard H∞ -optimal 
tracking problem setting [3]. Then the state-space description 
of the augmented system is given by 
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⎡ ⎤−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ + Δ + Δ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤
+ = −⎢ ⎥⎢ ⎥+ Δ ⎣ ⎦⎣ ⎦

∫
&

K

  (6) 

Define the augmented state 
0

( ) [( ( ) ) ,   ( )]
t T T Tx t e t dt x t= ∫  and 

disturbance ( ) [( ( ),   ( )]TT Tv t r t w t= , then the augmented state 

equation can be simplified as   
 ( ) ( ( ) ) ( ) ( ( ) ) ( ) ( ( ) ) ( )a a b b L g gx t A E t F x t B E t F u t G E t F v tω= + Δ + + Δ + + Δ&  (7) 

where  
0   0       0

,    ,  ,
0      0      

 0  0
,  [0   ],  ,  ,

 0
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= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= = Δ = Δ⎢ ⎥
⎣ ⎦

 

Assumption 1: The state of the system (3) is available at 
every time instant. 

In the following design, we choose a Linear Quadratic (LQ) 
performance index as: 

             
0
[ ( ) ( ) ( ) ( )]

t T T
LJ x t Qx t u t Ru t dt= +∫                (8) 

where ( ) ( )
1 2[ ,   ] l n l nQ diag Q Q + × += ∈R  , 1

l lQ ×∈R  and 2
n nQ ×∈R  

are symmetric positive semi-definite matrices and n nR ×∈R  is 
a symmetric positive definite matrix. 

III. ROBUST FAULT-TOLERANT CONTROLLER DESIGN 
In this section, we develop an iterative LMI algorithm to 

achieve a baseline controller such that: 
1) the controller stabilizes the closed-loop augmented 

system in both normal and fault cases. 
2) the controller minimizes the upper bounds of the LQ 

performance index given in (8). 
3) the controller optimizes the performance of the 

closed-loop augmented system in the healthy case. 
Consider the following state-feedback controller for the 

augmented system (7): 

              
0

( ) ( ) ( ) ( )
t

e xu t Kx t K e t dt K x t= = +∫                (9) 

where ( )[  ] m l n
e xK K K × += ∈R .  

Then, the closed-loop augmented system is represented as 
follows by substituting (9) into (7) 

 

1 1

( ) {[ ( ) ] [ ( ) ] } ( ) [ ( ) ] ( )

( ) ( ) ( )
a a b b L g gx t A E t F B E t F K x t G E t F v t

z t C DK x t
ω⎧ = + Δ + + Δ + + Δ⎪

⎨
= +⎪⎩

&
(10) 

where  
1/ 2 ( ) ( ) 1/2 ( )

1 1[ ,0] ,  [0, ] ,T l n m l n T l n m mC Q D R+ + × + + + ×= ∈ = ∈R R  
and z(t) is the required output. 

Lemma 1 [10]: Given matrices Y, E and F of appropriate 
dimensions, where Y is symmetrical, and ( ) ( )T t t IΔ Δ ≤ . Then  

                     ( ) ( ) 0T T TY E t F F t E+ Δ + Δ <                    (11) 
holds if and only if there exists a scalar 0ε >  such that 

                        1 0T TY EE F Fε ε −+ + <                       (12) 
Lemma 2 [15]: For a given positive scalar γ , if there exist 

symmetric positive definite matrix P satisfying 
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γ
⎡ ⎤+
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                   (13) 

Then, the system is stabilizable and the upper bound of H∞  
performance index is smaller than γ .  

Theorem 1: For all  0,1, , 2 1mL = −K , given upper bound 
0Lγ > , if there symmetric positive definite matrices LP  and 

positive scalars 1ε  , 2ε  and 3ε  satisfying  
1

1
1

3
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0
0
0
0
0

T T
L L L L a a

T T
L L g g

L
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a L
T
b L

b L
T
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−

−

⎡ + + + + + ∗
⎢ − +⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 

1

1
1

1
2

2
1

3

                              0 <0
0 0
0 0 0
0 0 0 0

R
I

I
I

I

ε
ε

ε
ε

−

−

−

−

∗ ∗ ∗ ∗ ∗ ⎤
⎥∗ ∗ ∗ ∗ ∗ ⎥
⎥− ∗ ∗ ∗ ∗
⎥− ∗ ∗ ∗ ⎥
⎥− ∗ ∗
⎥

− ∗ ⎥
⎥− ⎦

(14) 

Then, the controller (9) robustly stabilizes the uncertain 
closed-loop augmented system (10).  

Proof: According to the Schur complement theorem [11], 
the inequality (14) is equivalent to 

0 () 0 0 0 () 0 0 0 () 0 0
0 0 0

0
    0 () 0 0 0 () 0 0 () 0 0 0

0 0 0

T
L a a L b

T T
L a a L b L

T T
L b L g

T T T T T
b L g g g L

PE F PE
N t F t EP t F K

K F PE
t EP t F F t EP

ω

ω

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎡ ⎤+ Δ + Δ + Δ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤+ Δ + Δ + Δ <⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

                        

                                                                                        (15) 
where LN  is the left-hand side of the formulation (13). Then 
the following expression is derived by Lemma 1: 

1

{[ ( ) ] [ ( ) ] }

{[ ( ) ] [ ( ) ] }
[ ( ) ] 0

 0

T
a a b b L L

L a a b b L
T

g g L L

L

A E t F B E t F K P
P A E t F B E t F K Q

G E t F P I
K R

ω
ω

γ
ω −

⎡ ⎤+ Δ + + Δ
∗ ∗⎢ ⎥

+ + Δ + + Δ +⎢ ⎥
⎢ ⎥+ Δ − ∗ <⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                                                                                        (16)                                    
Based on Lemma 2, the controller (9) robustly stabilizes the 

uncertain closed-loop augmented system (10). This completes 
the proof.                                                                            ■                                                                                                     
   Remark 1: Theorem 1 gives a sufficient condition that 
guarantees that the uncertain closed-loop augmented system is 

robustly stable and satisfies the /LQ H∞  performance index. 
Unfortunately, the matrix inequalities in Theorem 1 are not 
jointly convex. To solve this difficulty, some important 
auxiliary variables are introduced into the following theorem, 
which separates the Lyapunov function variables from the 
controller gain variable.   

Theorem 2: For all 0,1, , 2 1mL = −K , given upper bounds 
0Lγ > , initial matrices 0K  and 0LP , if there exist symmetric 

positive definite matrices LP  and positive scalars 1ε  , 2ε  and 

3ε  satisfying 
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2
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0
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                                                                                          (17) 
where 

1
1

1 1 1
0 0 0 0                 

T T
L L L a a

T T T
L L L L L L

Z A P P A Q F F
P BR B P P BR B P P BR B P

ε −

− − −

= + + +

− − +
 

Then, the controller (9) robustly stabilizes the uncertain 
closed-loop augmented system (10). 

Proof: According to the Schur complement theorem [11], 
the inequality (17) is equivalent to 

                  
0 0

1

( ) ( )
0 0 0
0 0

T

L L L L

L

P P B P P B
M R−

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥+ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

             (18) 

where LM  is the left-hand side of the formulation (14). Since 
R is positive definite, it is obvious that (14) is satisfied if (18) 
is satisfied. The subsequent proof can be readily obtained via 
Theorem 1, and so is omitted here.                                     ■                   

To reduce the conservativeness of Theorem 2, the 
following iterative algorithm is developed to achieve an 
optimal solution. 

Algorithm 1: 
Step 1: Select proper upper bound 0Lγ > , minimize 

trace(Y), subject to 0X >  and 
1
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T T T T
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−
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R
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I
I

I

ε
ε

ε
ε

−

−

−

−

∗ ∗ ∗ ∗ ∗ ⎤
⎥∗ ∗ ∗ ∗ ∗ ⎥
⎥− ∗ ∗ ∗ ∗
⎥− ∗ ∗ ∗ ⎥
⎥− ∗ ∗
⎥

− ∗ ⎥
⎥− ⎦

(19) 

                                   0
Y I
I X
⎡ ⎤

>⎢ ⎥
⎣ ⎦

                                (20) 

Then we obtain initial controller gain 0 1
0 0opt opt optK V X −= .  

Step 2: Minimize[ ( )]Ltrace P  subject to 0LP >  and (14) 

with 0
optK K= , then we obtain 0

LoptP . 
Step 3: Set iterative initial Lyapunov function matrices 
0 0

L LoptP P= . At the ith iteration, let 1i i
L LP P −= , 1i i

opt optK K −=  and 

minimize[trace( )]i
LP  subject to 0i

LP >  and (17). 

Step 4: If 1
0 0( )i itrace P P λ− − <  where λ  is a given error 

tolerance, the calculated i
optK K=  is the optimal controller. 

Otherwise, let 1i i= +  and return to Step 3.   
    Remark 2: The conservativeness of Theorem 2 lies in the 
difference between 0L LP P− . Algorithm 1 tries to find a 
sequence of the auxiliary variables such that the proposed 
difference is closed to zero. With this algorithm, the 
conservativeness can be reduced effectively. 

IV. CONTROL RE-ALLOCATION DESIGN 
Consider an uncertain closed-loop augmented system as: 

                       ' ' '( ) ( ) ( ) ( )ux t A x t B u t G v t= + +&                    (21) 

where ' ( )a aA A E t F= + Δ , ' ( )u b bB B E t F= + Δ  and ' ( )g gG G E t F= + Δ . 
Suppose that the control actuators suffer partial loss or total 

outage of their effectiveness. The post-fault model of the 
system (21) is given by 
                     ' ' '( ) ( ) ( ) ( )fux t A x t B u t G v t= + +&                    (22) 

where ' '
fu u LB B ω= . 

Assumption 2: Rank '
1uB k m= <  and rank '

2fuB k m= < , 

i.e., '
uB  and '

fuB  do not have full column rank.  

Based on Assumption 2, '
uB  and '

fuB  can be factorized as 
' ' '
u qB B B=  and ' ' '

fu fqB B B= , respectively [8]. Then, the 
alternative system representations of (21) and (22) are given 
by 
                       ' ' '( ) ( ) ( ) ( )qx t A x t B q t G v t= + +&                    (23) 
and 
                      ' ' '( ) ( ) ( ) ( )fq fx t A x t B q t G v t= + +&                  (24) 

where '( ) ( )q t B u t=  and '( ) ( )f fq t B u t= . ( )q t  and ( )fq t  are 
regarded as virtual control inputs corresponding to physical 
control inputs u(t) and ( )fu t . To modern fighter aircraft, the 

number of physical control inputs is greater than the number 
of virtual control inputs [12]. Hence, the required control 
moments can be redistributed to remaining healthy control 
surfaces by means of control re-allocation.  

It is assumed that a baseline control input ( )u t for the 
healthy aircraft has been calculated based on the method 
proposed in Section III. It should be noted that the virtual 
control input ( )q t  is determined by ( )u t . Choose an 

appropriate output ' ( ) ( )zz t C x t=  to be used in the control 

re-allocation, then the actual rate of ' ( )z t  is presented as: 

        ' ' ' '( ) ( ) ( ) ( ) ( )z z z q zz t C x t C A x t C B q t C G v t= = + +&&       (25) 

    The choice of ' ( )z t  is not unique but a natural choice is 
' ( ) [   ]Tz t p q r=  where p, q and r describe the roll rate, pitch 

rate and yaw rate, respectively [7]. 
   Suppose the desired virtual control input is ( )fq t  in 
post-fault system dynamic equations. Then the desired rate of 

' ( )z t  would be  

     ' ' ' '( ) ( ) ( ) ( ) ( )f z z z fq f zz t C x t C A x t C B q t C G v t= = + +&&      (26) 

     Subsequently, we seek the desired control input ( )fu t  that 
makes the right-hand side of Eq. (27) as close as possible to 
that of Eq. (28), namely,  
                           ' '( ) ( )z fq f z qC B q t C B q t≈                         (27) 

    Thus the actual rate of ' ( )z t  will approximate to the desired 

rate of ' ( )fz t , i.e. ' '( ) ( )fz t z t≈& & . Then, the control input 

( )fu t  can be determined by minimization of the following 
quadratic function: 

' ' ' ' '1min {[ ( ) ( )] [ ( ) ( )]}
2

T T
fq f q z z fq f qq

J B q t B q t C Q C B q t B q t= − − (28) 

subject to 
                            min max( ) ( ) ( )u t u t u t≤ ≤                         (29) 

where 'Q  is a positive definite matrix of proper dimension. 

min ( )u t  and max ( )u t  are the lower and upper bounds of the 
control surface positions, respectively. An explicit solution 
can be obtained as follows from minimization of the above 
quadratic function in (29): 

  ' ' ' 1 ' ' ' '( ) [( ) ( )] ( ) ( )T T
f z fq z fq z fq z qu t C B Q C B C B Q C B B u t−=  (30) 

The above control re-allocation method is generally 
referred to as PIM. However, control constraint (29) is not 
considered in early works of PIM. To handle the control 
constraint, a CGI algorithm [12] has been proposed for control 
re-allocation as follows. 

Algorithm 2: 
Step 1: An initial control law is computed by Eq. (30) 

without considering control constraint (29). If none of the 
elements in the solution is saturated, then stop and implement 
this control law.  

Step 2: If any of the elements in the solution exceeds the 
position limitation of actuators, set that control channel at the 
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saturation position, and the effects at saturation are subtracted 
from the desired moment. Then, the rest of the desired 
moment are redistributed again to obtain a new control law by 
PIM. 

Step 3: If none of the elements in the redesigned control law 
is saturated, the calculated control law is the optimal solution 
of control re-allocation. Otherwise, return to Step 2. 

Remark 3: Using the above CGI algorithm, the moment 
demand of the saturated control surfaces is redistributed to the 
remaining ones. This function is very helpful to FTCS since 
the saturation of control surfaces is a prevalent problem in 
post-fault systems.   

V. ADMIRE SIMULATIONS 
In this section, a simulation of the ADMIRE model is used 

to test the effectiveness of the new FTCS and investigate the 
effects of baseline controller to the performance of control 
re-allocation on the overall system. 

The ADMIRE model represents a single seated, single 
engine small fighter aircraft with a delta-canard configuration. 
The linear aircraft model has been obtained at Mach 0.22 and 
altitude 3000 m [13]. The state is ( ) [     ]Tx t p q rα β=  and the 
tracking signals are ,  ,  pα β , where α  is angle of attack 
(deg), β  is sideslip angle (deg), p is roll rate (deg/s), q is 
pitch rate (deg/s), r is yaw rate (deg/s). The control surface 
deflection is     ( ) [   ]T

roe rie lie loerc lc ru t δ δ δ δ δ δ δ= , which 
describes the deflections (deg) of right and left canards, right 
outer and inner elevons, left inner and outer elevons, and 
rudder, respectively. For the considered flight case 

0.5432 0.0137 0 0.9778 0
0 0.1179 0.2215 0 0.9661

,0 10.5130 0.9967 0 0.6176
2.6221 0.0030 0 0.5057 0

0 0.7075 0.0939 0 0.2127
0.0035 0.0035 0.0318 0.0548 0.0548 0.0318 0.0004
0.0063 0.0063 0.0024 0.00

A

B

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎣ ⎦

− − − −
−

=
95 0.0095 0.0024 0.0287

,0.6013 0.6013 2.2849 1.9574 1.9574 2.2849 1.4871
0.8266 0.8266 0.4628 0.8107 0.8107 0.4628 0.0024
0.2615 0.2615 0.0944 0.1861 0.1861 0.0944 0.8823

0.1254 0 0 0.0068 0 .TG ⎡ ⎤⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

=

 

We introduce seven kinds of actuator faults into the design 
procedure of the baseline controller. Considering the worst 
situation for actuator failures, assume that the actuator is total 
outage, namely, the effectiveness factor of the actuator 
decreases to zero. Thus, every fault holds the following 
condition: one effectiveness factor 0Liω =  and other six 
effectiveness factors ,  1  1,  2 , 7,Lj j j iω = = ≠L .  

Select the following proper weighting matrices 
Q = diag[20, 20, 20, 10, 10, 4, 1, 1], 
R = diag[10, 10, 10, 10, 10, 10, 10]. 

The baseline controller gain is obtained by using Algorithm 1:  

1.2084 4.3835 0.5557 2.4480 2.1149 0.0710 1.3426 3.0637
1.3493 4.1083 0.7749 2.6652 1.6431 0.3157 1.4679 3.2651
0.5363 1.1907 1.1422 0.9573 0.3473 0.6352 0.5159 0.1831
0.9175 0.6898 0.9027 1.7684 1.2451 0.442

LMIK =

− − − −
− − − − −

− − − −
− − − 1 0.8598 1.1042

0.6364 0.8931 0.7320 1.2975 1.2783 0.3978 0.5934 1.0978
0.2525 1.0786 0.9847 0.4206 0.2113 0.6539 0.2695 0.1967
0.0075 5.6239 0.8037 0.0142 3.8442 0.0890 0.0037 3.8532

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
− − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

 

Then we choose [ ]' ' ' '
5 3 3 3,    0 T

u q qB B B B I× ×= = , where 'B  
includes the last three rows of B. The reconfiguration control 
law ( )fu t  with the re-allocation can be achieved via the 
approach described in Section IV. For comparison purposes, 
the standard LQR controller LQRK  is also obtained. To be 
close to the real system, we carry out our simulations by using 
the original nonlinear aircraft model of ADMIRE. In the 
simulations, we set 40% parameter uncertainties in the A 
matrix and 20% parameter uncertainties in the B and G 
matrices, and a vertical gust disturbance of 6 m/s.  

0 50 100
11
13
15
17
19

α 
(d

eg
)

time(s)
0 50 100

-0.5

0.5

1.5

2.5

β 
(d

eg
)

time(s)
0 50 100

-4
-2
0
2
4

p 
(d

eg
/s

)

time(s)
0 50 100

-1.5

-0.5

0.5

1.5

δr
c 

(d
eg

)

time(s)

0 50 100
-14
-10

-6
-2
2

δl
c 

(d
eg

)

time(s)
0 50 100

-2
0
2
4
6

δr
oe

 (d
eg

)

time(s)
0 50 100

4

6

8

10

δr
ie

 (d
eg

)

time(s)
0 50 100

-2

2

6

10

δl
ie

 (d
eg

)

time(s)

0 50 100
4

13

21

30

δl
oe

 (d
eg

)

time(s)
0 50 100

-6
-4
-2
0
2

δr
 (d

eg
)

time(s)

 

 
LQR
LMI
LQR+CA
LMI+CA

 
Fig. 2.  Responses of output and control surface deflections to failures of 
right canard and left inner elevon. 
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Fig. 3.  Responses of output and control surface deflections to failures of 
right and left canards and left inner elevon. 
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Fig. 2 and Fig. 3 show the responses of the outputs and 
deflections of the control surfaces. In Fig. 2, when the 
actuators of the right canard and the left inner elevon are total 
outage at 40 seconds, the performance of two controllers 
without control re-allocation (LQR and LMI controllers) 
becomes unacceptable. Still, the LMI controller performs 
better than the LQR controller. The LQRCA controller (LQR 
controllers with control re-allocation) tracks the reference 
signal rapidly, but the steady-state tracking error is relatively 
large. It is obvious that the LMICA controller (LMI 
controllers with control re-allocation) results in superior 
system performance than the other controllers. In Fig. 3, when 
the actuators of the right and left canards and left inner elevon 
are total outage, the LQR and LMI controllers cannot stabilize 
the system. The LMICA and LQRCA controllers suffer from 
slight performance degradation. Therefore, as the number of 
actuator faults increases, the FTCS including the control 
re-allocation scheme yields better performance than the other 
systems. 

In the above simulations, we assume that the actuator faults 
can be detected quickly, and set 40.5 seconds as threshold of 
control re-allocation. Unfortunately, we need more time to 
obtain accurate parameter estimates in a real system. Fig. 4 
shows the responses of the desired output with the threshold 
increasing from 40.5 seconds to 41.5 seconds, and to 42.5 
seconds. When the threshold is set at 40.5 seconds, we notice 
that the tracking performance of LQRCA controller is similar 
to that of LMICA controller from Fig. 4 (a). In Fig. 4 (b) and 4 
(c), as threshold delays to 41.5 seconds and 42.5 seconds, the 
LQRCA controller yields unacceptable peak value and 
overshoot, and cannot stabilize the system. The LMICA 
controller just suffers from slight performance degradation. 
Consequently, the LMICA controller provides sufficient 
robustness so that the FDD has enough time to effectively 
perform. 
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Fig. 4.  Responses of output to different thresholds, where dotted line 
represents LQRCA controller and solid line represents LMICA controller. 

VI. CONCLUSION 
This paper proposed a novel FTCS which combines robust 

fault-tolerant controller and on-line control re-allocation for a 
class of uncertain systems. The robust fault-tolerant baseline 
controller stabilizes the uncertain system in both normal and 
fault cases, furthermore, provides sufficient robustness to 
achieve more time for FDD in the presence of actuator 
failures. The on-line control re-allocation scheme handles 
actuator failures directly and rapidly without requiring 
reconfiguration of the baseline controller. The simulation 
results of the nonlinear ADMIRE model demonstrate the 
advantages of the proposed FTCS.  
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