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Abstract

We consider linear systems under feedback. We restrict our

attention to non-classical information structures for which the

optimal control policies can be found via a convex optimiza-

tion problem. The first step to analytically solving such con-

trol problems is performing a spectral factorization to solve

the optimality condition. In this paper we discuss two classes

of information structures, for which such spectral factoriza-

tions can be found. In the first structure, the only constraint

is that the controller can remember previous inputs that it has

received. In the second structure, we consider a controller

which is allowed to forget previous observations.

1 Introduction

The goal of control engineers has always been to find control

policies of feedback systems which produce system behav-

ior that is guaranteed optimal or suboptimal, in some sense.

The natural starting point is to consider linear, time-invariant

systems with full information available to the controller. Un-

der specific assumptions about the objective function that we

try to minimize and the statistics of the exogenous distur-

bance, this problem becomes the classical LQG problem (lin-

ear dynamics, quadratic cost, Gaussian noise), which has been

solved for quite some time.

In 1968, Witsenhausen showed that a very simple system,

which only differed from the classical system by a slight

change to the information structure, could be intractable when

trying to find the optimal control policy [9]. Since then, con-

trol theorists have tried to uncover which feedback structures

could be optimally solved. Early on, Ho and Chu [4] were

able to show that information structures which they called par-

tially nested produced optimal linear control policies for the

dynamic team problem. Within that framework, some specific

problems have been solved [6, 11, 2].

More recently, it was shown that feedback systems whose

information structure was quadratically invariant also pro-

duced tractable solutions which could be solved via convex

optimization [8]. However, convex optimization loses much
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of the intuition associated with the control policies (separa-

tion, etc.). Thus, we desire state-space solutions to these prob-

lems.

In the classical, full information case, a number of key steps

are made in the process of finding the optimal solution. In one

particular method, the first step is re-expressing the objective

function as a convex program. The next step is to analytically

solve the resulting optimality condition via a spectral factor-

ization. In the classical case, this spectral factorization has

been previously established [5]. In this paper we consider two

additional classes of information structures, for which a spec-

tral factorization also exists.

When studying distributed controllers, it is important to

note the connection between centralized controllers (a single

controller), and distributed controllers (multiple, independent

controllers). For instance, a fully decentralized structure could

be represented as either multiple, independent decision mak-

ers, or equivalently as a single controller that has a particular

block diagonal structure. Thus, a distributed control problem

can be expressed as a single controller with a particular struc-

ture imposed upon it. We take the latter point of view in this

paper.

This paper is organized as follows. In Section 2, we make

use of the Youla parametrization. The dual optimization prob-

lem and resulting optimality condition that we will attempt to

solve is discussed in Section 3. In order to introduce the reader

to our method of solution, Section 4 discusses two important

factorizations which can be used to solve the classical LQG

problem. In Section 5, we will extend these factorizations to

what has been termed a full information sharing structure [6].

In Section 6, we apply our method to a distributed control

problem which, to our knowledge, has not been previously

solved. Lastly, Section 7 provides an example of this factor-

ization method for a simple distributed control problem.

We consider the following linear dynamical state space sys-

tem on the finite horizon t ∈ [0, N − 1]:

x(t + 1) = Atx(t) + Btu(t) + w(t)

y(t) = Ctx(t) + v(t) (1)

z(t) = Vtx(t) + Wtu(t)

where x(t) ∈ R
n is the system state which can be affected

by the input u(t) ∈ R
m and process noise w(t) ∈ R

n. The

outputs of the system are the observations y(t) ∈ R
p which

have been corrupted by sensor noise v(t) ∈ R
p, and z(t)

which is a vector that we would like minimize in some sense.
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As usual, x(0), w(t), v(t) are IID Gaussian random variables

with zero mean and identity covariances. For convenience, we

will also assume that V T
t Vt = Qt ≥ 0, WT

t Wt = Rt > 0,

and V T
t Wt = 0.

We define an information structure as the information avail-

able for making decision u(t).

Yt(y(0), . . . , y(t)) ⊆ {y(0), . . . , y(t)} (2)

Ut(u(0), . . . , u(t − 1)) ⊆ {u(0), . . . , u(t − 1)} (3)

In other words, the information (Yt, Ut) available to the con-

troller at time t is a subset of all observations and decisions

previously made. In the classical, full information case, we

have that Yt and Ut are identity functions. Using the notation

ζ = (x(0), w(0), . . . , v(0), . . .), u = (u(0), . . . , u(N − 1)),
and similarly for y and z, this system can be represented by

the block diagram in Figure 1. As a result, our controller can

be written as the matrix K which maps y 7→ u, where the

information structure for the controller is represented by spar-

sity constraints on K . Our goal is to choose such a K which

minimizes the expected 2-norm of z.

P11P12

P21P22

Ky u

ζz

Figure 1: General Feedback System

2 Youla Parametrization

We are interested in the map of ζ 7→ z. We define Z to be

Z =





0
In 0

. . .
. . .

In 0





with dimensions appropriate for the context in which it is

used. We let A = diag(A0, A1, . . .), and similarly construct

the block diagonal matrices B, C, Q, R, V , and W . We can

then write the map of ζ 7→ z as

z = (P11 + P12(I − KP22)
−1KP21)ζ

where, using our notation above, the P matrices are

P11 =
[
V (I − ZA)−1 0(n+m)N×pN

]
(4)

P12 = W + V (I − ZA)−1ZB (5)

P21 =
[
C(I − ZA)−1 IpN

]
(6)

P22 = C(I − ZA)−1ZB (7)

Using the above definitions, we can finally recast our prob-

lem as an optimization problem in terms of K .

min ‖(P11 + P12(I − KP22)
−1KP21)‖

2
F

s.t. K ∈ S

where S represents the information structure of the problem

as a sparsity constraint for our matrix K . For instance, in the

classical, full information case, we have S = {K | Kij =
0 if i < j}. We will also define the complementary

subspace S⊥, which for the classical case would be S⊥ =
{F | Fij = 0 if i ≥ j}.

For more general information structures S, very few so-

lutions to this problem are known, since this formulation is

not convex. However, there are a class of information struc-

tures, those which are quadratically invariant [8], for which

the above problem can be re-expressed as a convex optimiza-

tion problem. We will restrict our discussion now to informa-

tion structures which satisfy this property.

Let Q̂ = (I −KP22)
−1K . By making use of the quadratic

invariance property of our information structure, we can make

this simple substitution, which allows us to solve a convex op-

timization problem in terms of Q̂. Using this change of vari-

ables, we arrive at the Youla parametrization of the problem

which we would like to solve analytically.

min ‖(P11 + P12Q̂P21)‖
2
F (8)

s.t. Q̂ ∈ S

3 Lagrange Dual Problem

In order to analytically solve the optimization problem in (8),

we make use of duality.

Lemma 1. The optimal Q̂ in (8) satisfies

−
1

2
Λ = PT

12P11P
T
21 + PT

12P12Q̂P21P
T
21 (9)

for some Λ ∈ S⊥.

Proof. Since our problem has a quadratic cost function and

linear constraints, we know that strong duality will hold for

this problem [1]. Thus, solving the dual problem will produce

the optimal solution for our primal problem. To solve the dual

problem, we must optimize the Lagrangian function over Q̂.

L = ‖(P11 + P12Q̂P21)‖
2
F +

∑

i,j

ΛijQ̂ij

where Λ ∈ S⊥.

Taking the derivative of this expression with respect to the

non-zero components of Q̂, we immediately arrive at the op-

timality condition in (9), where Λ ∈ S⊥ and Q̂ ∈ S.

Observing the optimality condition in (9), we notice that

Q̂ and Λ have complimentary structures. Our goal is then to

efficiently solve this expression for Q̂ independently of Λ.

We note that both sides of (9) must be in S⊥, since Λ ∈ S⊥.

Thus, our goal in solving for Q̂ will be to simplify (9) while

preserving the complementary structures of Q̂ and Λ. To this

end, we will look for factorizations of PT
12P12 and P21P

T
21

which preserve these structures. We will now show, for two

classes of non-classical information structures, that such fac-

torizations exist.
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4 Two Useful Factorizations

Before proceeding to our special information structures, we

remind the reader of two well-known factorizations for gen-

eral symmetric, positive definite matrices. Namely, for such a

matrix A, there exist lower triangular matrices L1, L2 and di-

agonal matrices D1, D2, of appropriate dimensions, such that

A = LT
1 D1L1 = L2D2L

T
2 .

For our case, where we are factorizing PT
12P12 and P21P

T
21,

these factorizations can be found via the Riccati recursion.

Lemma 2. Suppose there exists a matrix P ∈ R
nN×nN

which satisfies the Riccati recursion

P = Q + AT ZT PZA

− AT ZT PZB(R + BT ZT PZB)−1BT ZT PZA (10)

then PT
12P12 can be factorized into LT DL where L ∈

R
mN×mN is a block lower triangular matrix given by

L = I + (R + BT ZT PZB)−1BT ZT PZA(I − ZA)−1ZB

and D ∈ R
mN×mN is a block diagonal matrix given by

D = R + BT ZT PZB

Proof. This result follows directly from algebraic manip-

ulation of (10) and is omitted here due to space constraints.

For the factorization of P21P
T
21, the development parallels

that of Lemma 2. We will simply state the factorization here.

Lemma 3. Suppose there exists a matrix S ∈ R
nN×nN which

satisfies the Riccati recursion

S = I + ZASAT ZT

− ZASCT (I + CSCT )−1CSAT ZT (11)

then P21P
T
21 can be factorized into LDLT where L ∈

R
pN×pN is a block lower triangular matrix given by

L = I + C(I − ZA)−1ZASCT (I + CSCT )−1

and D ∈ R
pN×pN is a block diagonal matrix given by

D = I + CSCT

5 Vertical/Temporal Skyline Case

We now look at what we call the temporal, or vertical, skyline

information structure, defined as follows.

Definition 4. Consider the set of N integers I1, . . . , IN ,

where Ij satisfies j ≤ Ij ≤ N + 1, for each j = 1, . . . , N .

We say that the controller K has a temporal skyline (TS) infor-

mation structure if at time t it has as its information variables

the observation set Yt = {y(j − 1) | Ij ≤ t + 1}. We define

the set of matrices with TS structure by T S = {K | Kij =
0 if i < Ij}. We also define the complementary structure

T S⊥ = {K | Kij = 0 if i ≥ Ij}.

In simpler terms, the controller can receive any observa-

tion at any time, subject to causality, and remembers the ob-

servations in the future. When we consider our controller

as a matrix K , we see that this TS structure implies that

K ∈ T S . It has been previously shown that in a causal system

the TS structure produces a quadratically invariant controller

[8]. This fact allows the direct use of the previously obtained

optimality condition (9), with the dual variable Λ ∈ T S⊥.

Since T S is clearly a closed subspace, then any A ∈ R
n×n

can be decomposed into B ∈ T S and C ∈ T S⊥ such that

A = B + C. We define ATS = B as the temporal skyline

part of A.

Analogous to the full information case, having established

the optimality condition, we now attempt to solve for Q̂ while

maintaining the complementary TS structure of (9). To this

end, we need to define another sparsity pattern.

Definition 5. We define the set of matrices SA by SA =
{A | Aij = 0 if Aji 6= 0, and Aii = I}. We will

call matrices in SA sparse antisymmetric.

Definition 6. Given I1, . . . , IN , we define the set of matrices

SA(I,Λ) such that A ∈ SA(I,Λ) if and only if A ∈ SA and

Aij = 0 whenever Ii > Ij , or Ii = Ij and i > j.

We similarly define the set of matrices SA(I,Q) such that

A ∈ SA(I,Q) if and only if A ∈ SA and Aij = 0 whenever

Ii < Ij , or Ii = Ij and i < j.

Using this notation, we can solve for the optimal Q̂ matrix

in (9). The result, stated here, will be proved at the end of this

section.

Theorem 7. If S = T S, then the solution of (9) is

Q̂ = −(DCLC)−1(L−T
C PT

12P11P
T
21Û

−1
E )TS(L̂ED̂E)−1

(12)

where PT
12P12 = LT

CDCLC from Lemma 2, and P21P
T
21 =

L̂ED̂EÛE , where L̂E ∈ SA(I,Q), ÛE ∈ SA(I,Λ), and D̂E is

diagonal.

Before proving Theorem 7, we need to show which sets of

matrices preserve the sparsity structure of T S⊥.

Lemma 8. Suppose Λ ∈ T S⊥, A ∈ SA(I,Λ), and U is an

upper triangular matrix. Then, UΛA ∈ T S⊥.

Proof. Looking at the product of UΛA, we have,

(UΛA)ij =
∑

k,m

UikΛkmAmj =
∑

i≤k
k<Im

Im≤Ij

UikΛkmAmj

Looking at the summation, we see that there will be no terms

to sum over whenever i ≥ Ij , meaning that (UΛA)ij = 0

whenever that condition holds. Hence, UΛA ∈ T S⊥.

This lemma is helpful since it is shows that left multipli-

cation by upper triangular matrices preserves the structure of

T S⊥, which is identical to the classical case and will allow
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us to use the factorization from Lemma 2. Moreover, the set

SA(I,Λ) preserves the structure of T S⊥ under right multipli-

cation.

In the same manner as Lemma 8, we can show how to pre-

serve the sparsity structure of Q̂.

Lemma 9. If Q̂ ∈ T S , A ∈ SA(I,Q), and L is a lower

triangular matrix, then LQ̂A ∈ T S .

Proof. This fact can be proven by explicit computation of the

entries of LQ̂A, in the same fashion as Lemma 8.

With Lemmas 8 and 9, the differences between the classic

case and our present TS case become apparent. In our full in-

formation case, we could left and right multiply the optimal-

ity condition by any upper triangular matrices and preserve

the strict upper triangular structure of the optimality condi-

tion. In our present case, we see that left multiplying by an

upper triangular matrix will still work, but right multiplying

will require matrices in SA(I,Λ).

In the classical case, we could show that the inverse of any

upper triangular matrix was another upper triangular matrix.

A similar result holds for matrices in SA(I,Λ).

Lemma 10. Consider the matrix A ∈ SA(I,Λ). There exists a

permutation matrix J such that JT AJ is an upper triangular

matrix.

Proof. The proof follows from the definition of SA(I,Λ) and

is omitted here due to space constraints.

Lemma 11. Suppose A ∈ SA(I,Λ). Then, A−1 ∈ SA(I,Λ).

Proof. Using Lemma 10, we can find the permutation matrix

J such that U = JT AJ is an upper triangular matrix with

identities on the diagonal. Since U and J are invertible, then

A−1 exists. Also, U−1 = JT A−1J is upper triangular which

implies that A−1 ∈ SA(I,Λ).

As a result of these Lemmas, what we have shown is that in

order to solve the optimality condition (9), we need to find a

factorization for P21P
T
21 whose factors are in SA. Fortunately,

the following lemma guarantees the existence of just such a

factorization.

Lemma 12. For any symmetric, positive definite matrix A,

there exist matrices L̂ ∈ SA(I,Q), Û ∈ SA(I,Λ), and a diag-

onal matrix D̂ such that A = L̂D̂Û .

Proof. For the integers I, we can find the permutation matrix

J , as established in Lemma 10. Since we already know that

an LDU factorization exists for any positive definite matrix,

then we have

A = J(LDU)JT = (JLJT )(JDJT )(JUJT ) = L̂D̂Û

where LDU is the LDU factorization for JT AJ . Also, from

Lemma 10, we know that Û = JUJT ∈ SA(I,Λ) and L̂ =
JLJT ∈ SA(I,Q). Lastly, since J is a permutation matrix,

then D̂ = JDJT is also a diagonal matrix.

With Lemma 12, we now have the means to solve this prob-

lem. We simply need to LDU factorize JT P21P
T
21J and then

compute Û = JUJT , L̂ = JLJT , and D̂ = JDJT .

Proof of Theorem 7. Using Lemma 12 for the factorization

of P21P
T
21, the optimality condition (9) becomes

−
1

2
Λ = PT

12P11P
T
21 + LT

CDCLCQ̂L̂ED̂EÛE

By making use of Lemmas 8, 9 and 11, we know that

DCLCQ̂L̂ED̂E ∈ T S and L−T
C ΛÛ−1

E ∈ T S⊥. Hence, we

can rewrite the above expression as

−
1

2
L−T

C ΛÛ−1
E = L−T

C PT
12P11P

T
21Û

−1
E + DCLCQ̂L̂ED̂E

This expression preserves structure of T S⊥. Moreover, the

term affine in our variable Q̂ now has the same TS structure

of Q̂. Thus, we have separated the solution of Q̂ from the

solution of Λ. In other words, if we take the TS part of the

optimality condition, we have

0 = (L−T
C PT

12P11P
T
21Û

−1
E )TS + DCLCQ̂L̂ED̂E

As a result, the solution for the optimal Q̂ in (8) with a TS

sparsity constraint is given by (12).

As a result of Theorem 7, we have performed the first step

in finding an analytic solution for the optimal control policy.

Namely, we have found a spectral factorization which allows

us to solve (9) for Q̂, independently of Λ.

We now turn our attention to a different non-classical in-

formation structure, for which we can find another spectral

factorization.

6 Horizontal/Spatial Skyline Case

In the previous section we extended the results from the clas-

sic information structure to solve the control problem which

had a temporal skyline (TS) information structure. Fortu-

nately, the above analysis can also be utilized for other in-

formation structures. One such information structure is the

horizontal skyline structure which we shall now define in a

manner analogous to our TS structure.

Definition 13. Consider the set of integers J1, . . . ,JN , where

Ji satisfies i ≥ Ji ≥ 0, for each i = 1, . . . , N . We say

that the controller K has a spatial skyline (SS) information

structure if at time t it has as its information variables the

observation set Yt = {y(j) | j + 1 ≤ Jt+1}. We define

the set of matrices with SS structure by SS = {K | Kij =
0 if j > Ji}. We also define the complementary structure

SS⊥ = {K | Kij = 0 if j ≤ Ji}.

When we consider our controller as a matrix K , we see that

this SS structure implies that K ∈ SS . This sparsity struc-

ture is where it gets its alternate name as a horizontal skyline

structure. While the TS and SS structures are functionally

very similar, it is important to note that these two structures

are physically very different. In the TS case, we can think of

460



the system as a single decision maker who receives informa-

tion at arbitrary times but remembers everything he receives.

On the other hand, in the SS case, we are forced to think of the

problem as a multiple player system where each player makes

decisions in turn based on different sets of information.

Since SS is also a closed subspace, then any A ∈ R
n×n

can be decomposed into B ∈ SS and C ∈ SS⊥ such that

A = B + C. We define ASS = B as the spatial skyline part

of the matrix A.

Example 14. Suppose J = (1, 2, 1, 3). Then, at time t =
0, player 0 has {y(0)} available to make decision u(0). At

time t = 1, player 1 has {y(0), y(1)} available for making

decision u(1). However, player 2 only has {y(0)} available

to make decision u(2), while player 3 has {y(0), y(1), y(2)}
available to make decision u(2).

Our first step in analyzing this information structure is to

show that it is quadratically invariant.

Lemma 15. The set SS is quadratically invariant under any

causal plant P .

Proof. In order for the SS structure to be quadratically in-

variant, we must show that

KP22K ∈ SS for all K ∈ SS

To lighten notation, let G = P22 be lower triangular (causal).

Then, we have

(KGK)ij =
∑

k,m

KikGkmKmj =
∑

k≤Ji

m≤k
j≤Jm

KikGkmKmj

Using the fact that m ≥ Jm, by definition, we must have

(KGK)ij = 0 whenever j > Ji. Hence, KGK ∈ SS , so

SS is quadratically invariant under G.

With Lemma 15, we can make use of our previous analysis

to arrive at the same optimality condition (9), where Q̂ ∈ SS
and Λ ∈ SS⊥. Having established the optimality condition,

we now try to solve it as we did in the TS information case,

by maintaining the complementary SS structure of (9) while

solving for Q̂.

Given J1, . . . ,JN , we construct SA(J ,Λ) and SA(J ,Q)

from Definition 6. Similarly to the TS case, these are the sets

of sparse antisymmetric matrices which preserve the sparsity

structure of Λ and Q̂, respectively, under multiplication.

In a completely analogous manner to the TS case, we will

state the following lemmas.

Lemma 16. Suppose Λ ∈ SS⊥, A ∈ SA(J ,Λ), and U is an

upper triangular matrix. Then, AΛU ∈ SS⊥.

Lemma 17. For any symmetric, positive definite matrix A and

integers J1, . . . ,JN , there exist matrices L̂ ∈ SA(J ,Q), Û ∈
SA(J ,Λ), and a diagonal matrix D̂ such that A = ÛD̂L̂.

The above lemmas can be proved in the same manner as our

analysis in the previous section. Thus, we see that for the SS

case we simply need to perform the same factorizations that

we did in the TS case, just for opposite sides of Q̂ in (9).
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(a) Spatial Skyline Structure
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(b) Sparsity of SA(J ,Q)

Figure 2: Sparsity patterns

Theorem 18. If S = SS , then the solution of (9) is

Q̂ = −(D̂CL̂C)−1(Û−1
C PT

12P11P
T
21L

−T
E )SS(LEDE)−1

(13)

where P21P
T
21 = LEDELT

E from Lemma 3, and PT
12P12 =

ÛED̂EL̂E from Lemma 17.

Proof. The proof here parallels the proof of Theorem 7. The

only difference, as noted above, is that the sparse antisym-

metric factorization is performed on PT
12P12 here instead, and

P21P
T
21 has the standard LDLT factorization.

7 Spatial Skyline Example

To better illustrate the factorization methods described above,

we provide an example of the horizontal skyline structure.

As noted in Section 6, this structure should be viewed a

distributed information structure since some decision makers

may have less information than previous decision makers.

To highlight this fact, let us consider a type of soldier-

general problem. We have two decision makers: a soldier

who is on the front lines receiving observations in real time,

and a general who receives observations from the soldier but

with a fixed communication delay. For simplicity we will as-

sume that they take turns making decisions, though any se-

quence of decisions can be handled by our framework. The

result of such an information pattern is a SS structure, which

might look something like Figure 2(a). In other words, using

our notation from Section 6, we represent the controller sub-

space SS by the set of matrices with the sparsity structure in

Figure 2(a).

We consider the system (1), when the system matrices

are time-invariant, so that A = diag(A0, A0, . . .), and sim-

ilarly for R, Q, B. From Lemma 16, we know that we need

a sparse antisymmetric factorization for PT
12P12 in order to

solve (9). For the structure in Figure 2(a), the corresponding

set SA(J ,Q) can be represented by the set of sparse antisym-

metric matrices which have structure of Figure 2(b).

Notice that if we group the above matrix into 2x2 blocks,
that this courser block structure is lower triangular with the
blocks on the diagonal being upper triangular. This hints at
the recursion needed to perform the factorization. Namely,
we must first perform a UDL factorization of the form

P
T
12P12 =




I2 U12 U13

I2 U23

I2








D1

D2

D3








I2

L21 I2

L31 L32 I2
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where we use I2 to denote the identity matrix for the courser

2x2 blocks. With this factorization, we now perform an LDU

factorization on the diagonal elements themselves, so Di =
UT

i DiiUi, where Dii is diagonal and

Ui =

[
I1 Ui,12

I1

]
(14)

where I1 represents the identity matrix on the finer scale.

With these two factorizations, it is immediately apparent

that we can express PT
12P12 as LT DL, where D is diagonal

and

L =




U1

U2L21 U2

U3L31 U3L32 U3





It is clear that L ∈ SA(J ,Q), so we have found the factoriza-

tion required to solve this problem.

Let us now look at these factorizations in detail. For the

course UDL factorization, we define the matrices

M0 =

[
0 A0

0 A2
0

]
L0 =

[
I1

A0 I1

]

and let M = diag(M0, M0, . . .) and L = diag(L0, L0, . . .).
Similar to I2, we define Z2 as the 2x2 block analog of Z .

Then, we can write

PT
12P12 = R + LT ZT

2 (I − Z2M)−T Q(I − Z2M)−1Z2L

With this construction, we can use the result from Lemma 2

to write PT
12P12 = LT

CDCLC , where

LC = I + K(I − Z2M)−1Z2L

K = (R + LT ZT
2 PZ2L)−1LT ZT

2 PZ2M

and DC ∈ R
mN×mN is a block diagonal matrix given by

DC = R + LT ZT
2 PZ2L

Here, P satisfies the Riccati recursion

P = Q + MT ZT
2 PZ2M − MT ZT

2 PZ2LK

Since P = diag(P0, P1, . . .) and Pi = diag(Q0, Pii), for

the second factorization of each diagonal element, we have

Di = R + LT
0 PiL0 = UT

i diag(N1, N2)Ui

with Ui given in (14) and

Ui,12 = (R0 + BT
0 Q0B0 + BT

0 A0PiiA0B0)
−1BT

0 AT
0 PiiB0

and

N1 = R0 + BT
0 Q0B0 + BT

0 A0PiiA0B0

N2 = R0 + BT
0 PiiB0 − BT

0 PiiA0B0Ui,12

We end our example here, having now performed the fac-

torization needed to solve (9). While we chose a rather simple

example, it highlights one of the important aspects of these

types of problems; namely, diagonal elements in the factor-

ization which are a result of two Riccati recursions. In the

classical case, these diagonal elements satisfy the single Ric-

cati recursion (10). However, we see a need to perform two

Riccati recursions here: one on a course partitioning of the

system matrices, and another on the finer scale. These simul-

taneous Riccati recursions are something we are not aware of

in the literature to date, and might have implications in other

control problems.

8 Conclusion

We have considered a general feedback system with two non-

classical information feedback structures. Using the quadratic

invariance property of each information structure, we first ex-

pressed each system as a convex optimization problem. These

optimization problems could then be solved via a spectral fac-

torization approach, whereby we could preserve the structure

of the optimality condition while simultaneously solving for

the optimal policy. In the classical information case, these

factorizations took the form of upper and lower triangular ma-

trices. In the temporal skyline case, we showed the need for

a special sparse antisymmetric factorization for the estima-

tor side of the equation. Conversely, for the spatial skyline

case, the sparse antisymmetric factorization was required for

the controller side. We also provided an example to illustrate

this factorization method. Using these factorizations, we were

then able to partition the optimality condition and solve for the

optimal policy independently of the Lagrange multipliers.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-

bridge University Press, 2004.

[2] G. Casalino, F. Davoli, R. Minciardi, P. P. Puliafito, and

R. Zoppoli. Partially nested information structures with a

common past. IEEE Transactions on Automatic Control,

29(9):846–850, 1984.

[3] G. Golub and C. Van Loan. Matrix Computations. The Johns

Hopkins University Press, 1996.

[4] Y-C. Ho and K. C. Chu. Team decision theory and information

structures in optimal control problems – Part I. IEEE Trans-

actions on Automatic Control, 17(1):15–22, 1972.

[5] B.P. Molinari. The stabilizing solution of the discrete alge-

braic riccati equation. IEEE Transactions on Automatic Con-

trol, pages 396–399, 1975.

[6] Jr. N. Sandell and M. Athans. Solution of some nonclassical

lqg stochastic decision problems. IEEE Transactions on Auto-

matic Control, 19(2):108–116, 1974.

[7] R. Radner. Team decision problems. Annals of mathematical

statistics, 33:857–881, 1962.

[8] M. Rotkowitz and S. Lall. Decentralized control information

structures preserved under feedback. Proceedings of the IEEE

Conference on Decision and Control, pages 569–575, 2002.

[9] H. S. Witsenhausen. A counterexample in stochastic optimum

control. SIAM Journal of Control, 6(1):131–147, 1968.

[10] H. S. Witsenhausen. Separation of estimation and control for

discrete time systems. Proceedings of the IEEE, 59(11):1557–

1566, 1971.

[11] T. Yoshikawa. Dynamic programming approach to decentral-

ized stochastic control problems. IEEE Transactions on Auto-

matic Control, pages 796–797, 1975.

462


