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 Abstract — Classical model-based control strategies 
assume a single disturbance model. In practice, the type of 
disturbance is often unknown, can change with time, or 
multiple different disturbance types can occur 
simultaneously. In this paper a multiple model predictive 
control strategy is developed to handle different 
disturbances, including multiple disturbances occurring 
simultaneously. A detailed discussion of disturbance model 
bank generation, state estimation and disturbance model 
weighting is provided, and an unconstrained multiple 
model predictive control solution is formulated. Simulation 
results demonstrate successful estimation and control of 
single and multiple simultaneous disturbances. 

1.  Introduction
Model predictive control (MPC) techniques use models to 
predict plant responses to input signals propagated into the 
future, allowing for optimal calculation of control actions.  
One early development and implementation of MPC was 
based on step response models and known as dynamic 
matrix control (DMC; Cutler and Ramaker, 1980). A 
common criticism of DMC was the poor disturbance 
rejection to step input disturbances (Shinskey, 2001). This 
limitation was considered by Lundstrom et al. (1995), who 
developed an observer-based formulation for improved 
disturbance rejection. Muske and Badgwell (2002) present 
a general formulation that handles step disturbances 
entering the system at the output or input.  Conditions that 
guarantee detectability and offset-free control for the 
augmented system are derived. Pannocchia and Rawlings 
(2003) derive conditions that guarantee offset-free control 
of non-square systems with more measured outputs than 
manipulated inputs.  

While the importance of disturbance modeling and 
estimation in model predictive control is well-known, 
existing strategies are designed around a single disturbance 
model.  For systems where more than one type of 
disturbance is likely to affect the system, a single fixed 
disturbance model is not sufficient to adequately handle 
disturbances that can range from steps to ramps to periodic 
behavior. 

The contribution of this paper is the development and 
formulation of a multiple model disturbance estimation and 
control strategy designed to identify, estimate and reject 
active disturbances present in a system operating at steady 
state, thereby controlling the system in the presence of a 

range of possible disturbances.  Previous multiple model-
based approaches have generally focused on handling 
multiple operating conditions. Athans et al. (1977) develop 
a multiple model adaptive control (MMAC) strategy to 
control aircraft under different flight conditions. Kothare et 
al. (2000) use a linear parameter varying (LPV) strategy to 
regulate a nuclear steam generator over a wide range of 
loads. The monograph edited by Murray-Smith and 
Johanson (1997) has chapters on a number of different 
multiple model methods for control. Our previous work 
has focused on the control of nonlinear processes using a 
multiple model predictive control (MMPC) approach; for 
example, Aufderheide and Bequette (2003) develop a 
DMC-based MMPC algorithm. Kuure-Kinsey and 
Bequette (2007) develop a state space and state-estimation 
based MMPC strategy to avoid the limitations imposed by 
a DMC-based approach. In this paper we extend the state 
estimation-based approach to handle multiple disturbances, 
rather than focusing on handling nonlinear systems.  

2.  Control Structure 
The multiple model predictive control structure can be 
represented by the control block diagram in figure 1  

Figure 1: Control block diagram (Kuure-Kinsey and 
Bequette, 2007) 

The strategy has four primary elements: a disturbance 
model bank, state estimation, a disturbance model weight 
calculation and a predictive control calculation. 

3.  Disturbance Model Bank 
The multiple model disturbance estimation and control 
strategy is based on the use of n different disturbance 
models in the model bank for a given underlying nominal 
model. The linear state space model structure is used 
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It is important to note, however, that there is no inherent 
restriction to the use of a linear nominal model, and 
extension of the method to a nonlinear model follows a 
similar approach. 

In practice, there is process and measurement noise as 
given in the model 
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The k and k terms represent measurement and state 
noise, respectively. There are four types of disturbances 
that typically affect process systems, and it is important 
that the strategy is able to detect all of them. To 
accomplish this, the nominal linear model in (2) is 
augmented with a disturbance model representing each of 
the four common disturbances being estimated. 

The first type of disturbance to estimate is an additive 
output disturbance.  The additive output disturbance enters 
the model through the output term 
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The second type of disturbance is a step input disturbance. 
Here, the step input disturbance enters the model through 
the input 
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The third type of disturbance to estimate is a ramp input 
disturbance
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Note the presence of two disturbance terms in (5). The dk
term is the disturbance term being estimated, and dk is an 
estimate of the rate of change of the disturbance, 
emphasizing the fact that the disturbance enters the model 
at a constant rate and not as a discrete step.  The fourth 

type of disturbance to estimate is a periodic disturbance.  
Here, the disturbance enters through a disturbance input.  
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The expected period of the disturbance is , and the 2 term 
places the poles on the imaginary axis. The input and 
change in input where the disturbance occurs, hk and hk
respectively, are new states being estimated. 

The four disturbance models have a common structure 
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The augmented state vector is divided into two sub-
vectors: k

i x represents the original states in the nominal 

linear model, and a
k

i d  represents all the disturbance states 
being estimated: disturbance, rate of change of disturbance, 
and periodic states.   

4.  State Estimation 
The model predicted outputs, k

i y , from the disturbance 
model are corrected by estimating disturbance states. This 
disturbance term, a

k
i d , in the four disturbance models, is 

used to account for all uncertainties between the model and 
plant under control. To estimate this disturbance term, it is 
important to first recognize that the augmented structure in 
(7) is written more compactly as 
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The state estimation procedure uses the standard 
predictor/corrector equations, defined in (9) – (11). 
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The predictor/corrector equations predict the augmented 
states without the measurement, then update the augmented 
states based on the difference between the plant 
measurement and the uncorrected model prediction.  The 
augmented state update is dependent on iLk, which is an 
appropriate observer gain based on the disturbance model. 
For the first model, the additive output disturbance model, 
1Lk is equivalent to the use of a deadbeat observer (Muske 
and Badgwell, 2002). For the remaining disturbance 
models, iLk is defined by the solution to the Riccati 
equation.  The iQ and iR terms in the Riccati equation are 
stochastic terms representing the variance on the input 
disturbance and output measurement. In practice, the 
variances unknown, and iQ and iR become tuning 
parameters for the Kalman filter, conventionally expressed 
as the ratio iQ/iR, for scalar noise terms.   
 Each of the four disturbance models in the disturbance 
model bank has a Q and R matrix.  Since Q/R is a tuning 
parameter and the disturbance models are unique, there is 
no restriction on the magnitude and values of iQ and iR,
and are unique for each disturbance model. 

5.  Model Weighting Calculation 
Once the disturbance models are updated with information 
from the most recent measurement, the predicted outputs 
are passed to the model weighting calculation.  For each 
disturbance model and associated predicted output, a 
corresponding weight is calculated.  The weights are 
normalized so that the sum of all four weights is unity, and 
the closer a disturbance model’s weight is to unity, the 
better that disturbance is at representing the current 
disturbance state of the plant.  The weights are calculated 
based on residuals of each model in the model bank. 
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The model predicted outputs are calculated based on state 
estimation updates in (9-11). The model weights are based 
on Bayesian probability (Athans et al., 1977) 
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The i  in (13) is a diagonal scaling matrix for the 
residuals, and is based on the covariances of each 
disturbance model. As the covariances are not known in 
practice, the i  matrix is a tuning parameter that is adjusted 
to achieve desired control behavior. Similar to Q/R in 
Kalman filtering, each disturbance model in the 
disturbance model bank has a unique i  matrix. For the 
work in this paper, the same i  matrix is used for each 
disturbance model in a given disturbance model bank.   

The term i
k represents the probability of the ith

disturbance model representing the plant at the kth time 

step.  The probability calculation is recursive, as it relies on 
information from the previous time step i

k-1. Due to this 
recursion, if the probability of any disturbance model 
reaches zero, there is no way for that probability to become 
non-zero at a future time step. To account for this and 
allow every disturbance model to remain active in the 
calculation, an artificial lower limit on the probability is 
enforced. Any probability that drops below this limit, 
represented by , is set equal to .  The disturbance model 
weights are then calculated by normalizing the 
probabilities, according to the formula 
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The probability calculation in (13) is recursive, so an initial 
value for the probability of each disturbance model is 
required prior to the first control calculation. Without a
priori knowledge of the system, each disturbance model 
starts with the same initial weight. 

6.  Model Predictive Control 
While the multiple model disturbance estimation and 
control strategy is designed to estimate the current 
disturbance state in the system, it is also a control strategy.  
The underlying control strategy used is based on linear 
model predictive control. At each time step, an 
optimization problem is formulated and solved.  The 
objective function is to minimize control action over a 
prediction horizon of p time steps.  The decision variables 
are m control moves, where m is the control horizon.  Only 
the first control move is applied to the system, the model is 
updated, and the entire process is repeated at the next time 
step.  The model used in the control calculation is the 
average linear model defined as 
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The vector iwk is the weight vector defined in (14), and the 

kjk
i y |ˆ  terms are the individual disturbance model 
predicted outputs generated from the disturbance models 
defined in section 4. From the average system model in 
(15), the next step is to derive a model predictive control 
solution. In the objective function that follows, the first 
term represents the error over the prediction horizon and 
the second term is a penalty on control actions. 
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Ysp is a vector of setpoints, U is a vector of optimal 
control moves, and Y  is the vector of predicted outputs 
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from kky |1  to kpky | .For the average linear model 
defined in (15), the solution to the unconstrained problem 
is given by 
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7.  Simulation Results 
The unconstrained multiple model disturbance estimation 
strategy developed in this paper is applicable to both linear 
and nonlinear systems. Given the absence of research on 
the subject of estimating disturbances in a multiple model 
framework, it is important to start by analyzing the 
performance of the strategy applied to linear systems.  The 
advantage to studying linear systems is the elimination of 
nonlinearities between the plant and models in the 
disturbance model bank. This isolates the source of error 
between plant and model down to the disturbances entering 
the system, allowing for an accurate study of the efficacy 
of the disturbance estimation strategy. 

7.1  Van de Vusse Reactor 
The van de Vusse reactor is chosen for its challenging 
nonlinear behavior that includes input multiplicity and 
nonminimum phase behavior (Sistu and Bequette, 1995).  

The nature of the four disturbance models results in 
different disturbances being estimated. The additive output 
disturbance model assumes the disturbance is to the 
measured output, the concentration of species B, and 
estimates accordingly. The step input and ramp input 
disturbance models estimate an input disturbance, the 
dilution rate for the van de Vusse reactor. The periodic 
disturbance model estimates the most likely disturbance to 
be periodic in nature, the feed concentration.   

To populate the disturbance model bank, a nominal 
linear model is required. The model is derived by 
linearizing around the nominal operating conditions given 
in Bequette (2003). The resulting linear model serves as 
both the plant and nominal linear model for the disturbance 
model bank. The disturbance models are generated using 
the procedure and equations outlined in section 3. 

7.2  Tuning Q/R
Each of the four disturbance models uses an observer gain, 
iLk, to update and correct the model states and predicted 
outputs based on plant measurement information.  For the 
additive output disturbance model, the observer gain is 
static. For the remaining three disturbance models, the 
observer gain is based on the solution to the Riccati 
equation. The solution, and resulting observer gain, is a 
function of the covariance terms iQ and iR, which are 
tuning parameters for the disturbance models. Each of the 
disturbance models is estimating a different set of 
disturbances, so it makes sense that the iQ / iR ratio for 
each disturbance model has a different magnitude. 

To provide a guideline for expected relative magnitudes 
of the Q/R ratio, each of the disturbance models is studied 
independently. The Q/R ratio is varied and performance 
results for linear model predictive control are analyzed to 
determine an optimal Q/R ratio. The step input disturbance 
model is analyzed first. The performance of Q/R is 
investigated for rejection of a step disturbance in the input, 
the dilution rate. For Q/R varying between 0.01 and 100 by 
factors of 10, the disturbance rejection results for a step 
input disturbance of 0.15 min-1 at time 6 minutes are shown 
in figure 2. 
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Figure 2: Tuning the Q/R ratio for rejection of a 0.15  min-1

disturbance at t = 6 minutes using the step input 
disturbance model; p = 50, m = 3, i  = 5000,  = 0.01,

t = 0.1 minutes

The disturbance rejection results in figure 2 show that there 
is a strong dependence in performance on the Q/R ratio. 
There is a trade-off between speed of disturbance rejection 
and manipulated input action.  As the Q/R ratio increases, 
the step disturbance is rejected faster at the expense of 
increased manipulated input action. A Q/R ratio of 10 is 
selected as the optimal trade-off for the step input 
disturbance model. 

Similar analysis is carried out for the ramp input and 
periodic disturbance models, resulting in a Q/R of 0.1 for 
the ramp input disturbance model and a Q/R of 100 for the 
periodic disturbance model. From the disturbance rejection 
results for the three disturbance models at varying Q/R 
ratios, it is possible to draw a general conclusion about the 
relative magnitudes of Q/R for the three disturbance 
models. This relationship is illustrated by 
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The relationship in (18) makes sense in terms of the 
magnitude of disturbances each model rejects. Ramp 
disturbances are the result of small continuous 
perturbations, requiring a smaller Q/R ratio than periodic 
disturbances that result from larger perturbations.  
Magnitudes of step disturbances are typically moderate in 
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nature, resulting in a Q/R between that of ramp and 
periodic disturbance models. The Q/R ratios identified 
through this trade-off analysis are used throughout the 
remainder of the paper. 

7.3 Setpoint Regulation 
While the multiple model disturbance estimation and 
control strategy is designed to estimate a current 
disturbance state and control the system in its presence, 
small setpoint changes around the steady state operating 
condition are also reasonably expected and therefore an 
important scenario to study. This also provides a chance to 
determine how the strategy performs in a situation where 
there are no active disturbances to the system. For setpoint 
changes, the control and disturbance estimation results are 
shown in figure 3. 
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Figure 3: Setpoint regulation with no active disturbances; p 
= 50, m = 3, i  = 5000,  = 0.01, t = 0.1 minutes 

The results in figure 3 illustrate the performance of the 
multiple model disturbance estimation and control strategy 
in the absence of active disturbances. Each of the models 
in the disturbance model bank is designed to estimate a 
disturbance. With no active disturbances, there is only 
measurement noise to account for and the result is that no 
disturbance model evolves to dominance. This makes 
intuitive sense as there is no unique disturbance to 
distinguish one disturbance model from another. 

7.4  Single Disturbance 
The setpoint regulation results in section 7.3 show that 

the multiple model disturbance estimation and control 
strategy is able to handle setpoint changes if necessary.  
The true purpose of the strategy, however, is to detect and 
estimate disturbances. To test this, the van de Vusse 
reactor is maintained at its steady-state operating condition 
as a step input disturbance is introduced to the system.  For 
the van de Vusse reactor, this corresponds to a discrete step 
change in the manipulated input, the dilution rate.  For 
such a step input change, with a disturbance of -0.2 min-1

entering the system at t = 9 minutes, control and 
disturbance estimation results are shown in figure 4. 

The results in figure 4 show that the multiple model 
disturbance estimation strategy is able to control the van de 
Vusse reactor in the presence of a step input disturbance. 
The disturbance model weights evolve to properly select 
and identify the step input disturbance model in the 
disturbance model bank.  Note also that the step input 
model accurately estimates the magnitude of the active 
disturbance while the other disturbance models do not. 
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Figure 4: Estimation and rejection of a step input 
disturbance at t = 9 minutes; p = 50, m = 3, i  = 5000,  = 

0.01, t = 0.1 minutes 

7.5 Multiple Disturbance 
The result in section 7.4 demonstrates the ability of the 
multiple model disturbance estimation and control strategy 
to detect and subsequently reject and control the reactor in 
the presence of a single disturbance entering the system.  
Though less likely to occur from a physical point of view, 
it is nonetheless instructive to evaluate how the multiple 
model disturbance estimation and control strategy performs 
in the presence of a multiple disturbances. 
 The multiple disturbance scenario is a step input 
disturbance occurring with an underlying periodic 
disturbance. For the van de Vusse reactor, this corresponds 
to a continual and unmeasured sinusoidal disturbance in 
the feed concentration, due perhaps to a poorly tuned 
upstream controller, with a sudden discrete and 
unmeasured step in the dilution rate. With the disturbances 
occurring simultaneously at t = 9 minutes, the control and 
disturbance estimation results are shown in figure 5. 
 The results in figure 5 demonstrate that the strategy is 
able to successfully control the reactor in the presence of 
multiple disturbances, one periodic and one discrete.  Note 
also the disturbance model weight evolution. Initially, prior 
to the introduction of the disturbances, the weights are 
roughly equal, as the setpoint regulation results suggest.  
Upon the introduction of the disturbances at t = 9 minutes, 
the step input disturbance model dominates initially.  This 
makes sense as the step input disturbance is discrete with 
all its impact felt immediately.  Over the next 100 minutes, 
the periodic disturbance model steadily begins to dominate.  
This also makes sense as the periodic nature of the 
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disturbance has a continual effect while the step input 
disturbance is static after the initial step. 
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Figure 5: Estimation and rejection of a periodic input 
disturbance and step input disturbance at t = 9 minutes; p = 
50, m = 3, i  = 5000,  = 0.01, t = 0.1 minutes 

8.  Summary 
This paper develops a multiple model approach to 
controlling nonlinear systems in the presence of 
disturbances and estimating the type of disturbance active 
in the system. The strategy builds on classical multiple 
model control by incorporating four different disturbance 
models to a nominal linear model representing the 
expected system operating condition. The disturbance 
models represent the common disturbances expected in a 
nonlinear system: additive output, step and ramp input and 
periodic.  
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