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Abstract— The problem of controller design in linear systems
is well-understood. Often, however, when linear controllers are
implemented on a physical system, the anticipated performance
is not met. In some cases, this can be attributed to nonlinearities
in the instrumentation, i.e., sensors and actuators. Intuition
suggests that to compensate for this instrumentation, one can
boost, i.e., increase, the controller gain. This paper formally
pursues this strategy, and develops the theory of boosting. It
provides conditions under which the controller gain can be
modified to offset the effects of instrumentation, thus recovering
the performance of the intended linear design.

I. INTRODUCTION

Consider the standard SISO linear feedback system shown

in Figure 1, where C(s) is the controller and P (s) is the

plant. The signals u, y and w denote the controller output,

plant output, and standard white input disturbance, respec-

tively. Assume that the controller is designed to achieve

a certain level of disturbance rejection, specified by the

output variance σ2
y . In reality, however, the controller is

implemented in the configuration shown in Figure 2, where

f(·) and g(·) represent static nonlinearities in the actuator

and sensor, respectively. This is referred to as a Linear

Plant/Nonlinear Instrumentation (LPNI) system. The signals

ū and ȳ indicate, respectively, the controller and plant output.

The performance of the LPNI system typically degrades

in comparison with that of the original linear system in the

sense that

σȳ > σy. (1)
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Fig. 1. Basic linear feedback system
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Fig. 2. Feedback system with nonlinear instrumentation
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Fig. 3. Quasilinear feedback system

The main contribution of this paper is the introduction and

development of the boosting method, that describes how,

under certain conditions, the gain of C(s) can be increased

to eliminate this degradation. Thus, this paper shows how to

recover the performance of a linear design in the presence

of nonlinear instrumentation.

Quantifying (1) may seem daunting since analytical eval-

uation of σȳ requires solution of a Fokker-Planck equation,

which is possible in only a few special cases [14]. Hence,

a simplification is necessary. In this paper, the method of

stochastic linearization (SL) is used for this purpose (see [2]

and [12] for the original publications and [6] and [15] for

monographs describing the method in detail).

According to SL, the LPNI system is replaced by the

quasilinear system shown in Figure 3, where the gains

Na and Ns are quasilinearizations of f(u) and g(y), and

the signals û and ŷ are intended to approximate ū and ȳ,

respectively. The quasilinear gains are defined as

Na := E

[

d

dû
f (û)

]

, (2)

and

Ns := E

[

d

dŷ
g (ŷ)

]

, (3)

where the expectations are taken with respect to the proba-

bility density functions of û and ŷ, respectively. Henceforth,

we assume that these quasilinear gains are nonzero.

The quasilinear system of Figure 3 provides an approxi-

mation of the original LPNI system of Figure 2. In contrast

to the usual Jacobian linearization, this approximation does

not require small signals. The price to pay is that the gains

Na and Ns depend not only on the nonlinearities, but on

all elements of Figure 2, including C(s), P (s) and w.

Recall that in Jacobian linearization, the linearized gains

depend only on the derivatives of f(u) and g(y) at a local

operating point, independent of all other elements in the

system. Obviously, this is a simpler approximation, however,

being local, it does not characterize the properties of LPNI

systems subject to possibly large random disturbances.
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Fig. 4. Boosted quasilinear system

The issue of accuracy of SL is clearly of importance.

Although no rigorous results are available in the literature,

it has been shown in numerous examples that, under the

assumption that P (s) is low-pass filtering, SL approximates

the behavior of the LPNI system with an accuracy well

within 10% in terms of the standard deviations σȳ , σŷ and

σū, σû [4], [7], [16], [17]. Further results on accuracy are

presented in Section VI of this paper.

Note that SL has previously been used to study a variety of

specific LPNI configurations. In particular, it has been used

to analyze both tracking and disturbance rejection in the case

of saturating actuators in [3], [8] and [17]. In [4], a method is

presented to mitigate performance degradation by selecting

appropriate parameters of a saturating actuator. None of these

works, however, provides a method for controller design to

recover the performance of an arbitrary linear design; this is

carried out in this paper.

In general, analysis of LPNI systems has centered on

the issue of stability (see, for instance, [10], [11], and the

references therein), while issues of performance analysis

are addressed to a lesser extent. One exception is the

well-known method of anti-windup, used to mitigate the

effects of actuator saturation on integral control schemes [1],

[13]. These schemes are used in deterministic (i.e., step)

reference tracking, and require additional elements in the

feedback loop. In contrast, the boosting methodology treats

disturbance rejection, and by using SL, enables performance

recovery by simply increasing the controller gain.

The remainder of this paper is organized as follows:

Section II provides the problem formulation. Sections III and

IV present solutions of the boosting problems for actuators

and sensors, respectively. These results are combined in

Section V, which derives a separation principle and presents

the case when f(u) and g(y) are simultaneously present. The

accuracy of the results is validated statistically in Section VI.

An illustrative example follows in Section VII. Conclusions

are formulated in Section VIII.
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Fig. 5. Equivalent Boosted quasilinear system
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Fig. 6. a-Boosted quasilinear system

II. PROBLEM FORMULATION

The boosting methodology amounts to a modification of

the controller C(s) so that the quasilinear system completely

recovers the performance of the original linear system, i.e.,

σŷ = σy. (4)

The technique achieves (4) by introducing scalar gains Ka

and Ks, as shown in Figure 4. The idea is to compensate

for the effects of f(u) and g(y) by selecting Ka and Ks to

offset Na and Ns respectively, so that

KaNa = KsNs = 1. (5)

Note that in this case, Na and Ns are functions of Ka and

Ks, which makes the boosting problem nontrivial. Since Ks,

Ka and C(s) commute, boosting can be implemented by

placing a single gain at the output of C(s) as shown in Figure

5, where

Kboost := KaKs. (6)

In addition, we establish a separation principle, which

enables Ka and Ks to be evaluated from two simpler sub-

problems: (1) a-boosting, i.e., boosting to account for only

a nonlinear actuator (assuming g(y) = y), and (2) s-

boosting, i.e., boosting to account for only a nonlinear sensor

(assuming f(u) = u).

A. a-Boosting

Consider the LPNI system with g(y) = y. Hence, the only

nonlinearity is the actuator f(u) and Figure 4 reduces to

Figure 6. Here, since w is standard white noise, (2) becomes

Na =

∞
∫

−∞

f ′ (x)
1

σû

√
2π

exp

(

− x

2σ2
û

)

dx. (7)

Define the real analytic function

F(σ) :=

∞
∫

−∞

f ′ (x)
1

σ
√

2π
exp

(

− x

2σ2

)

dx. (8)

Since

σû =

∥

∥

∥

∥

P (s) C(s)Ka

1 + P (s) NaKaC (s)

∥

∥

∥

∥

2

, (9)

where ‖ · ‖2 denotes the 2-norm of a transfer function, i.e.,

‖H‖2 =

√

1

2π

∫

∞

−∞

|H (jω)|2 dω, (10)

(7) can be rewritten as

Na = F
(∥

∥

∥

∥

P (s) C(s)Ka

1 + P (s)NaKaC (s)

∥

∥

∥

∥

2

)

. (11)
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The problem of a-boosting is to find Ka, if possible, such

that

KaNa = 1, (12)

where Na itself depends on Ka through (11).

B. s-Boosting

Consider the LPNI system with f(u) = u. Hence, Figure

4 reduces to Figure 7, where

Ns =

∞
∫

−∞

g′ (x)
1

σŷ

√
2π

exp

(

− x

2σ2
ŷ

)

dx. (13)

Define the function

G(σ) :=

∞
∫

−∞

g′ (x)
1

σ
√

2π
exp

(

− x

2σ2

)

dx. (14)

Since

σŷ =

∥

∥

∥

∥

P (s)

1 + P (s) NsKsC (s)

∥

∥

∥

∥

2

, (15)

(13) can be rewritten as

Ns = G
(∥

∥

∥

∥

P (s)

1 + P (s) NsKsC (s)

∥

∥

∥

∥

2

)

. (16)

The problem of s-boosting is to find Ks, if possible, such

that

KsNs = 1, (17)

where, again, Ns is a function of Ks through (16).

Remark 1: The structure of the LPNI system of Figure 2

implies that the problems of a- and s-boosting are not dual.

Indeed, observe that for a-boosting, the gain Ka appears in

the forward path between w and the input of the actuator

nonlinearity, û. For s-boosting, Ks does not appear in the

path from w to the input of the sensor ŷ. Consequently, the

numerator of the transfer function in (11) contains a boosting

gain, whereas that in (16) does not. Thus, the two problems

are different, and must be addressed separately.

III. a-BOOSTING

As implied by (11) and (12), the problem of a-boosting is

equivalent to finding Ka that satisfies

KaF
(∥

∥

∥

∥

P (s) C(s)Ka

1 + P (s) NaKaC (s)

∥

∥

∥

∥

2

)

= 1. (18)

Theorem 1: a-Boosting is possible if and only if

xF
(

x

∥

∥

∥

∥

P (s) C(s)

1 + P (s) C (s)

∥

∥

∥

∥

2

)

= 1 (19)
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Fig. 7. s-Boosted quasilinear system

has a positive solution. Any positive solution of (19) yields

a boosting gain

Ka = x. (20)

Proof: Sufficiency: From (19) and (20),

KaF
(

Ka

∥

∥

∥

∥

P (s)C(s)

1 + P (s)C (s)

∥

∥

∥

∥

2

)

= 1. (21)

It follows from (21) that (12) is a solution of (18). Thus,

a-boosting is possible with the boosting gain Ka.

Necessity: a-Boosting is possible with the boosting gain

Ka. Thus, (12) and (18) hold. Clearly, substituting the former

into the latter yields (19) and (20).

The existence and uniqueness of Ka depend on the specific

form of F(·). This is analyzed below for the saturation

nonlinearity. Other nonlinearities can be treated analogously.

A. Actuator Saturation

Consider the a-boosted system of Figure 6 and let f(·) be

a static saturation of authority α, i.e.,

f(u) = satα(u) =







α, u > +α
u, −α ≤ u ≤ α
−α, u < −α.

(22)

In this case, it is shown in [7] that (8) reduces to

F(σ) = erf

(

α√
2σ

)

, (23)

where erf denotes the standard error function,

erf (z) =
2

π

∫ z

0

e−t2dt. (24)

Hence,

Na = erf





α
√

2
∥

∥

∥

P (s)C(s)Ka

1+P (s)NaKaC(s)

∥

∥

∥



 . (25)

It follows from Theorem 1 and (23) that a-boosting for the

saturation nonlinearity (22) is possible if and only if the

equation

xerf
( c

x

)

= 1 (26)

has a positive solution, where

c =
α

√
2
∥

∥

∥

P (s)C(s)
1+P (s)C(s)

∥

∥

∥

2

. (27)

Theorem 2: Equation (26) admits a unique positive solu-

tion if and only if

α >

√

π

2

∥

∥

∥

∥

P (s) C (s)

1 + P (s) C (s)

∥

∥

∥

∥

2

. (28)

Note that since

σu =

∥

∥

∥

∥

P (s) C (s)

1 + P (s) C (s)

∥

∥

∥

∥

2

(29)

and
√

π

2
≈ 1.25, (30)

the following can be stated:
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Rule-of-thumb 1: a-Boosting for a saturating actuator is

possible if

α > 1.25σu. (31)

Remark 2: As it has been shown in [4],

α > 2σu, (32)

without boosting, leads to no more than 10% performance

degradation of the linear design. In comparison, the above

rule-of-thumb achieves complete performance recovery, with

actuators that are less powerful than recommended in [4].

B. Performance recovery by redesigning C(s)

If (19) does not have a solution, i.e., a-boosting is

impossible, a question arises: Can C(s) be redesigned to

achieve σŷ = σy? The answer depends on the ability to find

a controller that simultaneously achieves the performance

specification and yields a solution to (19). Such a controller

is said to be boostable.

In the case of actuator saturation, the boosting condition

(28) implies that finding a boostable controller is a linear

minimum-effort control problem, i.e., the problem of finding

a controller that minimizes σu for a specified performance

level σy . One method for accomplishing this is given in

[9], where a controller Copt(s) is synthesized that yields the

desired output σy with minimum control effort. If (28) is not

satisfied by this Copt(s), then no linear boostable controller

exists.

IV. s-BOOSTING

As implied by (16) and (17), the problem of s-boosting is

equivalent to finding Ks that satisfies

KsG
(∥

∥

∥

∥

P (s)

1 + P (s) NsKsC (s)

∥

∥

∥

∥

2

)

= 1. (33)

Since, unlike a-boosting, Ks enters the argument of G
only as a factor of Ns, and for s-boosting NsKs = 1, the

solution of (33) is always possible and is given by

Ks =
1

G
(∥

∥

∥

P (s)
1+P (s)C(s)

∥

∥

∥

2

) . (34)

This result warrants further investigation since it suggests

that linear performance may be recovered in the presence

of any sensor nonlinearity. It turns out that, although an s-

boosting gain can always be found, in some cases the ac-

curacy of stochastic linearization may be poor. Thus, certain

conditions should be satisfied before using s-boosting. These

are developed in Section VI.

Below, we give explicit expressions for the function G in

(34) for various types of sensor nonlinearities.

A. Sensor Saturation

In the case where g(y) is a symmetric saturation of range

α, the right hand side of (16) becomes

G(σ) = erf

(

α√
2σ

)

. (35)

B. Sensor Deadzone

Let g(y) be a symmetric deadzone of the form

g(y) =







y − ∆
2 , y > +∆

2

0, −∆
2 ≤ y ≤ ∆

2

y + ∆
2 , u < −∆

2 .
(36)

In this case, the right hand side of (16) becomes

G(σ) = 1 − erf

(

∆/2√
2σ

)

. (37)

C. Sensor Quantization

Let g(y) be a mid-tread quantizer of the form

g (y) = ∆
2

m
∑

k=1

[sgn (2y + ∆(2k − 1)) ×
sgn (2y − ∆(2k − 1))] .

(38)

Then,

G(σ) = Qm

(

∆√
2σ

)

, (39)

where

Qm (z) :=
2z√
π

[

m
∑

k=1

e−
1

4
(2k−1)2(z)2

]

. (40)

V. SIMULTANEOUS a- AND s-BOOSTING

The following separation principle ensures that the results

of Sections III and IV remain applicable when actuator and

sensor nonlinearities are simultaneously present.

Theorem 3: Simultaneous a- and s-boosting is possible if

and only if each is possible independently. Moreover, the

boosting gains Ka and Ks are the same as the individual a-

and s-boosting gains, respectively.

Proof: Observe from Figure 3 that

KaNa = KaF
(∥

∥

∥

∥

P (s)C(s)NsKsKa

1 + P (s) NsKsNaKaC (s)

∥

∥

∥

∥

2

)

(41)

and

KsNs = KsG
(∥

∥

∥

∥

P (s)

1 + P (s) NsKsNaKaC (s)

∥

∥

∥

∥

2

)

. (42)

Subtituting

KaNa = KsNs = 1 (43)

into (41) and (42) yields (18) and (33), which establishes the

separation principle.

VI. ACCURACY OF STOCHASTIC LINEARIZATION IN

SYSTEMS WITH BOOSTING

In this section, validation of the accuracy of stochastic

linearization is performed in the context of boosting. Design

guidelines are formulated to avoid cases where accuracy is

poor.
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Fig. 8. Histogram of eSL for a-boosting

A. Accuracy of a-Boosting

The accuracy of stochastic linearization for saturating

actuators has been studied in detail in [5], [7], [8], and has

been shown to be good for a wide range of systems. To

validate accuracy in the context of boosting, the following

statistical study is performed: We consider 2500 first-order

and 2500 second-order plants of the form:

P1(s) =
1

Ts + 1
, (44)

P2(s) =
ω2

n

s2 + 2ζωn + ω2
n

. (45)

The controller is C(s) = K and the actuator is a saturation

of the form (22). The system parameters are randomly and

equiprobably selected from the following sets:

T ∈ [0.01, 10],
ωn ∈ [0.01, 10], ζ ∈ [0.05, 1],
K ∈ [1, 20],
α ∈ (αmin, 2αmin],

where αmin is the right hand side of (28). Boosting is

performed for each system, and the LPNI system is simulated

to identify the error of stochastic linearization, defined as

eSL =
|σȳ − σŷ|

σŷ

. (46)

The histogram of eSL is shown in Figure 8. Clearly,

accuracy is very good: 71.4% of the systems yield eSL <
0.05 and only 9.2% of systems yield eSL > 0.1. Further

analysis reveals that these latter cases occur when the signals

ū and ȳ are highly non-Gaussian. This is consistent with

the assumption of stochastic linearization, namely that those

signals should be approximately Gaussian.

Remark 3: In general, stochastic linearization is accurate

when the closed loop linear system provides a sufficient

amount of low-pass filtering [15]. A similar situation holds

for the method of describing functions.
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Fig. 9. eSL as function of σy/∆

B. Accuracy of s-Boosting

A similar statistical study is performed to validate the

accuracy of stochastic linearization in the context of s-

boosting. Here, the sensor is assumed to be a mid-tread

quantizer of the form (38), and C(s) = K. We consider

1000 first- and 1000 second-order plants of the form (44)

and (45), with system parameters chosen equiprobably from

the sets:

T ∈ [0.01, 10],
ωn ∈ [0.01, 10], ζ ∈ [0.05, 1],
K ∈ [1, 20],
m ∈ [1, 10],
∆ ∈ (0, 4σy],

where σy is the nominal linear performance to be recovered.

As illustrated in Figure 9, simulation reveals that accuracy

degrades significantly as the ratio σy/∆ decreases. This is

expected, since when σy/∆ is small, most of the output

signal lies in the quantizer deadzone. Hence, the nonlinear

system operates in an effectively open loop regime. Our

experience indicates that to avoid this situation, the following

should be observed:

σy

∆
> 0.33. (47)

This leads to:

Rule-of-thumb 2: s-Boosting for a quantized sensor is

possible if

∆ < 3σy. (48)

Remark 4: Recall that ∆ is the total deadzone width, and

hence (48) stipulates that the deadzone ‘amplitude’, i.e.,

∆/2, should be no greater than 1.5 standard deviations.

This rule-of-thumb may seem generous, since intuition would

suggest that ∆/2 should be, at most, one standard deviation.

The extra deadzone width allowance comes from boosting,

which increases the loop gain.

When (47) is satisfied, the accuracy of s-boosting is

similar to that of a-boosting. Again, accuracy is generally

very good, and fails in those scenarios where the plant has

insufficient filtering characteristics.
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Remark 5: Similar results hold when g(y) is the symmet-

ric deadzone (36). In general, Rule-of-thumb 2 should be

observed for any sensor nonlinearities that exhibit small gain

near the origin.

VII. ILLUSTRATIVE EXAMPLE

To illustrate the efficacy of boosting, consider the system

of Figure 1 with the plant

P (s) =
1

s
(49)

and the controller

C(s) = 4
s + 0.5

s + 2
. (50)

The resulting output standard deviation is

σy = 0.5. (51)

Assume that the control input is constrained by a saturation

with authority α = 2 and the sensor exhibits a deadzone of

width ∆ = 0.1. Simulation of the system with this nonlinear

instrumentation results in

σȳ = 0.581, (52)

a degradation of 16%.

It is easily verified that σu = 1.2247, and hence (28)

is satisfied. Thus, the conditions of Theorem 3 are met

and boosting can be used to recover the original linear

performance. Solving (26) and (34) results in

Kboost = 1.325. (53)

Using this boosting gain in a MATLAB simulation yields the

desired result:

σȳ = 0.503. (54)

Thus, a successful recovery of the designed performance is

demonstrated.

VIII. CONCLUSIONS

This paper develops the method of boosting, whereby

a scalar gain is applied to an existing controller in order

to recover linear performance in the presence of nonlinear

instrumentation. Necessary and sufficient conditions under

which boosting is possible are provided. Boosting enables

controller design using well-known linear techniques, such

as LQR/LQG, while at the same time accounting for the

effects of sensors and actuators.
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