
Regularized Fitted Q-iteration for Planning in Continuous-Space

Markovian Decision Problems

Amir massoud Farahmand Mohammad Ghavamzadeh Csaba Szepesvári Shie Mannor

Abstract— Reinforcement learning with linear and non-linear
function approximation has been studied extensively in the last
decade. However, as opposed to other fields of machine learning
such as supervised learning, the effect of finite sample has not
been thoroughly addressed within the reinforcement learning
framework. In this paper we propose to use L2 regularization
to control the complexity of the value function in reinforcement
learning and planning problems. We consider the Regularized
Fitted Q-Iteration algorithm and provide generalization bounds
that account for small sample sizes. Finally, a realistic visual-
servoing problem is used to illustrate the benefits of using the

regularization procedure.

I. INTRODUCTION

Regularization has proven an effective tool in machine

learning and in particular in supervised learning. The main

idea is to consider the learning problem as an optimization

problem where one minimizes the sum of an empirical

error and a complexity penalty, the regularizer, that penal-

izes complex solutions. The tradeoff between the empirical

error term and the penalty term is controlled by a single

numerical value: the regularization coefficient. When the

parameter is chosen in an appropriate way (for example by

cross-validation or complexity regularization), the resulting

procedure is known to adapt to the complexity of the target

function automatically, converging almost as fast as if the

model was known beforehand (e.g. [10]).

Recently the problem of tuning function approximators has

received considerable attention for the solution of Markov

Decision Processes, especially in the reinforcement learning

(RL) community. For example, [14] considered parameter-

ized function approximation architecture where the param-

eters are changed to better minimize the Bellman residual

error, and [18] constructs new basis functions from the Bell-

man residual in fitted value iteration. In other approaches,

non-parametric regression is used where the function repre-

sentation has the potential to adapt to the actual difficulty of

the problem. Examples of this approach include [12] where

support vector machines are used to represent policies in an

approximate policy iteration procedure, the tree-regression

based fitted Q-iteration algorithm of [8], or the GPTD

algorithm of [7] that builds on Gaussian processes regression.

In this work, we consider a non-parametric regression ap-

proach based on penalized least-squares regression method.

This work was partially supported by NSERC and AIF.
A.m. Farahmand, M. Ghavamzadeh and Cs. Szepesvári are with the

Dept. of Computing Science, University of Alberta, Edmonton, AB T6G
2E8, Canada. Cs.Sz. is on leave from MTA SZTAKI, Bp., Hungary.
{amir,mgh,szepesva}@cs.ualberta.ca

S. Mannor is with the Dept. of Electrical & Computer Eng., McGill Uni-
versity, Montreal, QC H3A 2A7, Canada shie.mannor@mcgill.ca

Even though penalized least-squares regression is one of the

most successful approaches to supervised regression, it is

surprising that it has not been thoroughly investigated in

RL. Work similar to ours includes [11] and [13]. They do

not, however, provide an explicit performance analysis like

this work. Moreover, [11] just works for the deterministic

transitions with a fixed policy, whereas we consider the

control problem with stochastic transitions.

Here we extend the fitted Q-iteration algorithm of [8]

and let it use penalized least-squares, a regularization-based

algorithm, for fitting value functions. This way we borrow the

strength of a state-of-the-art supervised learning approach to

help solve learning and planning problems more efficiently.

We call this algorithm Regularized Fitted Q-Iteration (RFQI).

We develop specific formulae for kernel-based RFQI. Our

main theoretical results bound the quality of the solutions

found given that the algorithm spends a finite amount of com-

putational resources on the task. The strength of the approach

is that the complexity of the function class (and thus the

performance) can be controlled by tuning the regularization

coefficient. We argue that non-trivial performance gains are

possible if one chooses the regularization coefficient in a

data-dependent manner. We show this empirically in our

experiments. Although finite-sample performance of fitted Q-

iteration has been considered earlier [1], to our best knowl-

edge this work alongside [9] are the first work that address

finite-sample performance of a regularized RL algorithm.

Both planning and learning can benefit from regulariza-

tion. In many real world planning problems of interest, the

simulation time is limited and a policy has to be found

relatively quickly. In such problems, a simulator is avail-

able to generate samples from a typically high dimensional

state space. For example, in control of complex networks

(e.g., power and communication networks), the only way

to compute a good policy is through simulation. Simulating

a complex network is computationally demanding since it

requires a discrete events simulations [16]. Using RFQI

algorithm that takes the finiteness of the available data into

account is therefore relevant for planning as well as learning.

II. BACKGROUND AND NOTATION

We briefly review a few concepts and notations from

analysis and Markovian Decision Processes (MDP). We refer

the reader to [3] for further details.

For a measurable space with domain S, we let M(S)
denote the set of probability measures over S. For p ≥ 1,

a measure ν ∈ M(S), and a measurable function f : S →
R, we let ‖f‖p,ν denote the Lp(ν)-norm of f defined as

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB02.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 725

‖f‖
p
p,ν =

∫

|f(s)|pν(ds). We shall also write ‖f‖ν to denote

the L2(ν)-norm of f . We denote the space of bounded

measurable functions with domain X by B(X), and the

space of measurable functions with bound 0 < K < ∞
by B(X ; K).

A finite-action discounted MDP is defined by a quintuple

(X ,A, P, S, γ), where X is the (possibly infinite) state

space, A = {a1, a2, . . . , aM} is the finite set of actions,

P : X × A → M(X) is the transition probability kernel,

P (·|x, a) defining the next-state distribution upon taking

action a in state x, S(·|x, a) gives the corresponding distri-

bution of immediate rewards, and γ ∈ (0, 1) is the discount

factor. We make the following assumptions on the MDP:

Assumption A1 X is a compact subset of the d-dimensional

Euclidean space. We assume the expected immediate rewards

r(x, a) =
∫

rS(dr|x, a) are bounded by Rmax: ‖r‖∞ ≤
Rmax.

A stationary Markov policy π : X →M(A) is defined as

a time-independent (measurable) mapping from the current

state x to a distribution over the set of actions π(·|x). A

policy is deterministic if the probability distribution concen-

trates on a single action for all states. Deterministic stationary

Markov policies will be identified with mappings from states

to actions π : X → A. In the rest of this paper, we use the

term policy to refer to stationary Markov policies.

The value of a policy π when it is started from a state

x is defined as the total expected discounted reward that is

encountered while the policy is executed, i.e.

V π(x) = Eπ

[

∞
∑

t=0

γtRt

∣

∣

∣

∣

∣

X0 = x

]

.

Here Rt denotes the reward received at time step t;
Rt ∼ S(·|Xt, At) and Xt evolves according to Xt+1 ∼
P (·|Xt, At) where At is sampled from the distribution

assigned to the past observations by π. For a policy π,

At ∼ π(·|Xt), while if π is deterministic then we write

At = π(Xt). The function V π is also called the state-

value function of policy π. Closely related to the state-value

functions are the action-value functions, defined by

Qπ(x, a) = Eπ

[

∞
∑

t=0

γtRt

∣

∣

∣

∣

∣

X0 = x, A0 = a

]

.

It is easy to see that for any policy π, the functions V π and

Qπ are bounded by Rmax/(1− γ).

Given an MDP, the goal is to find a policy that attains the

best possible values,

V ∗(x) = sup
π

V π(x),

for all states x ∈ X . Function V ∗ is called the optimal value

function. The policy that attains the optimal value function

any state x ∈ X is called the optimal policy, i.e. if V π(x) =
V ∗(x) for all x ∈ X . Note that the optimal policy is not

necessarily unique. In order to characterize optimal policies,

Fitted Q-Iteration(D,K ,Q0)

// D: samples

// K: number of iterations

// Q0: Initial action-value function

Q← Q0 // Initialization

for k = 0 to K − 1 do

Q′ ← FitQ(Q, D, k)
Q← Q′

end for

return Q

Fig. 1. Fitted Q-Iteration

it will be useful to define the optimal action-value function,

Q∗(x, a):
Q∗(x, a) = sup

π
Qπ(x, a).

Further, we say that a deterministic policy π is greedy w.r.t.

(with respect to) an action-value function Q ∈ B(X × A)
and write π = π̂(·; Q), if, for all x ∈ X and a ∈ A, π(x) ∈
argmaxa∈A Q(x, a). The Bellman optimality operator T :
B(X ×A)→ B(X ×A) is defined by

(TQ)(x, a) = r(x, a) + γ

∫

max
a′∈A

Q(y, a′)P (dy|x, a).

This operator T is a contraction operator w.r.t. the

supremum-norm with index γ. Moreover, the optimal action-

value function is the unique fixed point of T : TQ∗ = Q∗.

Starting from any Q0 ∈ B(X ×A),

Qk+1 = TQk

is thus guaranteed to converge (at an exponential rate) to Q∗.

This procedure is called value iteration.

Throughout the paper F ⊂ { f : X → R } will denote

some subset of real-valued functions over the state-space

X . For convenience, we will treat elements of FM as real-

valued functions f defined over X × A with the obvious

identification f ≡ (f1, . . . , fM), f(x, aj) = fj(x), j =
1, . . . , M . The set FM will denote the set of admissible

functions used in the optimization step of our algorithm.

III. ALGORITHM

The algorithm studied in this paper is an instance of

the generic fitted Q-iteration method, whose pseudo-code is

shown in Fig. 1. The algorithm attempts to approximate the

optimal action-value function Q∗ and mimics value iteration.

Because computing the effect of the Bellman operator ap-

plied to an action-value function involves evaluating a high-

dimensional integral, we use a Monte-Carlo approximation

together with a regression procedure. For this purpose a set

of samples D is generated:

D = {(X1, A1, R1, X
′
1), . . . , (XN , AN , RN , X ′

N)}.

In this paper for the sake of simplifying the analysis we

assume that the actions and next states are generated by

some fixed stochastic stationary policy πb: At ∼ πb(·|Xt),
X ′

t ∼ P (·|Xt, At), Rt ∼ S(·|Xt, At). The state-marginal of

726

ν is denoted by νX . We assume that ν is a strictly positive

measure, i.e., its support is X × A. Intuitively, this ensures

that the samples cover all state-action pairs. In particular for

this we must have that πb0
def

= mina∈A infx∈X πb(a|x) > 0.

The fitting procedure that we study in this paper is

penalized least-squares. Assuming that in the kth iteration

we use samples with index Nk ≤ i < Nk +Mk = Nk+1−1,

the (k + 1)th iterate is obtained by

Qk+1 = argmin
Q∈FM

[

L̂k(Q) + λPen(Q)
]

, (1)

where

L̂k(Q) =
1

Mk

Nk+Mk−1
∑

i=Nk

[

Ri+γ max
a′∈A

Qk(X ′
i, a

′)−Q(Xi, Ai)
]2

,

and Pen(Q) is a penalty term and λ > 0 is the regularization

coefficient.1 The first term is the sample-based least-squares

error of using Q to predict Ri + γ maxa′∈A Qk(X ′
i, a

′) at

(Xi, Ai). This term is the empirical counterpart to the loss

Lk(Q) = E

[

(Ri + γ max
a′∈A

Qk(X ′
i, a

′)−Q(Xi, Ai))
2

]

.

The minimizer of this loss function is the regression func-

tion E [Ri + γ maxa′∈A Qk(X ′
i, a

′) |Xi = x, Ai = a] =
(TQk)(x, a). As the number of samples grows to infinity

the empirical loss converges to Lk and therefore, we hope

that the iterate Qk+1 converges to TQk. For assuring that,

one needs to prevent overfitting or over-smoothing. This is

the job of the second term on the right hand side of (1). This

term regulates the complexity of solutions. Choosing a larger

λ means searching in a smaller space of functions and vice

versa.

Considering the discussion in the previous paragraph,

a viable approach is choosing a large (possibly infinite

dimensional) space FM and using regularization to control

its complexity. When FM is a Sobolev-space and Pen(Q) is

the corresponding Sobolev-space norm (the squared norm of

the generalized partials of Q), this optimization leads to thin

plate spline estimates, popular in the non-parametric statistics

literature [10]. Nevertheless, Sobolev space is not the only

possibility. It is a particular case of a reproducing kernel

Hilbert space (RKHS). In an RKHS, we start with a Mercer

kernel function k, and set Pen(Q) to be the norm of Q in

H, the RKHS underlying k [19]. This way we obtain

Qk+1 = argmin
Q∈H

[

L̂k(Q) + λ ‖Q‖
2
H

]

. (2)

According to the Representer Theorem (e.g., see [19]), every

solution to Eq. (2) is the sum of kernels centered on the

observed samples: i.e.,

Q(x, a) =

Nk+Mk−1
∑

i=Nk

αi−Nk+1k
(

(Xi, Ai), (x, a)
)

,

1Note that in practice one would generate samples as-needed basis, i.e.,
there is no need to generate and store all the samples. However, it is also
possible to reuse the samples if sample generation is expensive. In such a
case the analysis needs to be changed slightly.

where α = (α1, . . . , αMk
)⊤ are the coefficient that must be

determined. Let us assume that Qk was obtained previously

in a similar form:

Qk(x, a) =

Nk−1+Mk−1
∑

i=Nk−1

α
(k)
i−Nk−1+1k

(

(Xi, Ai), (x, a)
)

,

and let us collect the coefficients into a vector α
(k) ∈ R

Mk−1 .

Replacing Q in Eq. (2) by its expansion and using RKHS

properties, we get

α
(k+1) = argmin

α∈R
Mk

1

Mk

∥

∥

∥
r + γK

+
α

(k) −Kα

∥

∥

∥

2

+λα
⊤

Kα,

(3)

with K ∈ R
Mk×Mk , K

+ ∈ R
Mk×Mk−1 ,

[K]ij = k
(

Zi−1+Nk
, Zj−1+Nk

)

,

[K+]ij = k
(

Z
(k)
i−1+Nk

, Zj−1+Nk−1

)

,

where Zj = (Xj , Aj), Z
(k)
j = (X ′

j , A
(k)
j),

A
(k)
j = argmax

a∈A
Qk(X ′

j , a),

and

r = (RNk
, . . . , RNk+Mk−1)

⊤.

Solving Eq. (3) for α we obtain

α
(k+1) = (K + MkλI)−1(r + γK

+
α

k).

The computational complexity of iteration k with a straight-

forward implementation is O(M3
k) as it involves the in-

version of a matrix. Thus, in order to understand how the

algorithm behaves it suffices to understand how the error

behaves after a certain number of iterations. This is what we

do in the next two sections.

The choice of the regularization coefficient and the RKHS

itself is still a problem. For the case of Sobolev space,

this corresponds to the choice of the smoothness order of

the space. We need a model selection procedure to select

these parameters. The approach common in regression can

be followed here, too: Try different smoothness orders (or the

parameter that describes the RKHS) with different regular-

ization coefficients and choose between them using a hold-

out set. This leads to estimates whose rate of convergence

has the optimal order and scales with the actual roughness,

Pen(TQk).

IV. ERROR PROPAGATION

In order to analyze Fitted Q-iteration we rewrite it in the

form

Qk+1 = TQk−εk (k ≥ 0); and ε−1 = Q∗−Q0. (4)

Note that these equations define the error sequence εk (εk :
X × A → R) from the sequence of iterates {Qk}k and

not vice versa (except for ε−1, the ”initial error”, which is

introduced just for notational simplification). Here we are

interested in studying how the errors {εk} influence the

performance of the policy greedy w.r.t. QK (K > 0 is

the number of iterations in the algorithm; see Fig. 1). The

727

idea is that the regression procedure controls the size of the

error functions εk, hence it must be possible to obtain good

policies eventually. For k ≥ 0, let πk be the greedy policy

w.r.t. Qk: πk = π̂(·; Qk). Then our goal is to bound the norm

of V ∗−V πK (because of the definition of the optimal value

function, this quantity is guaranteed to be non-negative).

Recall that ν denotes the distribution underlying

{(Xt, At)}. For the sake of flexibility, we allow the user

to choose another distribution, ρ ∈ M(X), that is used in

assessing the procedure’s performance, e.g. the stationary

distribution induced by the optimal policy. The main result

of this section is the following theorem that bounds the loss

of using the learned policy, measured by ‖·‖p,ρ, as a function

of the losses of the solutions of the regression problems

solved while running the algorithm, measured by ‖·‖p,ν . The

proof is omitted from this paper.

Theorem 1 (Lp-bound): Consider a discounted MDP with

a finite number of actions. Let p ≥ 1. Assume that Qk and εk

satisfy (4) and that πk is a policy greedy w.r.t. Qk. Fix K >
0. Define E0 = ‖ε−1‖∞ and εK = max0≤k≤K ‖εk‖p,ν .

Then there exist constants constants C
(1,1)
ρ,ν and C

(2,1)
ρ,ν that

only depend on ρ, ν, γ and the MDP dynamics such that

‖V ∗ − V πK‖p,ρ ≤
2

(1− γ)2

[

γ
K
p E0+

+
(

(1 − γ) (C(1,1)
ρ,ν)

1
p + γ (C(2,1)

ρ,ν)
1
p

)

εK

]

.

Theorem 1 shows that if the error sequence εk is small,

the error between the optimal value function V ∗ and the

value of our estimated policy V πK is small too. We can use

standard PAC results to give a high probability bound on the

magnitude of each εk (and consequently εK) as a function

of the available data. We provide such a bound for the case

of RKHS in the next section.

Theorem 1 suggests a model selection mechanism: Since

our goal is to minimize εK , we can use different regulariza-

tion coefficients and/or kernel parameter in solving Eq. (1) in

such a way that all εk remains as small as possible. Although

we cannot calculate εk directly, we can still use the empirical

norm as an estimation of its norm. This can be done by doing

a cross-validatoin at each iteration. Model selection at each

iteration is important because the appropriate regularization

coefficient and even the function space (which is determined

by the kernel parameter) may change during iterations.

V. L2-BOUND FOR REGURALIZED

KERNEL-BASED REGRESSION

In this section we assume that Qk+1 is obtained by solving

the RKHS regularization problem of Eq. (2). The following

result can be obtained by generalizing Theorem 21.1 of [10]

to arbitrary RKHS with smooth kernel functions, combining

it with Prop. 3 of [20]. The result is for the case when

X = [0, 1]d, but can be generalized to other compact spaces

with “regular” boundaries relatively easily. In the following

theorem, we assume that Xt ∼ νX is an i.i.d. sequence

and At ∼ πb(·|Xt) for some πb that selects all actions with

non-zero probability. This assumption basically means that

we have access to the generative model, and is the case of

planning. However, this assumption is not essential, and we

just use it to simplify the proof. We can extend this result to

the case that the agent observes a single trajectory generated

by a fixed policy by having appropriate mixing condition on

the MDP, i.e. learning case (see [1]).

Theorem 2: Assume that X = [0, 1]d, k ∈
Lip∗(s, C(X ,X)), s > d, and Qk is such that

TQk ∈ H(= Hk).
2 Furthermore, (for the sake of simplicity)

assume that all functions involved in the regression problem

(the reward function, Qk, and the result of the optimization

problem(Qk+1) are bounded by some constant L > 0.3 Let

Qk+1 be the solution of (2) with some λ > 0. Then

‖Qk+1 − TQk‖
2
ν ≤ 2λ ‖TQk‖

2
H +

c1L
4

Mkλd/s
+

c2 log(1/δ)

MkL4

with probability at least 1− δ, for some c1, c2 > 0.

Note the trade-off in the bound: increasing λ increases

the first term, but decreases the second. The optimal choice

strikes a balance between these two terms. It depends on

the number of samples Mk, the complexity of the target

function TQk measured by ‖TQk‖
2
H, the dimension of the

problem d, and some notion of smoothness measured by

s. With λ = cM
−1/(1+d/s)
k the rate of convergence is

O(M
−1/(1+d/s)
k). In fact, when we have a Sobolev space

with smoothness degree κ, one can show s = 2κ and this

rate will be the optimal rate for regression for smoothness

κ. As an immediate corollary of this result and Theorem 1

we get the following result, assuming that in each iteration

we are using the same regularization parameter.
Corollary 3 (L2-bound): Assume that the conditions of

the previous theorem hold and we use the same number
of samples in each iteration: M1 = M2 = . . . = MK .
Let πK be greedy w.r.t. the Kth iterate, QK . Define B =

max0≤k≤K

∥

∥T kQ0

∥

∥

2

H
. Then, for any δ > 0 with probability

at least 1− δ,

‖V ∗ − V πK ‖ρ ≤
2

(1 − γ)2

"

γ
K
2 ‖ε−1‖

∞
+

C

»

c1λB +
c2L

4

M1λd/s
+

c3 log(K/δ)

M1L4

–1/2
#

,

where C = (1−γ)(C
(1,1)
ρ,ν)

1
2 +γ(C

(2,1)
ρ,ν)

1
2 and c1, c2, c3 > 0

are universal constants.

Again, by choosing λ = cM
−1/(1+d/s)
1 the second term

is made converging to zero with M1 → ∞ at a rate

O(M
−1/(2(1+d/s))
1), corresponding to the optimal regression

rate for smoothness order s = 2κ. On the other hand, by let-

ting K approach infinity, one can make the first term as small

as desired. Note that the cost of executing the procedure is

O(KM3
1). Then given a computational budget B, one may

optimize K and M1 to get the best possible performance.

Clearly, it suffices to choose K = log(B), hence given the

budget B the performance will be Õ(B−1/(6(1+d/s))).

2For the definition of the generalized Lipschitz space Lip∗ see [20].
3When this does not hold, a truncation argument is needed, but the result

would essentially be left unchanged.

728

VI. VISUAL-SERVOING PROBLEM

By considering a visual-servoing problem as our experi-

ment, we study the effect of regularization coefficient and

kernel parameter on the performance of the RFQI algorithm.

Also we compare its performance with a conventional visual-

servoing controller.

Visual servoing is the task of controlling the motion of a

robot using vision data ([5]). Visual data can include inputs

like the position of the end-effector on visual input or the

image of an external object on the robot-mounted camera.

Forward kinematic model of the robot, cameras’ parameters,

and the relative position of objects in the world define a

visual-motor kinematic model X = f(q) where q ∈ R
d

is joint variables for a robot with d degrees of freedom

and X ∈ R
m is the vector of visual features. The aim of

visual servoing is to find a control signal u(t) that changes

q over time so that some objective function is minimized

(e.g. e(t) = X(t)−X∗) goes to zero asymptotically.

A conventional controller design methodology uses local

model of visual-motor kinematic to design the controller.

Defining the visual-motor Jacobian as J(q) = ∂f(q)
∂q , the

control signal would be u(t) = q̇(t) = −J†(q) where J†(q)
is the pseudo-inverse of the Jacobian at q(t). Nevertheless,

there are at least two problems with conventional controllers.

One is that they need to know the dynamics of the system.

There are adaptive methods that can partially remedy this

problem. The other more important problem is that they are

usually local controllers and cannot benefit from long horizon

plans. Therefore, one can expect that their performance

would not be optimal because of their myopic design.

In these experiments we apply the RFQI method to design

controller for the visual-servoing task. The problem is visual

set-point regulation for the Puma 560 robotic arm with an

eye-to-hand stationary stereo rig configuration. The visual

features are the coordinate of end-effector onto the image

space of these two cameras (X ∈ R
4) and the set-point is

X∗ = [0 0 0 0]T . We have access to 3 degrees of freedom

of the robot and the discrete-time control signal is u(t) ∈
{−1, +1}3 with time step of 0.02sec. We desire to minimize

the number of steps to the goal from arbitrary initial position.

We formulate this problem as solving a discounted MDP with

γ = 0.95 where

Rt =

{

−1, if ||Xt+1 −X∗||2 > 10,
1

1+||Xt+1−X∗||2 , otherwise.

This encourages the robot to move towards the goal as soon

as possible.

For all experiments, we use i.i.d. samples from q ∈
U((−1, 1)3) for both training and policy evaluation. Ac-

tions in the training set are generated uniformly. In our

experiments, we re-use the same data in all iterations. The

iterations are limited to K = 1000, but if the action-

value function Qk+1 is very close to Qk (empirical norm

smaller than 10−5), we stop the iteration. We use a Gaussian

kernel k((q1, u1), (q2, u2)) = exp(− ||q1−q2||
2

2σ2)I{u1=u2} with

different kernel parameters σ2 in all experiments. We use

MatLab, Corke’s Robotics Toolbox [6], and the Epipolar

Geometry Toolbox [15].

The goal of the first experiment is studying the effect of

the kernel parameter σ and the regularization coefficient λ
on the performance of the FQI. We evaluate the performance

of π̂(·; QK), the greedy policy w.r.t. QK , by a Monte Carlo

method using 5000 random trajectories starting from a initial

positions chosen uniformly at random and then following the

policy.

Fig. 2 shows the performance of policies generated by

RFQI as a function of the regularization coefficient and the

kernel parameter. Lighter regions show better performance

and darker regions show worse performance. A prominent

region where the performance is considerably better than

other regions is evident. This region has moderate values

of λ and σ2. The performance degradation for very small

values of λ is an indication of over-fitting. Under-fitting is

also observable for large values of regularization coefficient.

Although the performance is less sensitive to the kernel

parameter than to the regularization coefficient, poor per-

formance is visible for very small values of σ2. Such values

of σ2 lead to over-fitting.

Fig. 3 compares the performance of RFQI equipped

with a empirical Bernstein race model selection mechanism

(see [17]) to the performance of a conventional controller

when the number of training samples is varying.

The problem formulation for the RL problem is a vari-

ation of the total time to the goal. To compare these two

controllers, we need to make sure both controllers use the

same amount of power. The RL agent’s policy selects the

control signal u(t) ∈ {−1, +1}3. Therefore, the power of

the signal is 3. For the conventional controller (which is a

linear controller), we normalize its output so that its power

become 3. When the error is large, this modification prevents

the controller to spend so much power. When the error is very

small, it makes the controller act like a switching controller.

For this experiment, the number of samples is changing

from around 700 to 7000. We apply RFQI for 20 models

(different λs and σs), and use the model selection to choose

one of them. For model selection, we put a maximum limit

of 1000 trajectory samples for each model (refer to [17] for

details). After selecting the best model, we compare it with

the conventional controller by evaluating the return of 1000
randomly selected trajectory paths. We run this experiment 9
times. The error bars (or dotted interval) shows the standard

error around the empirical average.

The result shown in Fig. 3 indicates that the RFQI with

a model selection procedure generates competitive policies.

Even when the number of samples is not so large, it performs

better than the conventional controller. Note that we do not

necessarily claim that our controller is better than the usual

practice in visual-servoing research since we have not tried

hard to optimize the conventional controller, but the claim is

that the RFQI’s solution performs comparably well without

using any domain specific knowledge.

In summary, we observed that RFQI that just uses samples

can perform quite well without explicitly using the dynamics

729

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

regularization coefficient (λ)

k
e

rn
e

l
p

a
ra

m
e

te
r

(σ
2
)

−12

−12

−12

−9

−9
−9

−9

−9

−9

−9

−9

−5

−5

−5

−5

−5
−2.5

−2.5

−2.5

Fig. 2. The average return of policies computed using RFQI as a function
of the regularization coefficient (λ) and the kernel parameter (σ2).

of system. This is important in visual-servoing since in

many cases we do not have access to visual-motor kinematic

model, but we have access to the robot and can get samples

from it. Also we noticed that the performance of the resulted

policy not only depends on the efficient use of data (which a

method like RFQI with its optimal convergence rate can do

well), but also depends on selecting the right function space.

A regularization-based method like RFQI lets us partially

solve this problem by reducing a part of model selection

problem to the selection of the regularization coefficient. This

emphasizes the importance of effective model selection.

VII. DISCUSSION

In this paper we proposed to use penalized least-squares as

the regression algorithm used in fitted Q-iteration for solving

learning and planning problems. The main idea is that

penalized least-squares is a powerful method of regression

which, when used with a model selection mechanism, can

adapt to the difficulty of the regression problem. By applying

this method to a visual-servoing problem, we showed that it

can give competitive results for a real-world problem.

In our future work, we intend to extend the proof to

the case of learning. Also efficient model selection mech-

anism for the case of single trajectory path needs more

attention. Adapting to the situation when the data lies on

a low dimensional sub-manifold of the observation space

or when certain variables are irrelevant is an important

issue for many real-world problems. Using L1-penalty in

a LASSO-like procedure (e.g., [4]) may prove to be useful.

Another important research topic is to optimize the sample

distribution. One idea is to use the estimated action-value

function while running the algorithm to actively choose the

most informative samples for the next iteration. Finally, let us

note that the extension of our results to the learning scenario

when the data consists of a representative trajectory of some

behavior policy looks possible along the lines of [2].

REFERENCES

[1] A. Antos, R. Munos, and Cs. Szepesvári. Fitted q-iteration in
continuous action-space mdps. In Advances in Neural Information

Processing Systems, 2007. (accepted).

700 1000 1500 2000 3000 5000 7000
−4.5

−4

−3.5

−3

−2.5

−2

Sample size

A
v
e

ra
g

e
 r

e
tu

rn

conventional controller

fitted Q−iteration

Fig. 3. Comparison of RFQI’s policy with a conventional controller.

[2] A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal poli-
cies with Bellman-residual minimization based fitted policy iteration
and a single sample path. Machine Learning, 71(1):89–129, April
2008. Published Online First: 14 Nov, 2007, DOI: 10.1007/s10994-
007-5038-2.

[3] D. P. Bertsekas and S.E. Shreve. Stochastic Optimal Control (The
Discrete Time Case). Academic Press, New York, 1978.

[4] F. Bunea, A. Tsybakov, and M. Wegkamp. Sparsity oracle inequalities
for the lasso. Electronic Journal of Statistics, 1:169–194, 2007.

[5] F. Chaumette and S. Hutchinson. Visual servo control, part I: Basic
approaches. IEEE Robotics and Automation Magazine, 13(4):82–90,
December 2006.

[6] P.I. Corke. A robotics toolbox for MATLAB. IEEE Robotics and

Automation Magazine, 3(1):24–32, March 1996.
[7] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with

Gaussian processes. In ICML ’05: Proceedings of the 22nd inter-

national conference on Machine learning, pages 201–208, New York,
NY, USA, 2005. ACM.

[8] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode rein-
forcement learning. Journal of Machine Learning Research, 6:503–
556, 2005.

[9] A. M. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and Sh. Mannor.
Regularized policy iteration. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing
Systems 21, pages 441–448. 2009.

[10] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A distribution-free

theory of nonparametric regression. Springer-Verlag, New York, 2002.
[11] T. Jung and D. Polani. Least squares SVM for least squares TD

learning. In ECAI, pages 499–503, 2006.
[12] M.G. Lagoudakis and R. Parr. Reinforcement learning as classification:

Leveraging modern classifiers. In ICML-03, pages 424–431, 2003.
[13] M. Loth, M. Davy, and P. Preux. Sparse temporal difference learning

using LASSO. In IEEE International Symposium on Approximate

Dynamic Programming and Reinforcement Learning, 2007.
[14] S. Mannor, I. Menache, and N. Shimkin. Basis function adaptation

in temporal difference reinforcement learning. Annals of Operations

Research, 134:215–238, 2005.
[15] G.L. Mariottini and D. Prattichizzo. Egt: a toolbox for multiple

view geometry and visual servoing. IEEE Robotics and Automation

Magazine, 3(12), December 2005.
[16] S. P. Meyn. Control Techniques for Complex Networks. Cambridge,

2008.
[17] V. Mnih, Cs. Szepesvári, and J.-Y. Audibert. Empirical Bernstein

stopping. In Proceedings of the 25th Annual International Conference

on Machine Learning (ICML 2008), pages 672–679, 2008.
[18] R. Parr, C. Painter-Wakefield, L. Li, and M.L. Littman. Analyzing

feature generation for value-function approximation. In ICML, pages
737–744, 2007.

[19] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[20] D-X. Zhou. Capacity of reproducing kernel spaces in learning theory.
IEEE Transactions on Information Theory, 49:1743–1752, 2003.

730

