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Abstract— This paper studies the performance of consensus-
based rendezvous algorithms when the agent location measure-
ments are subject to noise. In our previous work [1] we provided
worst-case bounds on the convergence radius in the case of noisy
location estimates. Even though worst-case results are tight,
they are conservative. The aim of this paper is thus to investigate
typical realizations of consensus-based rendezvous algorithms.
We show that while the expected value of the convergence radius
is finite, it is bounded by the noise covariance. We also show that
there is a natural trade-off between the speed of convergence
and the radius of convergence to rendezvous. The results are
illustrated with simulations.

I. INTRODUCTION

In robotic networks, rendezvous refers to the task of
controlling agents in a formation towards a common meeting
point, using only the observations of the neighboring agents.
Several distributed algorithms for solving the rendezvous
problem are currently available in the literature. For example,
the approach originally presented in [2] has been extended to
both synchronous [3] and asynchronous [4], [5] cases. The
proposed algorithms are all distributed in the sense that each
robot takes the decision based only on the observations of a
certain subset of the agents in the formation.

Parallel to this work, there has been much research in
the control community on consensus algorithms. Originally
described in [6], and presented to the engineering community
in [7] in the context of parallel computing [8], [9], consensus
protocols has been introduced to the control community in
[10]–[12] and have been extensively studied since. Varia-
tions of the consensus protocol have also been studied. For
instance the so called gossip algorithms by the computer net-
work community [13], also known as aggregation protocols
[14], are examples of such alternative formulations.

Observe that if the agents move freely in Rn, then
achieving rendezvous for the network is equivalent for it to
achieve consensus in Rn on their locations. This relationship
between consensus and rendezvous has not been unnoticed
to researchers [15]–[17]. In our paper [18] we investigated
this relationship and proved that rendezvous algorithms that
rely on the geometric properties of the convex hull are, in
fact, a particular realizations of consensus protocols.

Most existing studies on the rendezvous assume that the
evolution of the system is deterministic: there are no random
influences on the measurements and the evolution of the
state. This assumption is difficult to justify in real life appli-
cations, where both measurements and the evolution of the
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system have some degree of uncertainty. Some studies [19],
[20] have analyzed the effect of noise for a particular version
of the consensus protocol, and [21] considers the effect
of uniformly distributed measurement noise for a particular
class of rendezvous algorithms. In [1] we generalized these
results and studied a general class of the consensus (and
rendezvous) algorithms, where the only assumption on the
noise is that it is zero-mean and bounded. We presented a
deterministic performance guarantee that was tight for the
worst case scenario, but for typical realizations it was quite
conservative. Here we present a probabilistic analysis of the
typical situation. Our analysis focuses on the study of the
noisy consensus (for which the general solution still is, to the
best of our knowledge, an open problem). We give a bound
for the expected radius of the formation after each step, and
offer some insights on the expected size of the convergence
ball we obtained in [1]. We prove that if the noise covariance
is uniformly bounded by σ2, then the squared radius we get
after each iteration differs by at most σ2 with respect to the
one derived in the deterministic case.

The paper is organized as follows. We first review consen-
sus algorithms. Then, we characterize the contraction rate for
consensus matrices, and review the results from [1] on worst-
case convergence under noisy state estimation. We then study
the convergence of the system in both the mean and mean-
square senses. We demonstrate that although convergence in
the mean is achieved as long as the estimation noise has zero
mean, convergence in the mean-square sense is not possible
for the general case. The paper concludes with simulations
that verify the theoretical claims.

II. PRELIMINARIES AND NOTATION

A. Consensus algorithms

Consensus protocols were introduced by DeGroot [6],
and brought to the engineering community by Tsitsiklis
in 1984 [7]. They were then re-discovered independently
by the control community with the work of Jadbabaie et
al. [10]. Subsequent research inspired by this work led to
the continuous time version of the protocol [11], and was
generalized in [12]. We refer the interested reader to the
survey [22] and the references therein. In this paper, we focus
on the discrete time consensus algorithm.

Let x0 ∈ Rn be a vector, and let A ∈ Rn×n be a square
matrix with the following properties:

1) A is primitive: there is a positive integer k such that
Ak has all its entries positive.

2) A is stochastic: all its entries are non-negative, and the
sum of the entries in each row is equal to 1.
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It follows from Geršgorin’s circle theorem [23] and the
Perron-Frobenius Theorem for primitive matrices [24] that
A has all but one of its eigenvalues in the interior of the
complex unit circle and that the remaining eigenvalue is
equal to 1 and has 1, the vector in Rn which has all its entries
equal to 1, as its associated eigenvector. From here it follows
that the discrete time linear system given by xm = Amx0

is stable, and converges to an equilibrium point which is
a scalar multiple of 1, the eigenvector associated with the
eigenvalue 1 [25]. We call such a matrix A a consensus
matrix.

It is shown, among others in [7], [12], that if {Ai}i∈N ⊂
Rn×n are all consensus matrices, and their positive entries
are uniformly bounded below by a positive real number α >
0 (independent of i), then

lim
m→∞

m∏
i=1

Ai = vT ⊗ 1. (1)

where ⊗ denotes the Kronecker product and v is a vector
such that it has non-negative entries that add up to one. The
following lemma, taken from [24], can easily be seen to hold.

Lemma 1: Let A, B ∈ Rn×n be two non-negative matri-
ces. If both A and B have its zero and positive entries in
the same positions, then either both matrices are primitive,
or none of them is. That is, for non-negative matrices the
condition of being primitive depends only on the profile of
the matrix.

B. Contraction rate for a consensus matrix

Let C ∈ Rn×n be a consensus matrix. If the matrix
represents a connected graph, and its positive entries are
bounded below by ε > 0, we characterize the set Cnε that
describes the elements of such matrices as

Cnε = Bnε ∩ Snε ∩ Pnε ∩ Dnε , (2)

where for 1 ≤ i, j ≤ n

Bnε = {ai, j : ai, j ∈ {0} ∪ [ε, 1]},

Snε = {ai, j :
n∑
k=1

ai, k = 1},

Pnε = {ai, j :
∑

l1,...,ln−1

ail1al1l2 . . . aln−1j ≥ εn},

Dnε = {ai, j : ai, i ∈ [ε, 1]},

The set Cnε characterizes all the consensus matrices we are
interested in. Observe that since Cnε is the finite intersection
of closed sets, it is closed. Since Bnε is a bounded set, so is
Cnε . Hence this set is compact.

For a particular C ∈ Cnε , we denote its n eigenvalues (not
necessarily distinct) by λ1, . . . , λn, where |λn| ≤ · · · ≤
|λ2| < λ1 = 1. As a consequence of Rouché’s theorem
and the inverse mapping theorem for analytic functions
[26], the roots of a polynomial are continuous functions of
its coefficients. Since the coefficients of the characteristic
polynomial of a matrix are a continuous function of its
entries, the second largest eigenvalue λ2 is a continuous

function over the set Cnε , which is compact. Hence, there
exists ρ < 1 such that |λ2| ≤ ρ, for every C ∈ Cnε .
For technical reasons we will assume from now on that
all the eigenvalues are distinct. Note that this is generically
true since the set of matrices with repeated eigenvalues has
measure zero.

Let vi be the eigenvector associated to the eigenvalue
λi. The set V = {vi}ni=1 is linearly independent, hence
span (V ) = Rn. Let ∆ = span (1) be the diagonal on
Rn. Given C ∈ Cnε , we denote by ∇C the complement
of ∆ which is invariant under the action of C, ∇C =
span (V \ {1}). Note that C acts as the identity on ∆.

Recall that Rn = ∆ ⊕ ∇C. Let v ∈ Rn. Write v =
v∆ + v∇C

. Observe that for the elements of v to be in
consensus, we need v∇C

= 0. If vi, vj are the components
i and j of v, then

|vi − vj | =
˛̨̨`

(v∆)i + (v∇C)i

´
−

“
(v∆)j + (v∇C)j

”˛̨̨
=

˛̨̨
(v∇C)i − (v∇C)j

˛̨̨
≤

˛̨
(v∇C)i

˛̨
+

˛̨̨
(v∇C)j

˛̨̨
≤
√

2 ‖v∇C‖ . (3)

Given v, its norm in∇C is a continuous function of C ∈ Cnε .
Since Cnε is compact, there is a matrix C? ∈ Cnε for which
the norm of v in ∇C? is maximum. Let r ∈ ∇C. Since ∇C

is invariant under C, then we can restrict the norm ‖·‖ in Rn
to a norm in this invariant subspace. We denote such a norm
as ‖ · ‖∇C

. In case ∇C = ∆⊥, the orthogonal complement
to the diagonal, we refer to this norm as the residual error.
Observe that

‖Cr‖∇C
≤ ‖C‖∇C

· ‖r‖∇C
≤ ρ‖r‖∇C

. (4)

Therefore, if v′ = Cv, from (3) and (4) we obtain∣∣∣(v′)i − (v′)j
∣∣∣ ≤ √2 ‖(Cv)‖∇C

≤
√

2ρ ‖v∇C? ‖ . (5)

This represents a uniform bound on the decay rate between
any two elements in v. In particular, this bound holds for
the elements that attain the diameter of v (the ones that
maximize the left-hand side in (3)). This establishes the
following result:

Theorem 2: The rate of convergence to consensus under
matrices in Cnε is at least exponential with the rate ρ.

This result (the exponential convergence rate) is well
known in the literature on consensus algorithms, and for
some particular matrices tighter convergence bounds have
been obtained [27]–[29]. For the case when noise is present,
in [20] some convergence rates are derived, but they rely on
the particular structure of the consensus matrices they are
considering.

III. MODEL

Let R be a robotic network with N robots as defined
in [30], and let {qi}Ni=1 be the positions of the robots with
respect to a fixed coordinate frame Q. We assume that the
robots have no knowledge about Q.

We assume that each of the robots is capable of identifying
robots that satisfy a certain criterion ∼, defining in this
way the edges of the proximity graph corresponding to the
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formation. Observe that ∼ is not necessarily a symmetric
relation. For each robot i, we let Ni = {j ∈ R| i ∼ j} be
the set of neighbors of i. We assume that i is a neighbor of
itself, i ∼ i. Some examples of such relation ∼ are being
closer than certain distance d or being neighbors in the sense
of Voronoi.

In [18] we assumed that each robot i was able at any
time to correctly estimate the positions of its neighbors
with respect to its local coordinate frame Qi. We showed
that convergence to rendezvous was independent of such a
reference frame. We denote the position of robot j in the
frame Qi by pi, j . In this paper, we focus on the case when
if i ∼ j, then the estimated position p̃i,j of robot j by robot i
is p̃i, j = pi,j +ni, j where ni, j is some measurement noise.

Based on the information that the robots gather from the
observations of their neighbors they update their position,
with respect to the coordinate frame Q, as

qi[m+ 1] = qi[m] + ui[m], (6)

where the control law ui for the motion of robot i is based
on distributed consensus and is described next.

IV. CONSENSUS-BASED RENDEZVOUS

Algorithm 1 Consensus-Based Rendezvous
Require: Agent i at time m

1: Identify the set of neighbors Ni =
{
i1, i2, . . . , iri(m)

}
.

2: Evaluate the position pi, ij , 1 ≤ j ≤ ri(m) of each
neighbor, and its own position pi, i0 with respect to a
local coordinate frame Qi.

3: Compute pi =
∑ri(m)
j=0 λi, jpi, ij , where λi, j > ε > 0

and
∑ri(m)
j=0 λi, j = 1.

4: Set ui[m] = % (pi − pi, i0), where 0 < % < 1.

Algorithm 1 is the Consensus-Based Rendezvous (CBR)
as presented in [18] when no noise is present in the mea-
surements. When estimation is subject to noise, the positions
observed by the robot i are p̃i, ij rather than pi, ij . Thus, Line
3 becomes

pi =
ri(m)∑
j=0

λi, jpi, ij +
ri(m)∑
j=0

λi,jni, j , (7)

where ni,i = 0. The only assumption we make about the
noise is that it has zero mean and bounded support.

The following discussion on the bound for the ball to
which the robots converge under the CBR algorithm is taken
from [1], and is included here for completeness.

As in [18], we can show that in the noisy scenario the
updates can be made invariant with respect to the coordinate
frame that each robot chooses. Furthermore, the orthonor-
mality of the matrix describing the change of coordinates
implies that the noise levels remain invariant.

Lemma 3 (Lemma 3 in [18]): The evolution of each
robot is independent of the local frame Qi it chooses to
implement the CBR algorithm.

Due to this lemma we can thus assume that the location
of the robots are described in the global frame Q. We
can thus stack together the equations for each robot, and
write the evolution of the system in the matrix form as
q[m + 1] = I q[m] + U[m] + N[m], where I ∈ RN×N
is the identity matrix, q ∈ RN×n, U ∈ RN×n and the
noise matrix N[m] ∈ RN×n. Under the assumption that the
proximity graph G (R) is connected, the induced matrix AG ,
where the entry ai, j = λi, j , is a consensus matrix. This
makes U[m] = % (AG − I) q[m], % ∈ (0, 1) and thus we
can rewrite the discrete time system as

q[m+ 1] = [(1− %)I + %AG ] q[m] + N[m]. (8)

Since the matrix [(1− %)I + %AG ] = CG [m] is also a
consensus matrix, we rewrite (8) as

q[m+ 1] = CG [m]q[m] + N[m]. (9)

Remark 1: Although (9) has been derived under the as-
sumption of a uniform % for each robot, it is possible to
derive an equivalent formulation if each robot has its own
%i.

To simplify the notation, we will drop the dependency on
the proximity graph G. Under the action of C, the evolution
of the formation can be viewed as the joint evolution of
n individual consensus systems in RN , all of them sharing
the same consensus matrix. From now on, we thus consider
a single vector in RN , knowing that the results extend to
RN×n.

Suppose that at time m+ 1, the system evolves according
to the matrix C ∈ CNε . Let ∆ be the diagonal in RN and let
∇C be the complement of ∆ invariant under the action of
C. Since RN = ∆⊕∇C the evolution can be decomposed
as

q[m+ 1]∆ = (C[m]q[m])∆ + N[m]∆,
q[m+ 1]∇C

= (C[m]q[m])∇C
+ N[m]∇C

C
.

The norm ‖ · ‖∇C
indicates how far the formation is from

consensus, so it is enough to focus on the subspace ∇C. We
say that the formation reaches ξ-consensus if ‖q‖∇C

< ξ.
With respect to reaching consensus, the effects of N[m]∆ are
negligible. Since ∇C is invariant under C, it thus suffices to
study the evolution only on this subspace:

q[m+ 1]∇C
= (C[m]q[m])∇C

+ N[m]∇C
. (10)

For simplicity the index ∇C will be dropped from now on,
but all the results apply only to∇C. Consider Cq[m]+N[m].
From (4) we have that

‖q[m+ 1]‖ ≤ ρ‖q[m]‖+ ‖N[m]‖. (11)

Thus we have the following lemma:
Lemma 4: If at time m

‖N[m]‖ < (1− ρ)‖q[m]‖, (12)

then ‖q[m+ 1]‖ < ‖q[m]‖.
This result implies that as long as the noise is bounded

(uniformly in time), the formation will converge to a finite
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ball. The bounded noise assumption is quite natural since the
noise is the result of the measurement errors due to imperfect
sensors, which have a finite range.

Theorem 5: Suppose that the noise is uniformly bounded
by ς , this is ‖N[m]‖ ≤ ς < ∞ for every time m. Then, as
long as ‖q‖ > ς/(1 − ρ), ‖q‖ will be decreasing, and the
formation will converge to ς/(1− ρ)-rendezvous.

Proof: This follows from LaSalle’s principle and
Lemma 4.

Note that Theorem 5 guarantees that the formation con-
verges to a ball if it is not already inside it. Once inside, it
can escape, but it will be then driven back into the ball.

As discussed in [1], for the bound given by Theorem 5
to be tight we require equality in the different steps, which
leads us to the worst-case scenario. In a typical realization,
the worst case scenario is far from typical, and the robots
converge to a smaller ball. In the next section, we look
at the typical realization, and offer some guarantees for its
performance.

V. PROBABILISTIC GUARANTEES

The bound presented in Theorem (5) is tight, but con-
servative for a typical realization. We thus provide some
probabilistic guarantees on this bound. In particular, we look
at convergence in the mean and mean-square sense.

Although we are allowing each robot to choose the weights
for the convex combinations (or the coefficients in the
consensus matrices C) at random, the stochastic properties
we consider next are due to the noise in the measurements
rather than to the matrices. Hence, for our noise analysis, we
will assume that the matrices are known.

A. Convergence in the mean

We first show that, on average, the system will behave as
its deterministic counterpart. This result holds as long as the
noise has zero mean. We assume that the robots are points
in R, but the results extend directly to Rn.

Claim 6: The noisy rendezvous system described by (9)
converges in the mean. That is, there exists q? such that
limk→∞ E [|qi[k]− q?|] = 0 for each i.

Proof: Given k ∈ N, it follows that

E [q[k + 1]] = E [C[k]q[k] + N[k]]
= E [C[k]q[k]] + E [N[k]]
= C[k]E [q[k]] , (13)

and thus, by induction,

E [q[k + 1]] =

 k∏
j=0

C[k − j]

E [q[0]] . (14)

But E [q[0]] = q[0], therefore

lim
k→∞

E [q[k + 1]] = q?, (15)

where q? is the consensus value for the system if no noise
is present. Since q? ∈ ∆, we can write q? = q?1. Choosing
this q? the result follows.

It is desirable to give some guarantees on the convergence
of the system in the mean square sense, since this is
related to the radius of the formation. Unfortunately, the
convergence cannot be ensured for the general case1. In
the next subsection it is shown that, although mean square
convergence cannot be ensured, it is possible to impose a
bound on the evolution of the residual error at each step,
which can be related to quantifying how far the robots are
from the rendezvous location.

B. Expected residual error

In Theorem 5 we derived a bound on the maximum
diameter of the formation. As we discussed in [1] the bound
is quite conservative for typical realizations. A much tighter
bound can be derived by studying the mean-square properties
of the formation. We will show that, at each step, the
formation behaves almost as it would in the deterministic
case, with an additional offset that is bounded by σ2, the
covariance for the measurement noises. From this derivation
it will directly follow that the convergence of the system in
the mean-square sense can not be guaranteed.

We first introduce some additional notation. If q ∈ RN
we will denote by µq the mean of the components of x,
µq = 1

n1Tq.
Theorem 7: Given a sequence of N × N stochastic ma-

trices {C[k]}k∈N, let q[0] =
[
q1[0] · · · qN [0]

]T
be a real

vector in RN . If

q[k + 1] = C[k]q[k] + N[k] (16)

where for 1 ≤ i ≤ N the noise N[k] =[
N1[k] · · · NN [k]

]
∈ RN is a vector of independent

random variables with E [Ni[k]] = 0 and E
[
N2
i [k]
]

= σ2
i <

σ2, then

E
[

(qi[k + 1]− µq[k + 1])2
∣∣∣q[k]

]
≤ (q̂i[k + 1]− µq̂[k + 1])2 +

(N − 1)σ2

N
, (17)

where q̂[k + 1] = C[k]q[k].
Proof: Recall that λi, j [k] denotes the entry (i, j) of

C[k]. We thus rewrite qi[k + 1] as

qi[k + 1] =
∑
j∈Ni

λi, j [k]qj [k] + Ni[k]. (18)

Since q̂i[k+ 1] =
∑
j∈Ni

λi, jqj [k], (17) can be rewritten as

E
ˆ
(qi[k + 1]− µq[k + 1])2

˛̨
q[k]

˜
= E

ˆ
((q̂i[k + 1]− µq̂[k + 1]) + (Ni[k]− µN[k]))2

˛̨
q[k]

˜
= E

ˆ `
(q̂i[k + 1]− µq̂[k + 1])2

˛̨
q[k]

˜
+ E [2 (q̂[k + 1]− µq̂[k + 1]) (Ni[k]− µN[k])|q[k]]

+ E
ˆ
(Ni[k]− µN[k])2

˛̨
q[k]

˜
. (19)

1Although, for special realizations of the consensus matrices the result
holds. For details, see [19].
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We now analyze each of the three right-hand side terms of
(19). From the definition of q̂[k+ 1], the first term is simply

E
[

(q̂i[k + 1]− µq̂[k + 1])2
∣∣∣q[k]

]
= (q̂i[k + 1]− µq̂[k + 1])2

. (20)

Since the Ni are independent from q[k], we obtain for the
second term

E [ 2 (q̂[k + 1]− µq̂[k + 1]) (Ni[k]− µN[k])|q[k]] = 0. (21)

Finally, for the third term, since the Ni are independent from
q[k], we can ignore the conditional part of the expectation,
and thus obtain

E
[

(Ni[k]− µN[k])2
∣∣∣q[k]

]
= E

[
Ni[k]2

]
− 2E [Ni[k]µN[k]] + E

[
µ2

N[k]
]
. (22)

The first term on the right hand side of (22) is simply the
variance of the noise, which is bounded by σ2. For the second
and third terms we will use that the Ni are uncorrelated.
Therefore,

E [Ni[k]µN[k]] ≤ σ2

N
, (23)

and

E
[
µ2

N[k]
]

=
1
N2

E

 n∑
r=1

N2
r +

∑
r 6=j

NrNj

 ≤ σ2

N
. (24)

Putting these results together, we can express (17) as

E
[

(qi[k + 1]− µq[k + 1])2
∣∣∣q[k]

]
≤ (q̂i[k + 1]− µq̂[k + 1])2 +

(
σ2 − σ2

N

)
= (q̂i[k + 1]− µq̂[k + 1])2 +

(N − 1)σ2

N
, (25)

which we wanted to prove.
Remark 2: It is easy to see (for instance, following [20])

that q − µq1 ∈ ∆⊥. Therefore, (17) quantifies the mean-
square value for the residual error after each iteration.

Remark 3: The bound in (25) is tight for the case when
the Ni are independent identically distributed random vari-
ables with E

[
N2
i

]
= σ2. This implies that after any step, the

residual error is expected to be, in the mean square sense,
about σ2 away from the residual error in the deterministic
case. This also implies that convergence in the mean square
sense is not possible in general.

VI. PHYSICAL CONSTRAINTS ON σ

As described in [1], the effective value of σ will depend
on the maximum velocity of the robots.

For a robot i, consider its next location pi as defined
in (7). Since we are dealing with physical robots with an
upper bound on how fast they can move, there is a d so that
the distance between successive points in time is bounded
by d, ‖qi[m + 1] − qi[m]‖ ≤ d for every m. This means
that although the point pi obtained in (7) might satisfy
|pi − qi[m]| > d, the maximum velocity constraint of the

robot will limit it to be at most d units away from where it
started during each time interval. Let |pi − qi[m]| = D > d.
The point qi[m+ 1] that the robot reaches is then at most

qi[m+ 1] = qi[m] + d (pi − qi[m]) /D
= (1− d/D)qi[m] + (d/D)pi. (26)

Since pi is as presented in (7), we can rewrite (26) as

qi[m+ 1] = (1− d/D)qi[m]

+ (d/D)

ri(m)∑
j=0

λi, jqi, ij [m] +
ri(m)∑
j=0

λi,jni, j

 (27)

This implies that the noise N[m]i =
∑ri(m)
j=0 λini, j will be

reduced by a factor of d/D < 1.
In other words, the smaller the time interval and the slower

the robots are, the smaller the d and the more robust the
system will be with respect to noise. On the other hand, the
slower the robots are, the slower the convergence will be.

VII. SIMULATIONS

Note that the theoretical results are invariant to change
of scale. So, for the simulations, we will omit any explicit
reference to units.

For the simulations we present here, we implemented our
algorithm by uniformly deploying 30 robots in a square of
side 10. We assumed a uniform noise distribution between
[−9, 9] (giving thus a variance of σ̃2 = 324/12 = 27) for the
relative measurements between the robots (the ni, j in (7)),
which is quite large compared to the size of the region. We
chose the uniform distribution for the noise because among
all the distributions with a given bounded support, this is the
one that provides the least information about the process.
We ran the system by setting d in (26) to .1, 1 and 100
respectively, and assuming a proximity graph induced by an
r-disk graph with r = 6. Observe that because we were
considering the ni, j rather than the individuals Ni[k], the
value of σ2 in our bound satisfies σ2 ≤ σ̃2 = 27.

Figure 1 shows the evolution of the diameter for the same
noise level and different values of d. As the figure shows,
for typical realizations our bound reflects the behavior of the
residual error. As we discussed, the smaller the d the more
robust the system is to noise (hence, the smaller the σ that
affects the formation). As expected, the ξ-rendezvous level
depends on d but, because of the dependency of ρ on d, the
final effect is quite complex.

VIII. CONCLUSION

We derived probabilistic bounds on the performance of
consensus-based rendezvous algorithms when the agent lo-
cation measurements are subject to noise. We showed that
the bound for the residual error of convergence is bounded
by σ at each iteration with respect to the behavior in the
deterministic case. Furthermore, under the assumptions that
the noise has bounded support and zero mean, the system
converges in the mean to the deterministic value for the
rendezvous. We also showed that in general it is not possible
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(a) Diameter evolution when d = 100. (b) Diameter evolution when d = 1. (c) Diameter evolution when d = 0.1.

Fig. 1. Evolution of the formation diameter when the noise is uniformly distributed in [−9, 9], and the robots have different maximum speeds. Dashed
line marks the theoretical bound. Observe that the larger the maximum traveled distance d, the less robust the system is to noise, but the faster it converges.

to guarantee the convergence in the mean square sense for
consensus protocols. Further work will focus on deriving
better bounds by studying typical realizations of consensus
matrices.

REFERENCES
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