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Abstract— This paper is concerned with an information-
theoretic framework to aggregate a large-scale Markov chain
to obtain a reduced order Markov model. The Kullback-
Leibler (K-L) divergence rate is employed as a metric to
measure the distance between two stationary Markov chains.
Model reduction is obtained by considering an optimization
problem with respect to this metric. The solution is just the
optimal aggregated Markov model. We show that the solution
of the bi-partition problem is given by an eigenvalue problem.
To construct a reduced order model with m super-states, a
recursive algorithm is proposed and illustrated with examples.

I. INTRODUCTION

An important new tool for understanding multi-scale phe-

nomenon is based on the spectral theory of Markov models.

For a stationary Markov chain on a finite dimensional

state space, the second eigenvalue is precisely the rate of

convergence to stationarity. A more recent contribution to

the spectral theory of Markov models is the use of the

second eigenvector (or eigenfunction) to obtain the intuition

regarding dynamics, as well as methods for aggregation

in complex models. In dynamical systems settings, this

technique was introduced as a heuristic in [1], [2] to obtain

a state-space decomposition based on an analysis of the

Perron cluster of eigenvalues for the generator of a Markov

process. The technique has been applied in diverse settings:

[1] considers analysis of the nonlinear chaotic dynamics of

Chua’s circuit model, [2] concerns molecular models, and

[3] treats transport phenomena in building systems. In each

of these papers, it is shown through numerical examples that

the associated eigenvectors carry significant information re-

garding dynamics. In particular, its sign-structure can be used

to obtain the partition information for defining super-states.

Theory to support this aggregation technique is contained

in [4], [5], based on a change of measure similar to what is

used to establish large deviations asymptotically, following

[6]. These results may be regarded as an extension to the

classical Wentzell–Freidlin theory [7].

The spectral method has close connections to both the

classical notion of nearly completely decomposable Markov

chain (NCDMC) [8] and the notion of cut in spectral graph

theory [9]. For an NCDMC, the state space can be naturally

divided into groups with strong interactions within each

group and weak interactions among different groups. Such a

decomposition is consistent with sign-structure of the second
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eigenvector and an assumption on a spectral gap between

the second and the rest of the eigenvalues. Aggregations

of states within each group can then be justified using a

singular perturbation framework (see [10]): over the long

time-period that weak interactions become significant, the

strongly interacting states within each group can be treated

as an aggregated super-state.

A related notion is that of a cut that is used for partitioning

a graph. A symmetric Markov chain may be represented as

an undirected graph where vertices of the graph denote states

of the Markov chain and (weights on) edges represent the

transition probabilities between states. A cut is defined to

be a certain normalized sum of weights that are removed

to obtain a bi-partition (into two groups) of the graph. In

terms of a minimal cut, the optimal solution for the bi-

partition problem is described by the sign-structure of the

second eigenvector of the Markov transition matrix [9]. The

resulting decomposition algorithms have been extensively

used in applications including image segmentation, clustering

and graph partitioning.

The objective of this paper is to examine decomposition,

aggregation and model reduction issues for Markov chains

in information-theoretic terms. The goal is to construct an

information-theoretic basis for both interpreting classical and

more recent spectral methods, and deriving new error bounds

and algorithms for model reduction of Markov chains. In

particular, we seek to explain the significance of the second

eigenvector in these terms.

The consideration of this paper rests on the use of

Kullback-Leibler divergence rate metric for stationary

Markov chains [11]. With K-L metric, the model reduction

problem is expressed as an optimization problem. Taking

bi-partition problem as an example, the solution is shown

to be given by the sign-structure of the second eigenvector

consistent with the spectral theory of Markov models. To

construct a reduced order model with m super-states, a re-

cursive algorithm is proposed and illustrated with examples.

The remainder of this paper is organized as follows: In

Section II, we define the metric used to compare Markov

chains. In Section III, we pose an optimization problem with

respect to this metric and describe the results for bi-partition

case. In Section IV, we describe several examples.

II. METRIC

A. Preliminaries and notations

We consider a first-order homogeneous Markov chain Xt
defined on a finite dimensional state space N = {1, 2, . . . , n}
(see [12] for terminology). The following notations are

adopted throughout the paper: The state value at time t is
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denoted as X(t), the initial condition X(0) is denoted as

x0 ∈ N , ν0 ∈ P(N ) is used to denote the probability distri-

bution of the initial condition x0. The transition probability

between states is described by a n × n stochastic matrix P

whose ijth entry is given by

Pij = Prob(X(t+ 1) = j | X(t) = i), i, j ∈ N . (1)

A Markov chain is said to be stationary if it has a unique

stationary distribution π such that

π = πP, (2)

where πi > 0 for all i ∈ N . We use the tuple (π, P )
to denote a stationary Markov chain P with stationary

distribution π.

B. K-L divergence rate for Markov chains on N

For two stationary Markov chains (π, P ) and (θ,Q) de-

fined on the same state space N , the K-L divergence rate is

given by the following formula (see [11]):

R(P ‖ Q) =
∑

i,j∈N

πiPij log

(
Pij

Qij

)

. (3)

To ensure R(P ‖ Q) is finite, we require P to be absolutely

continuous w.r.t. Q, i.e. Qij = 0 ⇒ Pij = 0.

C. K-L divergence rate for Markov chains on different state

spaces

In this paper, we are interested in comparing two Markov

chains P and Q defined on N and M respectively. The

relationship between N and M is described by a partition

function φ.

Definition 1 (partition function) Let N = {1, 2, . . . , n}
and M = {1, 2, . . . ,m} be two finite dimensional state

spaces with m ≤ n. A partition function φ : N 7→ M is

a surjective function from N onto M. For k ∈ M, φ−1(k)
denotes the kth group in N .

Since we already have a formula for comparing two

Markov chains on the same state space (see (3)), the strategy

is to use the partition function φ to lift the Markov chain Q

to the original state space N . The lifted Markov chain is

denoted as Q̂.

Definition 2 (µ-lifting of Q) Let φ be a partition function

on N and µ be a probability measure on P(N ). Let M
denote the range of φ and Q be a Markov transition matrix

on M. Then µ-lifting of Q with the partition function φ is

a Markov matrix on N defined as

Q̂
(µ)
ij (φ) =

µj
∑

k∈ψ(j) µk
Qφ(i)φ(j), i, j ∈ N (4)

where ψ(j) = φ−1 ◦ φ(j) ⊂ N denotes the set of states

belonging to the same group as the jth state.

The definition of the K-L divergence rate is extended to

two chains on different state spaces using the lifted chain:

Definition 3 Let (π, P ) denote a stationary Markov chain

on N and (θ,Q) a Markov chain on M. Then

R(φ)(P ‖ Q)
∆
= min
µ∈P(N )

R(P ‖ Q̂(µ)(φ)), (5)

where Q̂(µ)(φ) denotes the µ-lifting of Q with the partition

function φ.

Theorem 1 Suppose that (π, P ) is a stationary Markov

chain on N , φ is a partition function with range M with

m ≤ n, and (θ,Q) is a stationary Markov chain on M.

Then, there is a unique matrix Q̂(µ∗)(φ) that achieves the

minimum in (5). The optimizer µ∗ can be taken to be the

stationary distribution of P :

π ∈ arg min
µ∈P(N )

R(P ‖ Q̂(µ)(φ)). (6)

Note that the theorem does not say that µ∗ is unique. A

probability measure µ minimizes (5) if and only if there

exists constants {Kl, l ∈ M} satisfying

πj

µj
= Kl, ∀j ∈ φ−1(l), l ∈ M. (7)

The corresponding matrix Q̂(µ)(φ) then coincides with

Q̂(π)(φ).
Proof of Theorem 1: On denoting,

Rφ(P ‖ Q) =
∑

i,j∈N

πiPij log

(
Pij

Qφ(i)φ(j)

)

(8)

the K-L divergence rate (3) between (π, P ) and the lifted

Markov chain (θ̂(φ), Q̂(µ)(φ)) is expressed as

R(P ‖ Q̂(µ)(φ)) =
∑

i,j∈N

πiPij log

(

Pij

Q̂
(µ)
ij (φ)

)

,

= Rφ(P ‖ Q) −
∑

i,j∈N

πiPij log
µj

∑

k∈ψ(j) µk
,

= Rφ(P ‖ Q)
︸ ︷︷ ︸

term (i)

−
∑

j∈N

πj log
µj

∑

k∈ψ(j) µk
︸ ︷︷ ︸

term (ii)

,

(9)

where we used the fact that πj =
∑

i∈N πiPij (see (2)).

In (9), term (i) is independent of the probability measure µ

and term (ii) is independent of the Markov transition matrices

P and Q. Thus, we only need to consider the term (ii) of

R(P ‖ Q̂(µ)(φ)) to find the optimal µ ∈ P(N ). Using (9)

and setting l = φ(j), we have

R(P ‖ Q̂(π)(φ)) −R(P ‖ Q̂(µ)(φ))

=
∑

l∈M

(
∑

k∈φ−1(l)

πk) log

∑

k∈φ−1(l) πk
∑

k∈φ−1(l) µk
−
∑

j∈N

πj log
πj

µj
,

≤
∑

j∈N

πj log
πj

µj
−
∑

j∈N

πj log
πj

µj
= 0,

where the log sum inequality (see [13]) is used and the

equality holds if and only if (7) is satisfied.
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Thus R(P ‖ Q̂(π)(φ)) ≤ R(P ‖ Q̂(µ)(φ)) for all µ ∈
P(N ). Note that the optimal choice of probability measure

is not unique and µ = π is one of the optimal choice which

minimizes R(P ‖ Q̂(µ)(φ)).
The formula (9) in the proof of Theorem 1 will also

be useful in obtaining further results. For this purpose, we

summarize the formula for the case µ = π in the following:

Lemma 2 Under the assumptions of Theorem 1,

R(P ‖ Q̂(π)(φ)) = Rφ(P ‖ Q) − S(π, φ), (10)

where Rφ is defined in (8), and

S(π, φ) =
∑

j∈N

πj log
πj

∑

k∈ψ(j) πk
. (11)

III. OPTIMIZATION PROBLEM

A. Problem statement

Let (π, P ) be a given stationary Markov chain on N . The

m-partition problem, is to find the partition function φ :
N 7→ M and the optimal aggregated Markov chain (θ,Q)
such that R(φ)(P ‖ Q) is minimized:

min
φ,Q

R(φ)(P ‖ Q)

s.t.
∑

l∈MQkl = 1, k ∈ M
Qkl ≥ 0, k, l ∈ M

(12)

where R(φ)(P ‖ Q) = R(P ‖ Q̂(π)(φ)) and constraints arise

due to the stochastic property of Markov transition matrix.

The optimization problem (12) is a mixed-integer nonlin-

ear program. In general, it is intractable for Markov chains

with large state spaces.

B. Optimal solution of Q

It turns out that the main difficulty in solving (12) is in

finding the optimal partition function. The following theorem

shows that for a fixed (say an optimal) partition function φ,

the solution of Q that solves (12) can be easily obtained.

Theorem 3 Let (π, P ) be a given Markov chain on N and

φ be a partition function defined on N with the range M.

For problem (12), if φ is fixed, the optimal solution of Q is

given by

Qkl(φ) =
v(k)ΠPv(l)′

v(k)Πv(k)′
, k, l ∈ M (13)

where Π = diag(π), v(k)′ is the transpose of v(k), and v(k)

is a 1-by-n row vector whose ith entry is given by

v
(k)
i =

{
1 if φ(i) = k,

0 otherwise.
(14)

The stationary distribution of Q is given by

θk(φ) = v(k)Πv(k)′ , k ∈ M. (15)

Proof: Noting that R(φ)(P ‖ Q) is a convex function

with respect to Q, we introduce the Lagrange function for

the optimization problem (12)

L = R(φ)(P ‖ Q) +
∑

k∈M

λk(
∑

l∈M

Qkl − 1), (16)

where {λk, k ∈ N} are Lagrange multipliers. Applying

Lemma 2, we have

L = Rφ(P ‖ Q) − S(π, φ) +
∑

k∈M

λk(
∑

l∈M

Qkl − 1). (17)

On taking the derivative with respect to Qkl,

∂L

∂Qkl
=

∂

∂Qkl

(

Rφ(P ‖ Q) +
∑

k∈M

λk(
∑

l∈M

Qkl − 1)

)

= −

∑

i∈φ−1(k)

∑

j∈φ−1(l) πiPij

Qkl
+ λk.

(18)

Setting the right hand side of (18) equal to zero, we have

Qkl =

∑

i∈φ−1(k)

∑

j∈φ−1(l) πiPij

λk
, k, l ∈ M. (19)

The Lagrange multipliers {λk, k ∈ N} are obtained by

using the constraints

1 =
∑

l∈M

Qkl =

∑

i∈φ−1(k) πi

λk

∑

j∈N

Pij ,

where we used the fact that φ : N 7→ M is a surjective

function, so
∑

l∈M

∑

j∈φ−1(l)

Pij =
∑

j∈N

Pij .

Now, noting that P is a stochastic matrix, we have

1 =

∑

i∈φ−1(k) πi

λk
⇒ λk =

∑

i∈φ−1(k)

πi. (20)

Finally, substituting (20) into (19), we get

Qkl(φ) =

∑

i∈φ−1(k)

∑

j∈φ−1(l) πiPij
∑

i∈φ−1(k) πi
, k, l ∈ M

which is just the formula shown in (13). Stationarity of (15)

with respect to Q(φ) follows from a trivial calculation.

For a given partition, (13) gives the entries of optimal

Q(φ). We denote it as Q(v(1), v(2), . . . , v(m)), where in-

dicator functions {v(k), k ∈ M} are defined by partition

function φ (see (14)). Using this notation, the m-partition

problem becomes finding only the partition function φ such

that R(φ)(P ‖ Q(v(1), v(2), . . . , v(m))) is minimized:

min
φ:N 7→M

R(φ)(P ‖ Q(v(1), v(2), . . . , v(m))). (21)

C. Optimal partition function for the bi-partition problem

In this section, we consider the special case of (21), where

m = |M| = 2. This is referred to as the bi-partition problem.

In this case, v(2) = 1 − v(1). We denote v = v(1) and use

the notation Q(v) to denote Q(v(1), v(2)). We refer to v as

a bi-partition function. For a given v, the optimal solution

Q(v) is a 2 × 2 matrix whose entries are obtained using

Theorem 3.
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Lemma 4 Let (π, P ) be a given Markov chain on N and

φ be a given bi-partition function defined on N with range

M = {1, 2}. The optimal solution of Q is given by

Q(v) =

[
α(v)
β(v)

β(v)−α(v)
β(v)

β(v)−α(v)
1−β(v)

1−2β(v)+α(v)
1−β(v)

]

, (22)

where vi = 1lφ−1(1)(i), Π = diag(π), α(v) = vΠPv′ and

β(v) = vΠv′. The stationary distribution of Q is given by

θ(v) = [β(v), 1 − β(v)]. (23)

Proof: In the notation of Theorem 3, v(1) = v and

v(2) = 1 − v where 1 denotes a 1-by-n row vector with all

ones. Substituting v(1) and v(2) into formula (13), we have

Q(v) =

[
vΠPv′

vΠv′
vΠP (1−v)′

vΠv′
(1−v)ΠPv′

(1−v)Π(1−v)′
(1−v)ΠP (1−v)′

(1−v)Π(1−v)′

]

. (24)

Noting that vΠP (1− v)′ = (1 − v)ΠPv′ = β(v) − α(v)
and (1 − v)Π(1 − v)′ = 1 − β(v), we get entries of Q in

(22). The stationary distribution (23) of Q directly follows

from (15) in Theorem 3.

Using Lemma 4, we can represent Q in the optimal form

(22) in terms of bi-partition function v. Then using Lemma 2,

we can represent R(φ)(P ‖ Q(v)) as

R(φ)(P ‖ Q(v)) = (H1(Q) −H0(θ))
︸ ︷︷ ︸

term (i)

− (H1(P ) −H0(π))
︸ ︷︷ ︸

term (ii)

,

(25)

where H0 denotes the standard entropy and H1 is its Marko-

vian analog:

H1(Q) = −
∑

k,l∈M

θk(v)Qkl(v) logQkl(v),

H0(θ) = −
∑

k∈M

θk(v) log θk(v),

H1(P ) = −
∑

i,j∈N

πiPij logPij , H0(π) = −
∑

i∈N

πi log πi.

These formulae are obtained by substituting (22) and (23)

into (10). Note that term (ii) in (25) is independent of the

bi-partition function v. Thus the optimization problem (21)

is equivalent to the following problem,

min
v

[H1(Q(v)) −H0(θ(v))]. (26)

Since both Q(v) and θ(v) can be represented in terms of

α(v) and β(v), then we define

F (α, β)
∆
= H1(Q) −H0(θ)

= − 2(β − α) log(β − α) − (1 − 2β + α) log(1 − 2β + α)

− α logα+ 2β log β + 2(1 − β) log(1 − β)
(27)

We are interested in choosing v that minimizes

F (α(v), β(v)):

min
vi∈{0,1}

F (α(v), β(v)). (28)

An exact solution of (28) may be obtained by searching

over 2n possibilities for vector v. To obtain an approximate

solution, one may consider relaxing integer constraints on

vi. One particular relaxation is to let vi ∈ R and consider an

optimization problem:

min
vi∈R

F (α(v), β(v)). (29)

To obtain the solution, we take the derivative of the func-

tion F (α(v), β(v)) with respect to v. Setting the derivative

equal to zero, after some algebraic manipulations, we obtain

the following necessary condition for a minimizer v∗:

dα

dv
(v∗) = λ∗(α(v∗), β(v∗))

dβ

dv
(v∗), (30)

where

λ∗(α, β) =
log (1−β)2(β−α)2

β2(1−2β+α)2

log (β−α)2

α(1−2β+α)

.

Substituting the formulae for α(v) and β(v) (see Lemma 4)

into (30), we see that an optimal solution v∗ of the relaxed

problem (29) solves the following eigenvalue problem:

P̂ v∗
′ = λ∗Πv∗′, (31)

where λ∗
∆
= λ∗(α(v∗), β(v∗)), and P̂ = ΠP+P ′Π

2 is a

symmetric matrix.

As a result, a solution to (29) may be obtained by consid-

ering a generalized eigenvalue problem (31). We denote its

eigenvalues as {1, λ2, . . . , λn} sorted in a decreasing order.

Although we do not give details here, we propose that the

optimal solution to (29) is obtained by setting

λ∗ = max{|λ2|, |λn|}. (32)

Let u(2) denote the associated eigenvector corresponding to

the second largest eigenvalue in magnitude. Using u(2), a

sub-optimal partition function to the original problem (28)

may be obtained as,

vi =

{

1 if u
(2)
i ≥ 0

0 otherwise
, i ∈ N . (33)

Based on these considerations, we conclude that: For a

nearly completely decomposable Markov chain (NCDMC)

(π, P ), when λ2(P ) ≈ 1 and |λn(P )| < λ2(P ), a solution

to the bi-partition problem may be obtained by considering

the sign-structure of the second eigenvector. We note that the

solution proposed here is consistent with the results of [4],

[5], [9], [14].

D. A recursive algorithm to obtain m partitions

Since the bi-partition problem can be solved by consid-

ering the second eigenvector, we propose a recursive bi-

partition algorithm to obtain a sub-optimal solution for the

m-partition problem (12). The K-L divergence rate serves

as the error bound for model reduction and the recursive

algorithm is described as follows:

During the mth-iteration of the algorithm, we assume that

a partition with m groups (or super-states) is given. The

objective of the mth iteration is to obtain a refinement that

has m + 1 groups. For i = 1, . . . ,m, we denote P (i) to be

the sub-Markov transition matrix that describes the transition
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Fig. 1. The graph of the 100-state Markov chain.

Fig. 2. The graph of the aggregated 5-state Markov chain obtained using
the recursive algorithm.

probabilities within the ith group. The ith group is split into

two sub-groups according to the sign-structure of the second

eigenvector for (Π(i), P̂ (i)) (see (31) and (33)). The spectral

split of the ith group alone provides a partition of the states

into m+1 groups. We denote this partition as φ(i), and use it

to evaluate the optimal reduced order model Q(i) according

to (13). From the resulting m possible choices of m + 1
partitions, we select the one that minimizes R(φ)(P ‖ Q(i)),
i.e.,

imin = arg min
i∈{1,...,m}

R(φ)(P ‖ Q(i)).

The m + 1 super-states correspond to the original m − 1
super-states from the previous iteration together with two

super-states obtained from the spectral split of the ithmin super-

state. The associated reduced order model is given by Q(imin).

IV. EXAMPLES AND DISCUSSIONS

In this section, we present some examples to illustrate the

theoretical results described in preceding sections.

A. Block partitioning example

The 100-state stationary Markov chain for this example

is taken from [15]. Fig. 1 depicts the transition probabilities

for this chain. The cold colors indicate weak interactions

(small transition probabilities), and warm colors indicate

strong interactions (large transition probabilities) between

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

m

Inflection Point

R
(φ)

(P||Q
(m)

)

Fig. 3. The K-L divergence rate as a function of the number of aggregated
states.

Fig. 4. Layout of the Building Model: −×−×− corresponds to a single
sample path of the agent, ◦ are the sensors, gray grid spaces are walls, and
the black grid space is the exit. The agent starts in the bottom-right corner
and proceeds toward the exit by a random walk.

states. The color plot suggests that the Markov chain is nearly

completely decomposable with five groups.

In the following, we employ the recursive algorithm to

obtain a reduced order model. With m = 1, all states are

aggregated into a single group and R(φ)(P ‖ Q(1)) = 0.247.

The bi-partition problem (m = 2) is solved by considering

the sign-structure of the second eigenvector for (Π, P̂ ) (

see (31) and (33)). The resulting 2-state Markov model has

error R(φ)(P ‖ Q(2)) = 0.176. The recursive algorithm

correctly identifies five groups in the fifth recursion. Fig. 2

depicts the transition probabilities for the resulted reduced

order model Q(5). Fig. 3 depicts the error bound (K-L

divergence rate) as a function of the number of aggregated

states m = |M|. The error bound plot shows that R(φ)(P ‖
Q(m)) decreases rapidly from m = 1 to m = 5. With m = 5,

R(φ)(P ‖ Q(5)) = 0.105. After five strongly interacting

groups have been identified, additional super-states in the

reduced order model (m > 5) do not significantly decrease

the error bound.

B. Building example

We consider a grid-based model [16] of an agent

movement in a large building as shown in Fig. 4.

We denote the successive locations of the agent by

{X(0),X(1), . . . ,X(t)}. N = {1, 2, . . . , n} denote the cells

in the building that can be occupied by the agent (n = 255
for the building considered here). We use a sub-stochastic

matrix P to denote its Markovian transition probabilities:

For a special node e, called the exit node, we have Pej = 0
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Fig. 6. Depicts (a) 4-aggregation, (b) 9-aggregation, and (c) 16-aggregation of the building plane by using the initial distribution ν0.
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Fig. 5. Depicts the pseudo-stationary distribution 1

‖π̂‖
π̂, where π̂ = ν0(I−

P )−1 and ν0 ∈ P(N ) denotes the initial distribution.

for all j ∈ N . The agent leaves the building via the exit

node. For all other nodes i, it is assumed that Pi · is an

honest probability measure: An agent at node i will move

according to this distribution. If
∑

j Pij < 1, then the agent

leaves the building from node i with probability (1−
∑

j Pij).
Finally, it is assumed that each node is transient in the sense

that the agent eventually exits the building. This assumption

is expressed by requiring the matrix P to be transient.

Even though, we only present results for stationary

Markov chains, similar generalization also applies to the

transient case where K-L divergence rate is replaced by K-

L divergence, and stationary distribution is replaced by the

pseudo-stationary distribution 1
‖π̂‖ π̂, where π̂ = ν0(I−P )−1

and ν0 ∈ P(N ) denotes the initial distribution. Intuitively,
1

‖π̂‖ π̂i denotes the fraction of the expected time spent in the

ith node before the agent exits the building.

For a transient Markov chain, one requires the knowledge

of the initial distribution ν0 regarding the agent starting

location x0. It is used to obtain the pseudo-stationary dis-

tribution 1
‖π̂‖ π̂ as depicted in Fig. 5. Fig. 6 summarizes

the aggregations obtained using the recursive algorithm (for

m = 4, 9, 16). We make following two observations:

1) The 1
‖π̂‖ π̂ is supported primarily in left and bottom

corridors (see Fig. 5). As a result, one obtains finer

aggregations of states in these corridors with increasing

values of m (see Fig. 6).

2) For large values of m, the groups show non-uniform

aggregation of states even in the same corridor. This

is due to the nature of the assumed agent movement

dynamics. These transition probabilities are obtained

by perturbing the baseline best route of an agent

to the exit. As a result, states inside offices have

small probability of visit and these states are grouped

together into groups with larger number of states.
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