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Abstract— In this paper, fault-tolerant, state feedback con-
trollers are synthesized for piecewise-affine (PWA) systems
while minimizing an upper bound of a quadratic cost function.
The controllers are designed to deal with partial loss of
control authority in the closed loop PWA system. The proposed
controller design technique stabilizes and satisfies performance
bounds for both the nominal and faulty systems. The new
control technique is applied to a PWA model of a wheeled
Mobile Robot (WMR) and the results are compared against a
Linear Quadratic Regulator (LQR) in simulation.

I. INTRODUCTION

Most dynamical systems exhibit nonlinear behavior [1],

while many existing control methods address linear dy-

namics. Linear models of nonlinear systems are valid only

within a small range around the equilibrium point about

which the system is linearized. Controllers that are designed

for linear models, may not even stabilize the system if

the states go beyond the allowed range. This problem is

more important especially if the system is prone to fault

occurrence which may lead to jumps of states in the system.

In [2] linear local controllers for performance are extended

to PWA controllers that can guarantee global stability. PWA

systems are a class of hybrid systems and are a good

modeling framework for nonlinear phenomena . The theory

of continuous-time PWA systems has been applied to several

areas, such as, switched production and inventory control

[3], aerospace systems [4], wheeled robots [5] and electric

circuits [6]. PWA slab systems [7] are able to switch among

several linear models based on variations of only one state

variable. Each linear model can approximate some nonlinear

phenomena in the system when the switching state is in

a certain range. PWA systems pose challenging problems

due to their switching nature. Switching among each closed

loop model, either nominal or faulty, may destabilize the

system even if each closed loop model is stable and has good

performance in its allowed working region [8]. However,

if controllers for the PWA nominal and faulty models in

all regions are designed together in such a way that there

exists a common Lyapunov function for all of them, it is

guaranteed that any switching between closed loop PWA

models for both nominal and faulty systems will be stable

[8]. It is also possible to consider a performance criterion

in the controller design problem. In this paper, an upper

bound of a quadratic cost function is minimized for the

PWA models of both nominal and faulty systems. The type

of fault which is studied in this paper is partial loss of

control authority, which is widely used to model the faults

in actuators [9], [10]. The controller design is cast as a

set of Linear Matrix Inequalities (LMIs) and solved with

SeDuMi/YALMIP [11]. The resulting controller will not only

handle large deviations from equilibrium points for systems

with nonlinear phenomena, but it also has a robust behavior

in the presence of faults without performance degradation.

This controller design technique is applied to a WMR and

the simulation results are compared favorably to those with

an LQR controller.

The paper is organized as follows. Section II presents

the PWA model. This is followed by the description of the

controller structure and performance index in section III.

Then, the controller synthesis method is presented, followed

by simulations and conclusions.

II. PIECEWISE-AFFINE REPRESENTATION

Consider a piecewise-affine nominal system

ẋ(t) = Aix(t) + Biu(t) + bi (1)

where x(t) ∈ R
n is the state vector of the system and u(t) ∈

R
m is the input to the system. Associated with system (1)

there is a corresponding polytopic partition of the state space

representing working regions of each PWA model by R i, i ∈
{1, ..., M} [7], [12]

Ri = {x | H̄ix̄ > 0} (2)

where H̄i =

[

Hi hi

0 1

]

, x̄ =

[

x
1

]

. Hi and hi directly follow

from the state space partitioning. For regions containing the

equilibrium points, the regions are represented as

Ri = {x | Hix > 0} (3)

Ellipsoidal Covering: We can build an exact approxima-

tion of the polytopic partitioning of the state space with

ellipsoidal cell boundings for PWA slab systems [7]. This

bounding enables a convex formulation of the quadratic sta-

bilization problem for PWA slab systems [7]. The description

of the ellipsoidal covering is

ǫi = {x | ‖ Eix + fi ‖< 1} (4)

where Ei and fi follow directly from the polytopic

partitioning. More precisely, if Ri = {x | d1 < cT
i x < d2},
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then the associated ellipsoidal covering is described by

Ei = 2cT
i /(d2 − d1) and fi = −(d2 + d1)/(d2 − d1).

A PWA representation for a faulty system with partial loss

of control authority is as follows:

ẋ(t) = Aix(t) + Bfiu(t) + bi (5)

The state space partitioning for the faulty system is the

same as the nominal system. The matrix Bfi encapsulates

the fault in the system in each, valid for Ri. Partial loss of

control authority is a common type of fault that occurs in

certain actuator channels [9],[10]. It can be modeled as a

factor that multiplies the B matrix for the nominal system

and reduces the amount of control authority. The faulty B fi

matrix modeling partial loss of control authority can be

written as

Bfi = B(I − eje
T
j δj) (6)

where ej is the jth unit vector and δj is the amount of

failure in the jth actuator. The case of δj = 0 corresponds

to the nominal system and δj = 1 corresponds to 100% loss

of control authority [9].

III. CONTROLLER STRUCTURE AND PERFORMANCE

In this paper, it is assumed that for each of the nominal

and faulty systems described by equations (1) and (5),

respectively, there are M regions Ri, i ∈ {1, ..., M}, in

the partition of the state space. The state feedback control

problem is parameterized by Ki, i ∈ {1, ..., M} as

u = Kix, x ∈ Ri. (7)

A performance criterion will be added to the design

considerations by the quadratic cost function [13], [15]

J =

∫

∞

0

(xT Υx + uT Ξu)dt (8)

where x ∈ R
n is the state vector of the system, u ∈ R

m is

the input to the system and Υ ≥ 0 and Ξ > 0 are weighting

matrices.

Definition [13]: The controller in (7), provides guaranteed

performance cost (8) if there exists a matrix P = P T > 0
that satisfies

J ≤ xT (0)Px(0) (9)

where P is a solution to

V̇ (x) + xT Υx + uT
i Ξui < 0 (10)

for i ∈ {1, ..., M} and the quadratic candidate Lyapunov

function is

V (x) = xT Px (11)

In order to avoid the dependency of the upper bound of the

cost function J on initial conditions, it is assumed that the

initial conditions are random variables with zero mean and

covariance equal to identity [13]. Therefore

E{x(0)xT (0)} = I

E{x(0)} = 0

where E is the expected value operator. Thus, the perfor-

mance problem posed in the next section will be to minimize

the maximum expected value of (8) which, from [13], obeys

E{xT (0)Px(0)} < Trace(P) (12)

IV. CONTROLLER SYNTHESIS

The candidate Lyapunov function (11) becomes a Lya-

punov function and satisfies the guaranteed cost performance

if V > 0 and the set of inequalities (10) hold. These

conditions lead the following inequality for x ∈ ǫ i

[(Ai + BiKi)x + bi]
T Px + xT P ((Ai + BiKi)x + bi)

< −(xT Υx + uT
i Ξui)

(13)

Inequality (13) can be rewritten as

xT [(Ai + BiKi)
T P+P (Ai + BiKi)]x + bT

i Px + xT Pbi

< −(xT Υx + uT
i Ξui)

(14)

Assuming Āi = (Ai + BiKi) (14) can be rewritten as

[

x
1

]T [

ĀT
i P + PĀi Pbi

bT
i P 0

] [

x
1

]

< −

[

x
1

]T [

Υ + KT
i ΞKi 0

0 0

] [

x
1

]

(15)

Using (15) together with the S-procedure with multiplier

λi < 0 [7], [14] yields

[

x
1

]T [

ĀT
i P + PĀi + Υ + KT

i ΞKi Pbi

bT
i P 0

] [

x
1

]

< −λi

[

x
1

]T [

ET
i Ei ET

i fi

fT
i Ei fT

i fi − 1

] [

x
1

]

(16)

Using new variables Q = P −1 and µi = λ−1

i , sufficient

conditions for quadratic stabilization are derived as

Q = QT > 0, µi < 0, i = 1, ..., M
[

Πi Q−1bi + µ−1

i ET
i fi

(Q−1bi + µ−1

i ET
i fi)

T −µ−1

i (1 − fT
i fi)

]

< 0 (17)

where

Πi = ĀT
i Q−1 + Q−1Āi + µ−1

i ET
i Ei + Υ + KT

i ΞKi

Theorem 1: The fault-tolerant PWA controller stabilizes

the nominal system if the following holds

Q = QT > 0, µi < 0, i = 1, ..., M
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Γi + µibib
T
i QΥ1/2 Y T

i Ξ1/2 µibif
T
i + QET

i

Υ1/2Q −In 0 0

Ξ1/2Yi 0 −Im 0
(µibif

T
i + QET

i )T 0 0 −µi(1 − fif
T
i )









< 0
(18)

where Γi = AiQ + QAT
i + BiYi + Y T

i BT
i .

Proof: Applying Schur complement to the inequality (17)

yields

1 − fT
i fi < 0

Πi + (Q−1bi + µ−1

i ET
i fi)

× µi(1 − fT
i fi)

−1(Q−1bi + µ−1

i ET
i fi)

T < 0

(19)

left multiplying the above inequality by Q and right multi-

plying it by Q = QT and rearranging yields

ĀiQ + QĀT
i + QΥQ + QKT

i ΞKiQ + µ−1

i QET
i EiQ

×(bi +µ−1

i QET
i fi)µi(1− fT

i fi)
−1(bi +µ−1

i QET
i fi)

T < 0
(20)

Using the Matrix Inversion Lemma as in [7] (1 −
fT

i fi)
−1 = 1 + fT

i (I − fT
i fi)

−1fi. Thus, inequality (20)

can be rewritten as

ĀiQ + QĀT
i + QΥQ + QKT

i ΞKiQ

+ µ−1

i QET
i EiQ + µibib

T
i + µ−1

i (QET
i fi)(QET

i fi)
T

+ bi(QET
i fi)

T + QET
i fib

T
i + (µibif

T
i + QET

i fif
T
i )µ−1

i

× (1 − fif
T
i )−1(µibif

T
i + QET

i fif
T
i )T < 0

(21)

Inequality (21) can be rewritten as

ĀiQ + QĀT
i + QΥQ + QKT

i ΞKiQ + µibib
T
i

+ µ−1

i (EiQ)T (I + fif
T
i )(EiQ) + bif

T
i (QET

i )T

+ (QET
i )(bif

T
i )T

+ (µibif
T
i + QET

i − QET
i (I − fif

T
i ))µ−1

i

× (I − fif
T
i )−1(µibif

T
i + QET

i − QET
i (I − fif

T
i ))T < 0

(22)

Inequality (22) can be rearranged as

ĀiQ + QĀT
i + QΥQ + QKT

i ΞKiQ + µibib
T
i

+ (µibif
T
i + QET

i )µ−1

i (I − fif
T
i )−1(µibif

T
i + QET

i )T

+ µ−1

i (EiQ)T (I + fif
T
i )(EiQ) + bif

T
i (QET

i )T

+ (QET
i )(bif

T
i )T + µ−1

i (QET
i )(I − fif

T
i )(QET

i )T < 0
(23)

which can then be rewritten as

ĀiQ + QĀT
i + QΥQ + QKT

i ΞKiQ + µibib
T
i

+ (µibif
T
i + QET

i )µ−1

i

× (I − fif
T
i )−1(µibif

T
i + QET

i )T < 0

(24)

Using Schur complement and the fact that 1 − f T
i fi < 0 is

equivalent to I −f T
i fi < 0 since fi is a scalar for PWA slab

systems [7] yields

[

Λi µibif
T
i + QET

i

(µibif
T
i + QET

i )T −µi(1 − fif
T
i )

]

< 0 (25)

where Λi = ĀiQ + QĀT
i + µibib

T
i + QΥQ + QKT

i ΞKiQ.

Replacing Āi by (Ai + BiKi), introducing a new variable

Yi = KiQ and using Schur complement yields a convex

representation of the sufficient conditions for quadratic sta-

bilization as follows

Q = QT > 0, µi < 0, i = 1, ..., M









Γi + µibib
T
i QΥ1/2 Y T

i Ξ1/2 µibif
T
i + QET

i

Υ1/2Q −In 0 0
Ξ1/2Yi 0 −Im 0

(µibif
T
i + QET

i )T 0 0 −µi(1 − fif
T
i )









< 0
(26)

where Γi = AiQ + QAT
i + BiYi + Y T

i BT
i . �

Corollary: For the faulty system, the inequality (26) is

equivalent to

Q = QT > 0, µi < 0, i = 1, ..., M









Γi + µibib
T
i QΥ1/2 Y T

i Ξ1/2 µibif
T
i + QET

i

Υ1/2Q −In 0 0

Ξ1/2Yi 0 −Im 0
(µibif

T
i + QET

i )T 0 0 −µi(1 − fif
T
i )









< 0
(27)

where Γi = AiQ + QAT
i + BfiYi + Y T

i BT
fi.

Proof: It follows trivially from (26), by replacing the

faulty Bfi matrix (6) into that inequality. �

To design the controller gains for the guaranteed cost

fault tolerant controller, the following convex problem will

be solved.

Definition 4.1: (Fault-Tolerant Controller Synthesis)

min Trace(P)
s.t. (26), (27)

From the solution to this problem one gets the controller

gains Ki = YiQ
−1.

V. SIMULATION RESULTS FOR A WMR

In this section, the controller design technique that is

introduced in this paper is applied to a path following

problem of a WMR. The WMR is shown in Fig. 1 and is

assumed to be rigid and to be driven by a torque T to control

the heading angle ψ of the WMR. The forward velocity u 0
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Fig. 1. Schematic of the Wheeled Mobile Robot (WMR)

is in the direction of the X-body axis and it is assumed to

be already made constant by the proper design of a cruise

controller. The heading angle of the WMR ψ is measured

from the positive X-axis in the inertial frame. The kinematic

equations of the WMR are

ẏ = u0 sinψ

ψ̇ = R
(28)

The dynamic equation of the WMR is

Ṙ =
1

I
T (29)

where T is the torque generated by the DC motors and is the

input to the system. The moment of inertia of the WMR with

respect to the center of mass is represented by I = 1 kg.m2

In this paper, it is desired that the WMR follows the path

y = 0. The above differential equations are cast in matrix

form as follows

d

dt





y
ψ
R



 =





0 0 0
0 0 1
0 0 0









y
ψ
R



 +





u0 sin ψ
0
0



 +





0
0
1



T (30)

Piecewise-affine models of the system in equation (30) are

derived for the following state-space partitioning

R1 = {x ∈ R
3 | x2 ∈ (−

π

15
,

π

15
)}

R2 = {x ∈ R
3 | x2 ∈ (−

π

5
,−

π

15
)}

R3 = {x ∈ R
3 | x2 ∈ (−

3π

5
,−

π

5
)}

(31)

with R4 symmetric to R2 and R5 symmetric to R3, with

respect to origin. The ellipsoidal covering of the state-space

partitioning is

ǫ1 = {x | ‖
[

0 15

π 0
]

x + 0 ‖� 1}

ǫ2 = {x | ‖
[

0 15

π 0
]

x + 2 ‖� 1}

ǫ3 = {x | ‖
[

0 5

π 0
]

x + 2 ‖� 1}

(32)

and the PWA slab model is

∀x ∈ R1





ẏ

ψ̇

Ṙ



 =





0 1 0
0 0 1
0 0 0









y
ψ
R



 +





0
0
0



 +





0
0
1



T (33)
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60% loss of control authority

90% loss of control authority

Fig. 2. WMR following path y = 0 using the guaranteed cost PWA
fault-tolerant controller with ψ0 = π/2 and y0 = 3

∀x ∈ R2





ẏ

ψ̇

Ṙ



 =





0 0.907 0
0 0 1
0 0 0









y
ψ
R



 +





−0.018
0
0



 +





0
0
1



 T (34)

∀x ∈ R3





ẏ

ψ̇

Ṙ



 =





0 0.2891 0
0 0 1
0 0 0









y
ψ
R



 +





−0.4061
0
0



 +





0
0
1



T

(35)

A guaranteed cost fault-tolerant controller is designed for

this system using SeDuMi/YALMIP [11]. An LQR controller

is also designed for a linear model of the system (33) with

the same weighting matrices in the cost function (8)

Υ =





0.1 0 0
0 0.1 0
0 0 0.1





Ξ =
[

0.1
]

(36)

The controller design is based on a maximum of 90% loss

of effectiveness in the control authority. The resulting PWA

controller is

K1 =
[

−1.0408 −5.2769 −9.7329
]

K2 = K4 =
[

−1.2946 −5.0972 −10.1958
]

K3 = K5 =
[

−1.3287 −5.1018 −10.2580
]

(37)

with

P =





0.7247 1.2181 1.3220
1.2181 3.9754 5.0744
1.3220 5.0744 10.2458



 (38)

The LQR controller is

KLQR =
[

1.0000 2.4142 2.4142
]

(39)

Simulations are performed for the nonlinear system in

nominal, maximum fault (90%) and less severe (60%) fault

cases. The resulting paths for the WMR using the guaranteed

cost fault-tolerant PWA controller and the LQR controller are

plotted in Figs. 2-4. The initial heading angle is ψ0 = π/2
for Fig.2 and ψ0 = π for Fig.3 and Fig.4. It is observed

that the guaranteed cost fault-tolerant PWA controller, which
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Fig. 3. WMR following path y = 0 using the guaranteed cost PWA
fault-tolerant controller with ψ0 = π and y0 = 0

is designed for a PWA model of the system, stabilizes the

faulty nonlinear system up to 90% failure. It also keeps

the performance of the faulty closed loop system the same

as the performance of the nominal system. However, as it

is observed in the simulations, the LQR controller fails to

stabilize the nonlinear system at 90% failure.

VI. CONCLUSIONS

In this paper, guaranteed cost state feedback controllers

are synthesized for PWA models of nonlinear systems to deal

with partial loss of control authority. A quadratic common

Lyapunov function is applied for stability analysis and con-

troller synthesis for PWA models of nonlinear nominal and

faulty systems. An upper bound of a quadratic cost function

is minimized for both the nominal and faulty systems. The

PWA controller is capable of stabilizing the nominal and

faulty systems with guaranteed cost performance in large

deviations from the equilibrium point. Simulation results of

the guaranteed cost fault-tolerant controller synthesized for

the PWA model of a WMR, work with up to %90 loss of

control authority, whereas the LQR controller designed for

a linear model of the nonlinear system cannot stabilize the

system at this percentage of failure.
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