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Abstract— The interaction between electrically conducting
fluids and magnetic fields in channel flows generates significant
magnetohydrodynamics (MHD) effects, which often result in
the need of higher pressure gradients to drive the fluid and
lower heat transfer rates due to the laminarization of the
flow. Active boundary control, either open-loop or closed-
loop, can be employed to overcome this limitation. Open-loop
controllers are in general more sensitive to uncertainties of the
system, which may result in a poorer performance. Extremum
seeking is a powerful tool to tune in real time open-loop
controllers, incorporating certain degree of feedback into the
control scheme. In this work we combine extremum seeking
with a fixed-structure open-loop controller with the ultimate
goal of enhancing mixing in a 2D MHD channel by boundary
actuation. We show that by carefully tuning the extremum
seeking controller the modified open-loop control scheme can be
as effective as previously proposed closed-loop control schemes.

I. INTRODUCTION

Magnetohydrodynamic problems arise in many areas. One

major application is cooling systems, where electrically

conducting fluids are often used as the heat transfer media.

Although they are highly favorable for heat transfer due to

their excellent thermal properties (high heat conductivity and

high boiling point), they also tend to be strongly affected by

magnetic fields, which are often present in the system. When

an electrically conducting fluid moves in the presence of a

transverse magnetic field, it produces an electrical field due

to charge separation and subsequently an electric current.

The interaction between the induced electric current and the

imposed magnetic field originates a body force, called the

Lorentz force, which acts on the fluid itself. Because this

force acts in the opposite direction of the fluid motion, it is

necessary to increase the pressure gradient on the streamwise

direction to maintain the mean velocity of the flow and

more power is required to pump the liquid through the

channel. In addition, this force tends to suppress turbulence

and laminarize the flow, reducing the heat transfer rate as a

consequence. A good review of the present state of research

in this area can be found in [1].

Active control of fluid systems, implemented through mi-

cro electro-mechanical (MEM) or electro-magnetic actuators

and sensors, can be used to achieve optimally the desired

level of stability (when suppression of turbulence is desired)

or instability (when enhancement of mixing is desired).
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The benefits of managing and controlling unsteady flows in

engineering applications can be significant. This area has

attracted much interest and has dramatically advanced in

recent years [2], [3], [4]. The boundary control of MHD

flows has been considered for decades [5], [6], [7], [8],

[9]. Research subjects range from strongly coupled MHD

problems, like liquid metal and melted salt flows, to weakly

coupled MHD problems, like salt water flows. Early research

mostly focused on passive and open loop control. This

situation is partly due to the complexity of the coupled MHD

equations.

Our prior work includes the development of a feedback

control scheme for mixing enhancement in a 2D MHD

flow [10], [11]. Micro-jets, pressure sensors, and magnetic

field sensors embedded into the walls of the flow domain

were considered in the mentioned work to find a feedback

control law that is optimal with respect to a cost functional

related to a mixing measure. The effectiveness of the pro-

posed controller has been illustrated in [12], where a simple

traveling-wave-like boundary control was also investigated

for comparison. The numerical simulations confirmed that

the closed-loop control scheme is generally more effec-

tive than the simple open-loop controller. However, it was

speculated at that time that fine-tuning of the parameters

of the open-loop control law could result in an improved

performance.

In this work we employ extremum seeking to optimize

in real time the performance of an open-loop controller.

Extremum seeking is a powerful tool to build a real-time

feedback controller based on fixed-structure, open-loop con-

trol law with to-be-tuned parameters. The idea of extremum

seeking originated decades ago. Recently it has become

a popular tool for real-time optimization [13]. It can be

used in many nonlinear engineering problems which have

local minimums or maximums. Applications of extremum

seeking to flow control include [14], [15], [16]. A small

sinusoidal perturbation is added to the parameter that is

being optimized and the corresponding change of the cost

function is processed to decide the optimization direction.

The procedure is fully automatic and several parameters can

be optimized simultaneously.

However, significant difficulty still remains when using

an open-loop scheme to control a complex fluid system.

The main problem is due to the multiscale complexity of

the MHD channel flow. Our simulation results show that

the mixing-related cost function shows highly nonlinear and

sometimes nearly discontinuous behavior. This poses serious

challenges for extremum seeking, which is essentially a
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Fig. 1. 2D MHD flow between plates

gradient-based search scheme. Previous work has confirmed

that under this circumstances the optimization problem may

not be well-posed [17]. On the other hand, our cost function

does show a clear trend of being maximized at a certain

region. Measures are taken to overcome this difficulty, so

that the overall trend of the cost function can be captured

regardless of occasional discontinuities.

This article is organized as follows. In Section II, we state

the full equation system for incompressible MHD flows, and

derive the equations required for numerical simulations. In

Section III, the control scheme is presented, including a brief

introduction to extremum seeking. In Section IV, simulation

results are given for different control schemes in a typical

magnetohydrodynamic physical setting. Section V closes the

paper stating the conclusion and the identified future work.

II. PROBLEM STATEMENT

We consider a 2D, incompressible, electrically conducting

fluid flowing between two parallel plates (0 < x < d = 4π ,

and −1 < y < 1) along the x-direction, as illustrated in

Fig. 1, where an external magnetic field B0 is imposed

perpendicularly to the plates, i.e., in the y-direction. This

flow was first investigated experimentally and theoretically

by Hartmann [18]. The mass flux Q is fixed. A uniform

pressure gradient Px in the x-direction is required to balance

the boundary drag force and the body force due to the MHD

effects. Space variables x and y, time t, velocity v, magnetic

induction B, and current density j are converted to their

dimensionless forms: x = x∗

L
, y = y∗

L
, t = t∗U0

L
, B = B∗

B0
, v = v∗

U0
,

j = j∗

U0B0
, where L, U0 and B0 are dimensional reference

length, velocity and magnetic field. Variables denoted by

the star notation are dimensional quantities. The vector

variables are defined as v(x,y,t)=U(x,y,t)x̂+V (x,y,t)ŷ and

B(x,y,t)=Bu(x,y,t)x̂ + Bv(x,y,t)ŷ, where x̂ and ŷ are unit

vectors on x and y directions. The dimensionless governing

equations for the MHD channel flow are given by

∂v

∂ t
=

1

Re
∇2v−∇P− (v ·∇)v−N(j×B) , (1)

∂B

∂ t
=

1

Rem
∇2B+ ∇× (u×B), (2)

j =
1

Rem
∇×B, (3)

∇ ·v = 0, (4)

∇ ·B = 0. (5)

The characteristic numbers, including Reynolds number,

magnetic Reynolds number, Alfvén number and Stuart num-

ber are defined as: Re = U0L
ν , Rem = µσU0L and N =

σB2
0L

ρU0
.

The Hartmann number, Ha = BoL
√

σ
ρν , is used to indicate

the interaction level between the magnetic field and the

velocity field. The physical properties of the fluid, including

the mass density ρ , the dynamic viscosity ν , the eletrical

conductivity σ and the magnetic permeability µ , are all

assumed constant.

The bottom and top walls are assumed non-slip, perfectly

electrically insulating boundaries. Hence, the boundary con-

ditions for the uncontrolled MHD system are given by

U(x,±1,t) = 0, V (x,±1,t) = Vctrl ,

Bu(x,±1,t) = 0,
∂Bv

∂y

∣

∣

∣

∣

y=±1

= 0,

where Vctrl is determined by the proposed boundary control

laws. In the uncontrolled cases, Vctrl = 0.

In this paper, we consider MHD flows at low magnetic

Reynolds numbers, which are also called simplified MHD

(SMHD) flows. In these flows the induced magnetic field is

neglible in comparison with the imposed magnetic field. The

2D SMHD channel flow is described by slightly modified

incompressible N-S equations [19]:

∂v

∂ t
=

1

Re
∇2v− (v ·∇)v + ∇P+ N(Ū −U) x̂, (6)

∇ ·v = 0, (7)

where Ū represents the average speed, defined as Ū = Q/L.

The validity of this simplified MHD model has been

verified by many pieces of work [20]. The advantage of using

SMHD instead of full MHD is significant, because instead

of solving a coupled PDE of the two time-evolving fields

(v and B) with very different time scales, we can solve only

one time-evolving field. In most engineering applications, the

conditions Re≫1 and Rem≪1 hold. Numerical simulations

also confirm that under such physical settings, full MHD and

SMHD give nearly identical results, while the former method

has to use much smaller time steps (characterized by CFL≪1

[21]) than the latter method to ensure convergence [22].

III. EXTREMUM SEEKING FEEDBACK CONTROL

The design of the boundary control by extremum seeking

starts with a given open-loop control law with undetermined

parameters, which are then optimized by the extremum

seeking in real time. Although the open-loop control law

does not include any information obtained from the system

output, the combined control scheme can still drive the

system to an optimal state, at least near a local maximum.

The control law, implemented through an array of MEM

micro-jets, is given by a traveling wave as the boundary

condition:

V (x,±1,t) = Vctrl = Asin(kx + θ t), (8)

where constant A is the maximum amplitude, k is the wave

number, and θ is the phase speed. The effectiveness of this

open-loop control law heavily depends on k and θ . The

period of the control “wave” in space is λ = 2π/k, and then

the total number of periods is Nc = L/λ . In our simulations,
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Fig. 2. Extremum seeking control scheme

L = 4π , which implies Nc = 2k. For the traveling-wave to

actuate the traveling vortexes, Nc and θ must be set to

some specific combination which can excite a corresponding

unstable mode of the MHD flow. In a fully developed flow,

the unstable mode with most energy is characterized by large

vortexes in a constant number traveling in a roughly constant

speed downstream. Assume that the average phase speed

of the vortexes is Ve and the number of vortexes on one

side is Ne, which is half of the total number of vortexes

since they appear in pairs on two sides. Ideally, an open-

loop controller exciting the unstable mode with most energy

will fulfill the condition: Nc = Ne and θ = Ve. In fact, the

choices of wave number k are limited to a small number of

integers corresponding to the dominant Fourier modes. In this

work, we use k = 1 because it produces the same number of

major vortices as most fully developed flows do (see Fig. 6

for a typical flow pattern). However, without appropriate

sensors and real-time spectrum analysis, the actual value of

Ve can not be determined precisely, rendering the open-loop

controller always out of synchronization with the traveling

vortexes.

It is natural for us to seek a scheme that can automatically

adjust these parameters in order to drive the system to an

optimal or suboptimal state. Optimization methods based

on physical models are mostly useless in our problem,

because it is very difficult to build a model that is able to

represent the relation between the simple control action and

the complex fluid system. Hence, model-less schemes have

to be considered. Extremum seeking is a model-less real-time

optimization scheme which is effective for a wide range of

linear and nonlinear optimization problems, making itself an

ideal candidate for our problem.

Fig. 2 illustrate the extremum seeking scheme as a block

diagram. In our problem, extremum seeking is used for

iterative optimization of the phase speed θ in order to match

the phase speed of the boundary control with the phase speed

of the major vortices in the flow, so that the mixing effect

can be maximized. We use the enstrophy, a good indicator

of turbulence inside the flow,

Es(v) =
1

2d

∫ 1

−1

∫ d

0

1

2

(

∂v

∂x
−

∂u

∂y

)2

dxdy, (9)

to measure the level of mixing effect. At the beginning of

each extremum seeking iteration, a phase speed θ (k), super-

posed by an intentional sinusoidal perturbation (modulation),
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Fig. 3. Enstrophy as a function of phase speed

(a) θ =0.623157

(b) θ =0.623233

Fig. 4. Streamlines and pressure maps for two cases with very similar θ

is fed into the flow system. The simulation of flow system

runs with the new phase speed until its cost function reaches

a statistically steady state. We take samples of the enstrophy

every 20 simulation steps and calculate the standard deviation

of the last 200 samples. A flow is considered statistically

steady if this standard deviation decreases to a specific level.

The system output J(θ (k)) is then given by the enstrophy,

averaged over the same period of time during which the

standard deviation is computed. The system output is filtered

by a high-pass filter and multiplied by another sinusoidal

signal (demodulation). The resulting signal is filtered through

a low-pass filter, which becomes the new phase speed for the

next iteration. More details on the theory behind this scheme

can be found in [13].

For a continuous function of a single variable, with

well-defined maximum points, extremum seeking is very

effective. Given the right parameters and enough iterations,

the scheme can almost guarantee convergence, at least to a

local maximum. However, if the cost function is not very

smooth or even discontinuous, then the extremum seeking

algorithm may not capture the slope information and fails.

Such problems do arise in our work, as the cost function has

many sudden changes near the optimal point. The complexity

of the cost function can be seen in Fig. 3. The simulations

are done with the following parameters: Re=6000, B0 =0.3
and N=0.002. While the cost function shows a clear trend of

being maximized around 0.75, it seems extremely sensitive

to the phase speed. This behavior is largely caused by the

nonlinearity of the flow. To achieve higher enstrophy, the

boundary control has to produce large sustained vortices in

the flow. Due to its nonlinearity nature, the development of

vortices is seriously affected by the initial conditions and

random numerical noise. It may take extensive long time for

the flow to reach the statistically steady state. Furthermore,
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Fig. 5. Initial velocity field (Re = 7500)

a flow with specific physical settings may have more than

one statistically steady state and may not converge to the one

with the highest enstrophy. Take two data points in Fig. 3

for example, the steady state enstrophy drops by 72% from

2.92×107 to 8.13×106 while the phase speed increases by

0.012% from 0.623157 to 0.623233. The pressure maps and

stream lines in Fig. 4 indicate that the vortex patterns in the

two cases are completely different. While the case with much

higher enstrophy have four sustained organized vortices, the

case with much smaller enstrophy has three smaller deformed

vortices on each side. Since the boundary control has two

periods on the streamwise direction, the pattern of three

vortices does not match the period of the boundary control,

which means the boundary control is out of synchronization

and contributes very little to the increase of turbulence.

The mechanism of this irregular behavior of the cost

function is not clearly understood and it will not be discussed

in detail in this work. However, a special technique has to

be implemented within the extremum seeking algorithm to

eliminate the undesirable effect of the discontinuity. This

technique is based on the assumption that in the sense of

overall trend the cost function does not change significantly.

First, we reduce the perturbation signal acos(ωk) in the re-

gion with significant discontinuity, such that the cost function

be expected to change slightly at every extremum seeking

iteration. A simple low-pass filter is then added immediately

after the plant output. This filter provides the average of the

most recent 5 plant outputs J(θ (k)) (including the latest plant

output). This average can eliminate most of the discontinuity

while capturing the overall trend, thus increasing the ability

of the extremum seeking to stay inside the optimal region.

IV. SIMULATION RESULTS

The numerical simulations are carried out by a modified

Navier-Stokes solver. The equations are discretized using

FFT on the streamwise direction and finite differences on the

spanwise direction, which is also called the pseudospectral

method. Time integration is done using a fractional step

method along with a hybrid Runge-Kutta/Crank-Nicolson

scheme. Linear terms are treated implicitly by the Crank-

Nicolson method and nonlinear terms are treated explicitly

by the Runge-Kutta method. The divergence-free condition

is fulfilled by the fractional step method.

All the simulations are carried out for the same flow

domain: −1<y<1, 0<x<4π . The same mesh is used in

all the simulations presented in this section (grid points in

the x direction: NX = 150, grid points in the y direction:

NY = 128).

A. MHD flows with no control

When B0 =0 (Ha=0), the momentum equation (1) re-

duces to the well-known Navier-Stokes equation. The two-

dimensional channel flow, which is also known as the

Fig. 6. Pressure maps and streamlines for Re = 7500 (t =266, 1590, 2973)

Fig. 7. Pressure maps and streamlines for Re=7500, Ha=1.83 (t=144,
945, 1126 after the magnetic field is imposed)

Poiseuille flow, is frequently cited as a paradigm for transi-

tion to turbulence, and has drawn extensive attention through

the history of fluid dynamics. This is a classical flow control

problem that has been studied in [4] and the references

therein assuming the availability of an array of pressure

sensors on the walls and an array of MEM micro-jet actuators

(also distributed along the walls) capable of blowing/suction.

Incompressible conventional flows in 2D channels can be

linearly stable for low Reynolds numbers, as infinitesimal

perturbations in the flow field are damped out. The flows

turn linearly unstable for high Reynolds numbers (Re>5772)

[23], [24]. Such flows usually reach statistically steady states,

which we call fully established flows. Fig. 5 and Fig. 6

show how a channel flow (Re=7500) develops to a fully

established flow. The initial parabolic equilibrium velocity

profile, which is linearly unstable, is shown in Fig. 5. The

pressure maps and streamlines, given by Fig. 6, illustrate

how the vortices evolve in time until reaching a fully

established flow when the initial equilibrium velocity profile

is infinitesimally perturbed at t =0.

When B0 6=0 (Ha 6=0), Fig. 7 shows the effect of the

imposed transverse magnetic field on the stability properties

of the flow. Vorticity maps obtained through direct numerical

simulation studies show the stabilizing effect of the imposed

magnetic field on the 2D Hartmann flow. The simulation

is started at t =0 with the fully established flow achieved

in Fig. 6. The enstrophy is commonly used to quantify the

overall turbulence of the velocity field. In our work we use

the averaged enstrophy, defined by (9). The enstrophy of

the simulation case shown in Fig. 7, whose curve can be

found in Fig. 8 labeled “Ha=1.83 ”, decreases as the flow

is stabilized by the imposed magnetic field. Also, stronger

imposed magnetic fields tend to make the flow more stable,

as shown in the same figure.
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Fig. 8. Enstrophy as function of time for different imposed magnetic fields

B. MHD flows with extremum seeking feedback control

In this section, the boundary control based on extremum

seeking is tested. The simulations all start with equilib-

rium solutions achieved after an external magnetic field is

imposed. These flows remain linearly stable indefinitely if

no boundary control is present. The boundary control is

expected to drive these flows to states with higher enstrophy

levels, thus enhancing mixing. Simulations are conducted for

these parameters:

• Case 1: Re=6000, Q=1.5, Ha=1.04.

• Case 2: Re=7500, Q=1.5, Ha=1.83

The initial phase speed is set to 0.35 for both simulation

cases. The other parameters are set as A=0.05, k=4. The

parameters for extremum seeking have to be carefully chosen

to balance the stability and performance of the optimization

process. In this case, we use a=0.004 for θ <0.5 and

a=0.002 for 0.5<θ <0.9. Other parameters are set as b=1,

ω =3, γ =10−9 and h=0.8.

As we can see in Fig. 9 and Fig. 10, the boundary control

based on extremum seeking gradually modifies the phase

speed to try to maximize the cost function. Even though the

control can not stay at the optimal phase speed all the time,

it manages to stabilize the phase speed near the maximum

region, regardless significant amount of randomness in the

cost function.

Results of simulations with the same physical parameters,

but using a feedback control law, are also given for compar-

ison. The feedback boundary control actuation proposed in

[10], [11] is determined by both the pressure field and the

magnetic field:

Vctrl = −kp∆p− kb∆Bv2, (10)

where kp and kb are constants used to represent the control

gains, and

∆p = p(x,1,t)− p(x,−1,t),

∆Bv2 = (Bv(x,1,t))2
− (Bv(x,−1,t))2 .

Note that the simulations under this control requires a full

MHD solver, which was developed as part of our previous

work [12]. Since the feedback control law (10) does not
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Fig. 9. Phase speed development for extremum seeking feedback control

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0  10000  20000  30000  40000  50000

J 
(1

0
7
)

t

Case 1

Case 2

Fig. 10. Enstrophy development for extremum seeking feedback control

involve any real-time optimization process, it provides the

full control effort much more quickly than the extremum-

seeking-based controller. However, as we will see from the

simulation results, the extremum-seeking-based controller

can maintain a higher enstrophy level. The gains of the

feedback control are set as kp =0.1, kb =10000. Since the

two control laws are very different in nature, it is hard

to compare them side-by-side. Instead, we compare the

enstrophy level for similar control efforts, defined as

C(v) =
1

d

∫ d

0
V (x,−1,t)2 +V(x,1,t)2dx. (11)

As illustrated in Fig.11 and Fig.12, the average control

effort and resulting enstrophy of the flow with Re=6000,

controlled by the boundary control law (10), is 0.11 and

2.5 × 106, which gives a enstrophy-control ratio J/C of

around 2.2 × 107. The extremum-seeking-based controller

has a constant control effort, regardless of the phase speed.

In the case shown in Fig. 9 and Fig. 10, the control effort

is 0.217, while the average enstrophy is 2.6 × 107. This

gives a much higher J/C ratio of around 1.2×108, 5 times

higher than the one given by control law (10). A further

investigation reveals that the flow controlled by (10) does not

have sustained large vortices like Fig. 4(a). Instead, its flow

pattern is more similar to Fig. 4(b), resulting in a relatively

low enstrophy level.
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Similar results can be found in the case with Re=7500.

As shown in Fig.9 and 10, the phase speed under the

regulation of extremum seeking is successfully optimized

around 0.55. A flow with the same physical parameters and a

control by control law (10) uses similar control effort (around

0.1) but much lower enstrophy level (around 2.5× 106), as

shown in Fig. 11 and Fig. 12. Hence, with Re=7500, the

enstrophy-control ratio J/C given by two control schemes is

also differed significantly: 1.4×108 in case with extremum

seeking scheme and 2.5× 107 in the case with feedback

control law (10).

V. CONCLUSION

In this work, we developed a boundary controller for mix-

ing enhancement in a 2D MHD channel flow. The controller

is based on a modified open-loop boundary controller whose

parameters are regulated by extremum seeking. The simu-

lation results show that the controller successfully increases

the enstrophy level of the otherwise linearly stable flow, thus

increasing mixing effects inside the flow. The tuning of the

extremum seeking scheme is crucial for the success of the

controller. Because of the complexity of the MHD chan-

nel flow, significant discontinuities exist in the relationship

between the to-be-maximized cost function and the to-be-

optimized parameters. A simple but effective method based

on averaging is used to avoid disruptions caused by cost

function discontinuities during the extremum-seeking opti-

mization process. Results show that the extremum-seeking-

based controller could be as effective in maintaining high

mixing levels as a previously proposed feedback control

scheme.

In our future research, the extremum-seeking-based con-

trol scheme will be extended to 3D MHD flows. It may be

also necessary to develop alternative methods to deal with

the discontinuity of the cost function, especially when the

number of parameters being optimized is more than one.
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