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Abstract— This paper presents a reduced-order observer
design for nonlinear dynamic systems. The proposed reduced-
order observer can be applied to a larger class of nonlinear
dynamic systems than the systems with linear observer dy-
namics. The proposed observer design has also been used for
control design of a class of nonlinear dynamic systems with
the nonlinearity in the unmeasured system state variables. An
example is included to demonstrate that the proposed observer
and control design method can be used to stabilize a nonlinear
dynamic system with unstable nonlinear zero dynamics.

I. INTRODUCTION

Nonlinear observer design has attracted attention of con-

trol researchers from 1970s [1], [2]. One significant break

through was the nonlinear observers with linear observer

dynamics [3]. Many other results have been presented in

literature (for example, see [4], [5], [6] etc). More recently,

results have been reported on reduced-order design for non-

linear dynamic systems [7], [8]. In this paper, we present

a basic design and analysis of reduced-order observers for

general nonlinear dynamic systems, and then extend this

basic design for some specific nonlinear systems, including

nonlinear dynamic systems with the nonlinearity of unmea-

sured state variables.

One purpose of nonlinear observer design is to provide

state estimate for control design using output feedback.

Related results on nonlinear output feedback control can be

found in a number of references [9], [10], [11], [12], [13],

[14], [15], [16], [17]. However, there are very few results

on output feedback control of nonlinear systems with the

nonlinearities of the unmeasured system state variables or

nonlinear unstable zero dynamics. In this paper, the proposed

reduced order observer design will be applied to tackle

some of these output feedback control problems. An example

of output feedback control of a nonlinear systems with

nonlinear unstable zero dynamics is included to demonstrate

the proposed observer design for output feedback control.

II. A REDUCED-ORDER NONLINEAR OBSERVER DESIGN

Consider a nonlinear system

ẋ = f(x)

y = h(x) (1)

where x ∈ R
n is the state vector, y ∈ R

m is the output,

f : R
n → R

n, is a nonlinear smooth vector field.

We have the following assumption of the system.
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Assumption 1. There exists a nonlinear map β : R
n →

R
n−m such that

T =

[

h(x)
β(x)

]

is a diffeomorphism. Furthermore, with the state transforma-

tion defined by y = h(x), z = β(x), the dynamics of z can

be written in the form

ż = p(z) + q(y). (2)

with p(0) = 0. Furthermore, for the dynamics ż = p(z),
there exists a V : R

n−m → R such that for z, ẑ ∈ R
n−m

c1‖z‖
2 ≤ V (z) ≤ c2‖z‖

2

∂V (z−ẑ)
∂z

(p(z) − p(ẑ)) ≤ −c3‖z − ẑ‖2

∥

∥

∥

∂V (z)
∂z

∥

∥

∥
≤ c4‖z‖

2 (3)

for some positive real constants ci for i = 1 to 4.

With the conditions specified in Assumption 1 being

satisfied, we can propose a reduced order observer design

as

˙̂z = p(ẑ) + q(y) (4)

x̂ = T−1

[

y

ẑ

]

(5)

Theorem 1: The state of the original system z and of the

observer ẑ are bounded if the system output is bounded. The

error of the reduced order observer (4) defined by e = z− ẑ

exponentially converges to zero and ehe estimate given in

(4) asymptotically converges to of the state variable of (1).

Proof. First, let us establish the boundedness of z. We take

V (z) as a Lyapunov function candidate with ẑ = 0. From

(2) and (3), we have

V̇ ≤ −c3‖z‖
2 +

∂V

∂z
q(y)

≤ −c3‖z‖
2 + c4‖z‖‖q(y)‖

≤ −c3‖z‖
2 + c4c5‖z‖

2

+
4c4
c5

‖q(y)‖2

with c5 being a positive real constant. Set c5 = c3
2c4

and we

have

V̇ ≤ −
c3

2
‖z‖2 +

8c24
c3

‖q(y)‖2 (6)

≤ −
c3

2c2
V +

8c24
c3

‖q(y)‖2
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Therefore, from the comparison lemma [18], we can con-

clude that V is bounded if the output y of the original

system is bounded, which implies the boundedness of z. The

boundedness of ẑ can be established in the same way.

The dynamics of e is given by

ė = p(z(t)) − p(z(t) − e)

Taking V (e) as the Lyapunov function candidate, we have

V̇ =
∂V

∂e
(p(z) − p(z − e))

≤ −c3‖e‖
2 ≤ −

c3

c2
V (e)

Therefore we can conclude that the estimation error exponen-

tially converge to zero. With ẑ as an exponentially convergent

estimate of z, we can further conclude that x̂ is an asymptotic

estimate of x. This concludes the proof of Theorem 1.

To demonstrate the proposed reduced order observer de-

sign, let us consider an example.

Example 1. Consider a second order system

ẋ1 = x2
1 − 3x2

1x2 − x3
1

ẋ2 = x2 − 6x2x
2
1 + 3x2

2x1 − x3
2

y = x1.

Let us check if Assumption 1 is satisfied. For this, we

need to find β(x). Take

z = β(x) = x2 − x1.

We have

ż = −x2 − (x2 − x1)
3

= −(1 + z2)z + y

Let V = 1
2z

2. It is easy to see the first and the third

conditions in (3) are satisfied. For the second condition, we

have

∂V (z − ẑ)

∂z
(p(z) − p(ẑ))

= −(z − ẑ)(z − ẑ + z3 − ẑ3)

= −(z − ẑ)2(1 + z2 − zẑ + ẑ2)

= −(z − ẑ)2(1 +
1

2
(z2 + ẑ2 + (z − ẑ)2))

≤ −(z − ẑ)2 (7)

Therefore, the system satisfy the conditions specified (3). We

design the reduced order observer as

˙̂z = −(1 + ẑ2)ẑ + y

x̂2 = ẑ + y

Simulation study has been carried out, and the simulation

results are shown in Figures 1 and 2.
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Fig. 1. The state variables
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Fig. 2. Unmeasured state and its estimate

III. REDUCED-ORDER OBSERVER DESIGN FOR

PARTIALLY LINEAR SYSTEMS

Consider a single-input-single-output (SISO) nonlinear

system

ẋ = Ax + φ(y, u) + fϕ(dTx),
y = cTx

(8)

where x ∈ R
n is the state vector, y ∈ R is the output, u ∈ R

is the control, φ, is a known nonlinear smooth vector field,

ϕ : R → R is a smooth nonlinear function, c, d, f ∈ R
n are

constant vectors, and A ∈ R
n×n is a constant matrix.

When ϕ = 0, the system (8) degenerates to the well known

form of the nonlinear systems with the linear observer error

dynamics, and nonlinear observer can be easily designed by

using nonlinear output injection. With this additional term

ϕ, the nonlinear output injection term can no longer be used

to generate a linear observer error dynamics. In this section,

we will convert the system to the form considered in the

previous section, and they apply the reduced-order observer
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design for state observation. We specify certain conditions

in the next assumption for the class of systems (1).

Assumption 2.

2.1 {cT , A} is observable.

2.2 A SISO linear system characterized by {A, f, cT } has

relative degree 1, and is minimum phase.

We will show that with Assumption 2, we can find a g(x)
such that Assumption 1 is satisfied.

From Assumption 2.1, there exists a nonsingular state

transformation

w = AOx := T2x

where

A =











1 0 . . . 0
a1 1 . . . 0
...

. . .
. . .

...

an−1 an−2 . . . 1











,O =











cT

cTA
...

cTAn−1











,

with ai, for i = 1, . . . , n, being the coefficients of the

characteristic polynomial of A. It can be obtained that

ẇ = Aow + φ̄(w1, u) + f̄ϕ(dTT−1
2 w)

y = w1
(9)

where Ao is the left companion matrix of the characteristic

polynomial of A, and φ̄ = T2φ, f̄ = T2f and b̄ = T2b. Note

that Assumption 2.2 ensures f̄1 6= 0.

Let us introduce another state transformation η = T3w

where

T3 =













1 0 . . . 0

− f̄2
f̄1

1 . . . 0
...

...
. . .

...

− f̄n

f̄1
0 . . . 1













.

Based on this state transformation, we let z = η2:n, where

the subscript (2 : n) denotes the vector form by the second

to the nth elements of the original vector.

A direct evaluation gives

ż = Fz + φw(y, u) (10)

where F ∈ R
(n−1)×(n−1) is the left companion matrix of

the characteristic polynomial sn−1 + f̄2
f̄1
sn−2 + . . .+ f̄n

f̄1
= 0,

fw =

[

f̄2

f̄1
, . . . ,

f̄n

f̄1

]T

,

and

φw(y, u) = φ̄2:n(y, u) − φ̄1(y, u)fw − (a2:n − a1fw)y

with a = [a1, a2, . . . , an]
T . Comparing (10) with (2), we

have p(z) = Fz and q(y) = φw(y, u). Assumption 2.2

ensures that F is Hurwitz, and therefore there exist two

positive definite matrices P and Q such that

FTP + PF = −Q.

It can be easily shown that V = zTPz satisfy the conditions

shown in (3). Hence, we design the reduced order observer

as

˙̂z = F ẑ + φw(y, u) (11)

x̂ = T−1
2 T−1

3

[

y

ẑ

]

. (12)

Since Assumption 1 is satisfied for (8) with g(x) = η2:n,

we can conclude from Theorem 1 that the observer error e

converges to zero exponentially. In fact it is easy to see ė =
Fe for this case. Since T = T3T2 is a linear transformation,

the state estimate x̂ converges to x exponentially.

The above result is summarized in the following lemma.

Lemma 2: For the system (8), the conditions specified

in Assumption 2 ensure that Assumption 1 is satisfied.

Furthermore, the reduced-order observer (11) ensures that

the observer error exponentially converges to zero, and the

estimate x̂ in (12) exponentially converge to the state variable

x.

IV. APPLICATION TO CONTROL DESIGN OUTPUT

FEEDBACK SYSTEMS

For the control design, we need to further assume the

structure information of the system. In particular, we replace

φ(y, u) in (8) by φ(y) + bσ(y)u, i.e., the system is now

described by

ẋ = Ax+ φ(y) + fϕ(dTx) + bσ(y)u,
y = cTx

(13)

where σ : R → R is a continuous nonlinear function and

σ(y) 6= 0, ∀y ∈ R, b ∈ R
n is constant vector. For the control

design, we introduce two more conditions in the following

assumptions.

Assumption 3.

3.1 {dT , A} is observable.

3.2 A SISO linear system characterized by {A, b, dT} has

relative degree n.

Since {dT , A} is observable, we define a state transfor-

mation

ξ = T1x

where T1 = [d,ATd, . . . , (An−1)Td]T , and it is nonsingular.

Under the coordinate ξ, we have y = cTT−1
1 ξ := lT ξ, and

we define ψ(y) := T1φ(y).
Assumption 4. The nonlinear function ψ satisfies the

following condition

∂ψi(l
T ξ)

∂ξj
= 0

for i = 1, . . . , n− 1 and j > i.

Remark 1: The condition specified in Assumption 4 is

similar to the triangular condition imposed on the strict

feedback form [12], and it is required for control design.

For the convenience of the control design, we transform

the system (13) to the state variable ξ. It can be obtained as

ξ̇ = Acξ + ψ(y) + gϕ(ξ1) + hσ(y)u,

y = lT ξ (14)
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where Ac is the lower companion matrix of the characteristic

polynomial of A, h = T1b and in this section, we denote

g = T1f . Based on Assumption 3.2, we have hi = 0 for

i = 1, . . . , n − 1 and hn 6= 0. Hence from the structure of

Ac and h, we can write the dynamics for the individual states

as

ξ̇1 = ξ2 + ψ1(y) + g1ϕ(ξ1)
...

ξ̇n−1 = ξn + ψn−1(y) + gn−1ϕ(ξ1)

ξ̇n = hnσ(y)u + ψn(y) + gnϕ(ξ1)

−

n
∑

i=1

aiξn−i+1 (15)

Based on the state estimate for z, we have the estimate for

ξ given by

ξ̂ = T1T
−1
2 T−1

3

[

y

ẑ

]

Let ξ̃ = ξ − ξ̂ and it can be obtained that

ξ̃ = T1T
−1
2 T−1

3

[

0
e

]

= T1T
−1
2

[

0
e

]

and

˙̃
ξ = T1T

−1
2

[

0 0
0 F

]

T2T
−1
1 ξ̃ := Gξ̃

Since ξ is not available, control design will be carried out

with ξ̂. For the control design, we introduce the following

notations:

ζ1 := ξ̂1

ζi := ξ̂i − αi−1(ξ̂1, . . . , ξ̂i−1, y) for i = 2, . . . , n(16)

where αi are the stabilizing functions to be designed. In

order to express the control designed for Step n in the same

form as the other steps, we define ξn+1 := hnσ(y)u −
∑n

i=1 aiξn−i+1 and ξ̂n+1 := hnσ(y)u −
∑n
i=1 aiξ̂n−i+1.

Thus, we can denote ζn+1 = ξ̂n+1 − αn and ξ̃n+1 =
−

∑n
i=1 aiξ̃n−i+1. For the convenience of notations, we

introduce

ḡ1 := g1

ḡi := gi −

i−1
∑

j=1

(
∂αi−1

∂ξ̂j
+ lj

∂αi−1

∂y
)gj (17)

for i = 2, . . . , n.

The follow property of smooth functions is useful for the

control design and the stability analysis.

Lemma 3: For a smooth function ϕ : R → R, the

following expression holds for any ρ1, ρ2 ∈ R,

|ϕ(ρ1 + ρ2) − ϕ(ρ1)| ≤ γ0(ρ2) + |ρ1|γ1(ρ1)γ2(ρ2) (18)

where γi : R → R for i = 0, 1, 2 are functions with γi(ρ) ≥
0 for any ρ ∈ R, and γ1(·) is smooth. Furthermore, if for a

function ρ(t) : R
+ → R with |ρ(t)| < ρ3e

−ρ4t for positive

reals constants ρ3 and ρ4, then there exist some positive

real constants ρ5 and ρ6 such that γ0(ρ(t)) ≤ ρ5e
−ρ6t and

γ2(ρ(t)) ≤ ρ5e
−ρ6t.

Proof. Proof is omitted due to the page limit.

The control design will be carried out in n steps.

Step 1. We start the control design from ζ1. Its dynamics are

given by

ζ̇1 = ξ̇1 −
˙̃
ξ1

= ξ2 + ψ1(y) + g1ϕ(ξ1) −G1ξ̃

= ζ2 + α1 + ψ1(y) + g1ϕ(ξ1) −G1ξ̃ + ξ̃2

where G1 denotes the first row of matrix G. From Assump-

tion 3, we have

ζ1g1(ϕ(ξ1) − ϕ(ξ̂1))

= ζ1g1(ϕ(ξ̂1 + ξ̃1) − ϕ(ξ̂1))

≤ |ζ1g1|(γ0(ξ̃1) + |ξ̂1|γ1(ξ̂1)γ2(ξ̃1))

≤ kζ2
1g

2
1 +

1

4k
γ2
0(ξ̃1) + kζ2

1g
2
1 ξ̂

2
1γ

2
1(ξ̂1) +

1

4k
γ2
2(ξ̃1)

= kζ2
1g

2
1(1 + ξ̂21γ

2
1(ξ̂1)) +

1

4k
γ2
0(ξ̃1) +

1

4k
γ2
2(ξ̃1)

where we have used the fact that |ab| ≤ ka2 + 1
4k b

2 for any

positive real a, b, k. Based on the above, we design the first

stabilizing function as

α1 = −(r1 + k)ζ1 − ψ1(y) − g1ϕ(ξ̂1)

−kζ1ḡ
2
1(1 + γ2

1(ξ̂1)) (19)

where r1 is among the set of positive real design parameters

{ri} for i = 1, . . . , n.

Step 2. The dynamics of ζ2 is described by

ζ̇2 =
˙̂
ξ2 − α̇1(ξ̂1, y)

= ξ̇2 −G2ξ̃ −
∂α1

∂ξ̂1

˙̂
ξ1 −

∂α1

∂y
l1ξ̇1

= ξ̇2 − [
∂α1

∂ξ̂1
+
∂α1

∂y
l1]ξ̇1 −G2ξ̃ +

∂α1

∂ξ̂1
G2ξ̃

Remark 2: To obtain the above expression, we have used

ẏ = ∂α1

∂y
l1ξ̇1 not ẏ =

∑n
j=1

∂α1

∂y
lj ξ̇j . This is due to

the triangular condition specified in Assumption 2. From

Assumption 2, we have
∂ψ1(y)
∂y

= 0 if l2 6= 0. Similarly

we will use ẏ =
∑i−1
j=1

∂αi−1

∂y
lj ξ̇j at Step i, because if

li 6= 0, then from Assumption 2 we must have
∂ψj(y)
∂y

= 0
for j = 1, . . . , i − 1. The differences of ẏ shown in the

expressions do not mean that ẏ is different at different steps.

In fact, for a given y, the expression is unique, and many

terms are actually zero. We use different expressions of ẏ in

different step for the convenience of notations for a generic

expression of y.
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Using the dynamics of ξ1 and ξ2, and ξ = ξ̂+ ξ̃, we have

ζ̇2 = ζ3 + α2 + ψ2(y) + ḡ2ϕ(ξ1)

−[
∂α1

∂ξ̂1
+
∂α1

∂y
l1](ξ̂2 + ψ1(y))

+ξ̃3 − [
∂α1

∂ξ̂1
+
∂α1

∂y
l1]ξ̃2

−G2ξ̃ +
∂α1

∂ξ̂j
G1ξ̃ (20)

The stabilizing function α2 is designed as

α2 = −ζ1 − (r2 + k)ζ2 − ψ2(y) − ḡ2ϕ(ξ̂1)

+[
∂α1

∂ξ̂1
+
∂α1

∂y
l1](ξ̂2 + ψ1(y))

−kζ2ḡ
2
2(1 + ξ̂21γ

2
1(ξ̂1))

−kζ2[
∂α1

∂ξ̂1
+
∂α1

∂y
l1]

2 − kζ2[
∂α1

∂ξ̂1
]2 (21)

Step i. Similar to the procedures shown in Step 2, in the

subsequent steps, for i = 3, . . . , n, we have

ζ̇i = ζi+1 + αi + ψi(y) + ḡiϕ(ξ1) (22)

−

i−1
∑

j=1

[
∂αi−1

∂ξ̂j
+
∂αi−1

∂y
lj ](ξ̂j+1 + ψj(y))

+ξ̃i+1 −

i−1
∑

j=1

[
∂αi−1

∂ξ̂j
+
∂αi−1

∂y
lj ]ξ̃j+1

−Giξ̃ +

i−1
∑

j=1

∂αi−1

∂ξ̂j
Gj ξ̃ (23)

The stabilizing function αi is obtained as

αi = −ζi−1 − (ri + k)ζi − ψi(y) − ḡiϕ(ξ̂1)

−
i−1
∑

j=1

[
∂αi−1

∂ξ̂j
+
∂αi−1

∂y
lj](ξ̂j+1 + ψj(y))

−kζiḡ
2
i (1 + ξ̂21γ

2
1(ξ̂1))

−kζi

i−1
∑

j=1

[
∂αi−1

∂ξ̂j
+
∂αi−1

∂y
lj ]

2

−kζi

i−1
∑

j=1

[
∂αi−1

∂ξ̂j
]2 (24)

When i = n, we have αn as defined in (24). The control

input is then designed by setting ζn+1 = 0, which results in

u =
αn +

∑n
i=1 aiξ̂n−i+1

hnσ(y)
(25)

Remark 3: In the control design, we use k to be denote

a generic positive real design constant, instead of using ki,j
for different i and j in αi, for i = 1, . . . , n.

We have the stability result for the proposed control

design.

Theorem 4: Under Assumptions 2 to 4, the output feed-

back control (25) based on the output y and observer state

ẑ obtained in (11) globally and asymptotically stabilize the

dynamic system (13).

Proof. Proof is omitted due to the page limit.

We introduce the control design from an estimated state

variable to demonstrate the application of the reduced-order

observer design proposed in this paper. One of the advantages

of backstepping design from an estimated state variable is its

capability to deal with nonlinear systems with unstable zero

dynamics. In the remaining part of this section, we include

an example to illustrate the proposed control design for the

stabilization of such a system.

Example 2. Consider a nonlinear system

ẋ1 = x2 + (x1 + x2 + x3)
2

ẋ2 = x3 + 2(x1 + x2 + x3)
2 − y3 + u

ẋ3 = 3(x1 + x2 + x3)
2 + y3 − u

y = x1

Comparing with the structure of (13), we have

A =





0 1 0
0 0 1
0 0 0



 , b =





0
1
−1



 , c =





1
0
0



 ,

d =





1
1
1



 , f =





1
2
3



 , φ(y) =





0
−y3

y3



 ,

ϕ(dTx) = (x1 + x2 + x3)
2, σ = 1.

It can be verified that Assumptions 2, 3 and 4 are satisfied.

Furthermore, the zero dynamics is obtained as

ẋ0 = x0 + 6x2
0

where x0 = x2 + x3. This zero dynamics is nonlinear and

unstable. For the state transformation, we have T2 = I and

T3 =





1 0 0
−2 1 0
−3 0 1



 .

We have

z1 = x2 − 2y
z2 = x3 − 3y

and it is easy to obtain that

ż =

[

−2 1
−3 0

]

z +

[

−y − y3 + u

−6y + y3 − u

]

.

We therefore design the reduced order observer as

˙̂z =

[

−2 1
−3 0

]

ẑ +

[

−y − y3 + u

−6y + y3 − u

]

and the estimates of the unmeasured states are given by

x̂2 = ẑ1 + 2y
x̂3 = ẑ2 + 3y

For the state transformation T1, we have

ξ =





1 1 1
0 1 1
0 0 1



x
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and the system is transformed to

ξ̇1 = ξ2 + 6ξ21
ξ̇2 = ξ3 + 5ξ21
ξ̇2 = 3ξ21 + y3 − u

y = ξ1 − ξ2

For the nonlinear function ϕ(ξ1) = ξ21 , we take γ1 = 2.

The control design starts from ξ̂1, for which we have ξ̂1 =
y + x̂2 + x̂3. From the control design proposed earlier, we

have

α1 = −(r1 + k)ζ1 − g1ξ̂
2
1 − kg2

1ζ1(1 + 4ξ̂21)

α2 = −ζ1 − (r2 + k)ζ2 − ḡ2ξ̂
2
1 + ∂α1

∂ξ̂1
ξ̂2

−kζ2ḡ
2
2(1 + 4ξ̂21) − kζ2[

∂α1

∂ξ̂1
]2

α3 = −ζ2 − (r3 + k)ζ3 − y3 − ḡ3ξ̂
2
1

+∂α2

∂ξ̂1
ξ̂2 + ∂α2

∂ξ̂2
ξ̂3 − kζ3ḡ

2
3(1 + 4ξ̂21)

−kζ3([
∂α2

∂ξ̂1
]2 + [∂α2

∂ξ̂2
]2)

u = −α3

where g1 = 6, ḡ2 = 5−6∂α1

∂ξ̂1
and ḡ3 = 3−6∂α2

∂ξ̂1
−5∂α2

∂ξ̂2
. In

the simulation study, we set r1 = r2 = r3 = 1 and k = 0.01.

The simulation results are shown in Figures 3 and 4.
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Fig. 3. The state variables and the input

V. CONCLUSIONS

In this paper, we have presented a basic design of reduced-

order observers for nonlinear dynamic systems. The condi-

tions have been identified for the convergence of the observer

errors. More detailed design procedures have been proposed

for a specific class of nonlinear systems, which is larger than

the nonlinear systems with linear observer errors for the

full order observers. The proposed reduced order observer

design has been applied to output feedback stabilization of

nonlinear systems with nonlinearity of the unmeasured state

and nonlinear unstable zero dynamics.
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