
Robust path planning for mobile robot

based on fractional attractive force

Pierre MELCHIOR(1), Brahim METOUI(2), Slaheddine NAJAR(2),

Mohamed Naceur ABDELKRIM(2) and Alain OUSTALOUP(1)

Abstract— In path planning, potential fields introduce force
constraints to ensure curvature continuity of trajectories and
thus to facilitate path-tracking design. In previous works, a
path planning design by fractional (or generalized) repulsive
potential has been developed to avoid fixed obstacles: danger
level of each obstacle was characterized by the fractional order
of differentiation, and a fractional road was determined by
taking into account danger of each obstacle. If the obstacles
are dynamic, the method was extended to obtain trajectories
by considering repulsive and attractive potentials taking into
account position and velocity of the robot with respect to
obstacles. Then, a new attractive force based on fractional
potential was developed. The advantage of the generalized
normalized force is the possibility to control its variation.
The curve is continuously varying and depends only on one
parameter, the non integer order of the generalized attractive
potential. But, in case of robot parameter variations, these
two previous attractive forces do not allow to obtain robust
path planning. In this paper, a new fractional attractive force
for robust path planning of mobile robot is defined. This
method allows to obtain robust path planning despite robot
mass variations. The robustness of the obtained trajectories
is studied. A comparison between a classical method and the
proposed approach is presented.

Index Terms— Robotics, Mobile robot, Robust Path planning,
Fractional potential, Attractive force, Dynamic environment.

I. INTRODUCTION

Path planning design is the elaboration of a strategy to

define a trajectory which will reach a target by avoiding

obstacles. The danger concept, which will modify smoothly

the trajectory, is therefore of interest for the path planning of

a mobile robot. For fixed polygonal obstacles, the connectiv-

ity of the robot free space can be captured in a network of

nodes and arcs: the roadmap. A variety of methods can be

used to obtained roadmaps for path planning. Local methods

allowing a real time estimation of the trajectory have been

introduced. The better known local methods in path planning
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are the fictitious potential methods. A fictitious force field is

introduced to take into account the dynamics of the robot

and to obtain realistic speeds. The concept of a fictitious

potential field in path planning is the following [13][19][20]

”The potential field concept considers the robot as a charged

particle moving under the influence of repulsion potentials

for the obstacles, and attraction potentials for the target”.

The attraction (negative) potential Ucible(M) is associated to

the target and the positive repulsive Coulomb type potential

fields, Uk(M), are defined for each obstacle. The smoothness

of the curve obtained with potential field methods makes

practical steering and speed control possible. In previous

works, a path planning design by fractional (or generalized)

repulsive potential has been developed to avoid fixed obsta-

cles: danger level of each obstacle was characterized by the

fractional order of differentiation, and a fractional road was

determined by taking into account danger of each obstacle.

If the obstacles are dynamic, the method was extended to

obtain trajectories by considering repulsive and attractive

potentials taking into account position and velocity of the

robot with respect to obstacles [14][15][16][17][18]. The

potential field method is a well known tool to study and

to drive the robot motion along a convenient trajectory. It

allows an efficient control of the robot speed when it moves

from its initial position to its goal. The main idea is to

assume that the robot is attracted to the goal and is repulsed

away from the obstacles. Then it is guided by a force field

system generated by both the goal and the obstacle. Many

formula dealing with the force applied on the robot to define

its trajectory are found on the literature [1][2][3][4][6][8]

and [13]. Then, a new attractive force based on fractional

potential was developed. The advantage of the generalized

normalized force is the possibility to control its variation.

The curve is continuously varying and depends only on one

parameter, the non integer order of the generalized attractive

potential. But, in case of robot parameter variations, these

two previous attractive forces do not allow to obtain robust

path planning. In this paper, a new fractional attractive force

for robust path planning of mobile robot is defined. This

method allows to obtain robust path planning despite robot

mass variations. The robustness of the obtained trajectories

is studied. A comparison between a classical method and the

proposed approach is presented. Section 1 is an introduction

on path planning. Section 2 presents fractional mathematical

background. Section 3 deals with the fractional attractive

force definition and presents a dynamic analysis. Section 4

presents the robustness analysis in frequency domain and the
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comparison between a classical method and the proposed

approach. Section 5 presents simulation results. Finally a

conclusion is given in Section 6.

II. FRACTIONAL MATHEMATICAL BACKGROUND

During the 19th century some mathematicians such as

Abel, Liouville, Riemann and Cauchy were interested in the

extension of classical integer differentiation to real orders.

Some definitions and proprieties of this mathematical tool

are now provided [22][23][24][25][26].

A. Fractional integration

Let f (t) be a continuous real function. The fractional

integral of a function f (t) is defined by [22]:

(In
a+

f )(t)
∆
=

1

Γ(n)

t
∫

a

f (τ)

(t− τ)1−n
dτ (1)

where t > a and n is the real positive integration order, Γ(n)

is the Euler Gamma function:

Γ (n) =

∞
∫

0

e−xxn−1dx. (2)

When n is real, the integral in equation (4) is the area of the

surface generated by f (t) weighted with the factor:

1

Γ (n) (t− τ)1−n
.

The Laplace transform of the integral of a function f (t) is:
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where F(s) is the Laplace transform of f (t).

B. Fractional differentiation

The Riemann-Liouville fractional derivative of order n of

f (x) is defined as [23]:

Dn
t0

f (t)
∆
=

(
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)n+1
(
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f (t)
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. (4)

Second definition (Grünwald’s definition) is:
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t0
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(
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=
Γ(n+1)

Γ( j+1)Γ(n− j+1)
.

The two definitions (4) and (5) are equivalent. From equation

(5), we note that fractional differentiation is not a local

operator. The value of the fractional derivative function at

t depends on the whole past of the function. However, in the

case where the differentiation order is an integer value, the

derivative function depends only on some local points. For

example when n = 1:

D1
0 f (t) = lim

h→0

f (t)− f (t−h)

h
. (6)

When

f (t0) = D1
t0

f (t0) = ... = D∞t0 f (t0) = 0 (7)

the Laplace transform is [24]:

L
{

Dn
0 f (t)

}

= snF (s) . (8)

This result is coherent with the classical case where n is

an integer. Consequently, it is easy to define a symbolic

representation of a dynamic system, such as a transfer

function representation.

III. FRACTIONAL ATTRACTIVE FORCE DEFINITION

A. Attractive force definition

Conventionally, the attractive potential is defined as a

function of the relative distance between the robot and the

target only when the target is a fixed point in space [1][13].

The force applied on the robot is given by:

Frob = mrob.arob (9)

with mrob and arob, the robot mass and acceleration. On an

other way, this force is given by:

Frob = Ftar +Fatt (10)

with

Ftar = mtar.atar (11)

with Ftar the target attractive force, mtar and atar, the target

mass and acceleration. The robot is moving in the XY plane;

in the next section the principles and the demonstrations are

the same for the two axis; so, they are presented only on x

axis.

B. Ge and Cui attractive force

The Ge and Cui method [5][6][7] allows to obtain tra-

jectories in real time by considering repulsive and attractive

potentials taking into account position and velocity of the

robot with respect to obstacles. The Ge and Cui virtual

attractive force is defined by:

Fatt = αp.(Xtar −Xrob)+αv.(Vtar −Vrob) (12)

where Xtar and Xrob denote the target and robot positions at

time t, Vtar and Vrob denote the target and robot velocities

at time t, and αp and αv are scalar positive parameters.

By taking mtar equal to mrob, substituting (9) and (11) into

(10) gives:

mrob.arob =mrob.atar+αp.(Xtar−Xrob)+αv.(Vtar−Vrob) (13)

or

mrob.(atar −arob)+αv.(Vtar −Vrob)+αp.(Xtar −Xrob) = 0.

(14)
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de(t)
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= Vtar −Vrob

d2e(t)

dt2
= atar −arob

(15)

the previous relation can be written as a differential equation

which gives the x axis robot movement:

d2e(t)

dt2
+
αv

mrob

.
de(t)

dt
+
αp

mrob

e(t) = 0. (16)

In Laplace domain, the relation becomes:

s2E(s)+
αv

mrob

sE(s)+
αp

mrob

E(s) = 0. (17)

This can be interpreted as a classical control scheme given by

Fig. 1, where αp and αv are the parameters of a PD controller.

The corresponding open loop transfer function β(s) is given

Fig. 1. Dynamic interpretation of Ge and Cui attractive force

by:

β(s) =
αvs+αp

mrobs2
. (18)

The closed loop transfer function H(s) is deduced:

H(s) =
β(s)

1+β(s)
, (19)

that is to say:

H(s) =
αvs+αp

mrobs2 +αvs+αp

, (20)

or

H(s) =
(
αv

αp
)s+1

(
mrob

αp
)s2+ (

αv

αp
)s+1

. (21)

The characteristic equation of the system is given by:

Ec(s) = (
mrob

αp

)s2+ (
αv

αp

)s+1 = 0. (22)

By analogy with the second order system one, the relation

(22) can be written:

Ec(s) =
s2

w2
n

+
2ξ

wn

s+1 = 0, (23)

where wn is the natural frequency and ξ the damping factor,

with:

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αp
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αv
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√
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lading to:

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αp

mrob
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αv

2
√
αpmrob

.
(25)

So, the dynamic system behavior depends of the choice of

the parameters αp,αv and mrob.

• For ξ >
√

2
2

, the system is damping an there is not

oscillation.

• For 0 < ξ ≤
√

2
2

, the system has a little damping factor,

and the robot converges to the target, but with oscilla-

tions.

• For a damping factor ξ =
√

2
2
= 0.707, the robot mass is

given by:

mrob = (
αv

2.ξ
)2.

1

αp

=
α2

v

4αp.(
√

2
2

)2
=
α2

v

2αp

. (26)

So, the condition to avoid oscillation ξ >
√

2
2

, leads to the

maximal mass defined by mrob ≤ 0.5
α2

v

αp
.

This last relation shows that the damping factor is dependent

of the mass robot mrob. So the obtained trajectory is not

robust in front of the mass robot variations. For example,

for mrob = 1, αp = 0.005, αv = 0.1 are the parameters values

chosen in previous example by Ge and Cui to satisfied this

relation. In Section V, the Ge and Cui parameters chosen

are αp = 0.002, αv = 0.8, and for mrob=160 kg there is not

oscillations. So, this dynamic analysis allows to interpret the

influence of the Ge and Cui parameters. It also introduces

methodology to determine these parameters.

C. Fractional attractive force

The proposed attractive force is based on velocity frac-

tional derivative. It is defined by:

Fatt = αp.(Xtar −Xrob)+αv.
dn(Vtar −Vrob)

dtn
(27)

where αp and αv are scalar positive parameters.

By taking mtar equal to mrob, the relation gives:

mrob.(atar −arob)+αv.
dn(Vtar −Vrob)

dtn
+αp.(Xtar −Xrob) = 0.

(28)

With







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









e(t) = Xtar −Xrob
de(t)

dt
= Vtar −Vrob

d2e(t)

dt2
= atar −arob

(29)

the previous relation can be written as a differential equation

which gives the x axis robot movement:

d2e(t)

dt2
+
αv

mrob

.
dn(e(t))

dtn
+
αp

mrob

e(t) = 0. (30)

In Laplace domain, the relation becomes:

s2E(s)+
αv

mrob

snE(s)+
αp

mrob

E(s) = 0. (31)

This can be interpreted as a classical control scheme given

by Fig. 2, where αp and αv are the parameters of a fractional

PD controller. Note here that, taking into account the viscous

friction force, changes only the parameters αv. In this case,
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Fig. 2. Dynamic interpretation of the fractional attractive force

the corresponding open loop transfer function β(s) is given

by:

β(s) =
αvsn +αp

mrobs2
. (32)

For ω≫ ωc = (
αp

αv
)1/n, β(s) can be approximated by:

β(s) ≈
αvsn

mrobs2
(33)

or

β(s) =
1

(
mrob

αv
)s(2−n)

(34)

lading to:

β(s) = (
ωu

s
)n
′

(35)

with:














n
′
= 2−n

ωu = (
αv

mrob
)

1
(2−n) .

(36)

In the case of a fractional integrator, the resonant factor and

the damping factor can be deduced [26]:

Q =
1

sin(2−n
′
) π

2

(37)

and

ξ(n
′
) = −cos(

π

n
′ ). (38)

This last relation shows that the damping factor is indepen-

dent of the mass robot. This illustrates the robustness of

the obtained trajectory with the proposed fractional attractive

force.

IV. ROBUSTNESS ANALYSIS

If the mass of the robot is varying, the crossover frequency

ωcg and the stability degree are varying, and the path is

modified. A comparison of the open loop Nichols diagrams

obtain with Ge and Cui and fractional methods is presented.

The mass of the robot mrob is equal to [110, 150, 190, 250,

400], the nominal mass is 150 kg, αp=0.002 and αv= 0.8,

and the fractional order n=0.7 (which leads to a phase margin

equal to 60◦).

Figure 3 presents the Ge and Cui open loop Nichols diagram.

When the robot mass mrob is varying from 110 to 400 kg,

respectively, ωcg is varying from 0.0077 rad/s to 0.0027

rad/s, the phase margin from 72◦ to 48◦ and the damping

factor ξ from 0.85 to 0.45. In particular, for the nominal

mass mrob=150 kg, ωcg=0.0058 rad/s, the phase margin is

67◦, and the damping factor ξ=0.73. Figure 4 presents the

fractional open loop Nichols diagram with same αp and αv

than Ge and Cui method. In this case, the open loop is

characterized by a vertical frequency template in the Nichols

diagram, the phase margin is constant, and so the stability

degree and the damping factor are also constant. That means

that the robot mass variation leads to a very small phase

variation (phase margin robustness). In Crone control [26],

such robustness leads to a robust damping factor and a robust

first overshoot. When the robot mass mrob is varying from

110 to 400 kg, respectively, ωcg is varying from 0.023 rad/s

to 0.0086 rad/s, the phase margin from 61◦ to 59◦ and the

damping factor ξ is quasi constant and equal to 0.7. In

particular, for mrob=150 kg, ωcg=0.0184 rad/s, and the phase

margin is 61◦. In order to compare with the same rapidity,

Figure 5 presents the fractional open loop Nichols diagram

with same ωcg than Ge and Cui for the nominal robot mass

mrob=150 kg, ωcg=0.0058 rad/s. For this, αp=0.002x0.22 and

αv= 0.8x0.22. When the robot mass mrob is varying from 110

to 400 kg, respectively, ωcg is varying from 0.0073 rad/s

to 0.0028 rad/s, the phase margin from 59◦ to 54◦ and the

damping factor ξ is quasi constant and equal to 0.7. For

the nominal robot mass mrob=150 kg, the phase margin is

58◦. So, for the same Ge and Cui αp and αv parameters,

the fractional method leads to a constant stability degree, a

constant damping factor, that is to say a robust trajectory

and a faster dynamic. In the same way, for the same Ge and

Cui ωcg or rapidity, the fractional attractive force leads to

a constant stability degree, a constant damping factor, and a

robust path planning. Time domain simulations are presented

in the next section.

Fig. 3. Ge and Cui open loop Nichols diagram

V. SIMULATION RESULTS

A comparison between the Ge and Cui and the proposed

approach is presented. In this simulation, there is not obstacle

in order to evaluate the performances of the attractive forces.

The mass of the robot mrob is equal to [110, 150, 190, 250,
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Fig. 4. Fractional open loop Nichols diagram with same αp and αv than
Ge and Cui method

Fig. 5. Fractional open loop Nichols diagram with same ωcg than Ge and
Cui method

400], αp=0.002 and αv= 0.8 and the fractional order n=0.7.

First, the mobile target is moving from point (20 140) and a

constant velocity (0.1, 0). The initial position of the robot is

(20 20) and its initial velocity (0 0). The simulations (Fig.

6, Fig. 7 and Fig. 8) show that the fractional attractive force

allows to obtain a constant damping factor and a constant

overshoot, and thus a robust path planning despite robot mass

variation. Moreover, the robot reaches faster the target.

In the second example, the mobile target is decreasing

from point (20 140) with a constant velocity (0.1, -0.01). The

initial position of the robot is (20 20) and its initial velocity

(0 0). In a same way, the simulations (Fig. 9, Fig. 10 and

Fig. 11) show a robust and faster path planning despite robot

mass variation.

Fig. 6. Robot and Target paths obtained with Ge and Cui approach, with
robot mass variation

Fig. 7. Robot and Target paths obtained with the proposed fractional
approach, with same αp and αv than Ge and Cui method, with robot mass
variation
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Fig. 8. Robot and Target paths obtained with the proposed fractional
approach, with same ωu than Ge and Cui method, with robot mass variation

VI. CONCLUSION

In this paper, a new fractional attractive force for robust

path planning of mobile robot is presented. This method

allows to obtain robust and faster path planning despite

robot mass variations. Future works concern the use of this

attractive force in dynamic environment with mobile target

and obstacles.
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Fig. 9. Robot and Target paths obtained with Ge and Cui approach, with
robot mass variation

Fig. 10. Robot and Target paths obtained with the proposed fractional
approach, with same αp and αv than Ge and Cui method, with robot mass
variation
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Fig. 11. Robot and Target paths obtained with the proposed fractional
approach, with same ωu than Ge and Cui method, with robot mass variation
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