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Abstract— Approximate Dynamic Inversion (ADI) has been
established as a method to control minimum-phase, nonaffine-
in-control systems. Previous results have shown that for single-
input nonaffine-in-control systems, every ADI controller admits
a linear Proportional-Integral (PI) realization that is largely
independent of the nonlinear function that defines the system.
This paper extends these previous results in three ways. First,
we present an extension of ADI that renders the closed loop
error dynamics independent of the reference model dynamics.
It is then shown that the equivalence between the ADI and
PI controllers only holds for the time response when applied
to the exact system. Finally, key robustness properties of the
two control approaches are compared using linear system
techniques. These results indicate that the PI realization is
preferable when accurate knowledge of the nonlinear system
dynamics is not available, and that the ADI realization would
be preferred if time delays are the major limitations in the
system.

I. INTRODUCTION

Dynamic inversion or feedback linearization is a popular
control design method well suited for minimum-phase non-
linear systems [1] [2, Chapter 13]. It addresses the problem
of controller design to transform a nonlinear system to a
linear one by feedback. To overcome some limitations im-
posed by the requirements of exact linearization, approximate
linearization has emerged as a viable alternative, where
the problem is relaxed to enlarge the class of admissible
controllers [3]. A notable departure from the approximate
linearization literature is [4], where tracking control of
nonaffine-in-control systems are considered.

An Approximate Dynamic Inversion (ADI) control law
was proposed in [4] that drives a given minimum-phase
nonaffine-in-control system towards a chosen stable refer-
ence model. The control signal was defined as a solution of
“fast” dynamics, and Tikhonov’s Theorem [2, Theorem 11.2,
pp. 439 – 440] in singular perturbation theory was used to
show that the control signal approaches the exact dynamic
inversion solution, and that the system states approach that of
the reference model, when the controller dynamics are made
sufficiently fast. A related technique in [5] uses high-gain
filters to estimate some additive input uncertainties which in
turn is used in the controller to cancel its effects.

In [6], we showed that for the single-input case, every ADI
control law as formulated in [4] admits a linear Proportional-
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Integral (PI) model reference controller realization. The key
characteristic of the equivalent PI controller is that it is
largely independent of the system’s nonlinearities, in contrast
to the original ADI control law in [4]. However, when
the controller have fast dynamics as required of the ADI
method, the resulting PI controller is a high-gain controller
with associated robustness problems [7]. This result can be
seen as an extension of [8] to nonaffine-in-control systems
and reference signals not necessarily approaching a constant
limit, restricted to the state-feedback case.

In this paper, we extend the ADI method by decoupling the
error dynamics specification from the reference model dy-
namics. This in essence decouples the “steady state” response
specification from the transient response specification, when
the reference model response is viewed as the “steady state”
response. The equivalent PI controller for this extension can
be similarly derived. The extension to multi-input systems is
straightforward [9]. It will be shown that the equivalence
between the ADI and PI controllers holds only for the
time response when applied to the exact system. Finally,
using linear system techniques, some robustness properties
of the systems controlled by the ADI and PI controllers are
established.

The rest of the paper is organized as follows. Section II
presents the ADI extension and PI equivalent controller.
Section III shows that this equivalence do not hold when
the nominal system is perturbed. In the final section, by
restricting consideration to minimum-phase Linear Time-
Invariant (LTI) systems, some robustness properties of the
two control laws are presented.

In the sequel, italicized symbols (eg. x) denote scalars,
boldface lowercase letters (eg. x) denote column vectors, and
boldface uppercase letters (eg. A) denote matrices. Upright
text subscripts (eg. xr with text subscript “r” to indicate
state of reference model) are variable class indicators, and
italicized subscript symbols (eg. xρ with subscript “ρ” to
indicate the ρ-th element of the vector x) are variables for
numeric quantities.

II. EQUIVALENCE BETWEEN APPROXIMATE DYNAMIC
INVERSION AND PI CONTROL

A. Approximate Dynamic Inversion for Single Input Systems

Here, the ADI method [4] for single input systems is
stated with a minor generalization, together with the main
result. The proof in [4] applies with appropriate (trivial)
substitutions, and will not be replicated here.

Consider an n-th order single-input nonaffine-in-control
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system of relative degree ρ, expressed in normal form

ẋ(t) = f(x(t), z(t), u(t)), x(0) = x0,

ż(t) = g(x(t), z(t), u(t)), z(0) = z0,
(1a)

where x(t) = [x1(t), x2(t), . . . , xρ(t)]
T ∈ Rρ,

f(x(t), z(t), u(t)) =


x2(t)

...
xρ(t)

f(x(t), z(t), u(t))

 ∈ Rρ, (1b)

for (x(t), z(t), u(t)) ∈ Dx ×Dz ×Du, and the sets Dx ⊂
Rρ, Dz ⊂ Rn−ρ and Du ⊂ R are domains containing the
origins. Here, [xT(t), zT(t)]T denotes the state vector of the
system, u(t) is the control input, and f : Dx×Dz×Du 7→ R,
g : Dx ×Dz ×Du 7→ Rn−ρ are continuously differentiable
functions of their arguments. Furthermore, assume that ∂f

∂u
is bounded away from zero for (x(t), z(t), u(t)) ∈ Ω ⊂
Dx×Dz×Du, where Ω is a compact set. That is, there exists
b0 > 0 such that |∂f∂u | ≥ b0 for all (x(t), z(t), u(t)) ∈ Ω.
Note that |∂f∂u | ≥ b0 > 0 implies sign

(
∂f
∂u

)
∈ {−1,+1} is a

constant. In addition, assume that the function f cannot be
inverted explicitly with respect to u.

It is desired for x(t) to track the states of a stable ρ-th
order linear reference model described in the controllable
canonical form

ẋr(t) = Arxr(t) + Brr(t), xr(0) = xr0, (2a)

where xr(t) = [xr1(t), xr2(t), . . . , xrρ(t)]T ∈ Rρ, and the
Hurwitz Ar and column vector Br have the form

Ar =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−ar0 −ar1 · · · −ar(ρ−1)

 , Br =


0
...
0
br

 . (2b)

Here, r(t) is a continuously differentiable reference input
signal, and xr(t) is the state of the reference model.

Let e(t) = x(t)−xr(t) ∈ Rρ be the tracking error signal,
and let the desired stable error dynamics be specified by

ė(t) = Aee(t), (3)

where Ae is Hurwitz and has identical structure as Ar, but
with coefficients aei in place of ari for i ∈ {0, 1, . . . , ρ−1}.

Observe that in [4], Ae was set equal to Ar, while
in the above, an independent Hurwitz matrix Ae can be
specified. In typical applications, Ar and Br can be used
to specify the desired system response to excitation r(t),
and Ae can be used to independently specify the desired
error dynamics. That is, how quickly the system response
approaches that of the reference model. Thus the preceding
is a slight generalization of the ADI as formulated in [4].

The open loop (time-varying) error dynamics are then
given by the system

ė(t) = f(e(t) + xr(t), z(t), u(t))−Arxr(t)−Brr(t),
ż(t) = g(e(t) + xr(t), z(t), u(t)),

(4)

with initial conditions e(0) = e0, z(0) = z0. Define the
selector vector c = [0, . . . , 0, 1]T ∈ Rρ. The ideal dynamic
inversion control is then found by solving the equation

f(x(t), z(t), u(t))−Arxr(t)−Brr(t) = Aee(t),
or equivalently,

f(x(t), z(t), u(t))− cT
(
Arxr(t) + Brr(t)

)
= cTAee(t),

(5)

resulting in the exponentially stable closed-loop tracking
error dynamics (3). Since (5) cannot (in general) be solved
explicitly for u(t), the approximate dynamic inversion con-
troller for the above formulation can be given in similar form
to [4] as

εu̇(t) = − sign
(
∂f

∂u

)
f̃(t, e(t), z(t), u(t)), (6a)

where
f̃(t, e(t), z(t), u(t)) = f(e(t) + xr(t), z(t), u(t))

− cT
(
Arxr(t) + Brr(t) + Aee(t)

)
,

(6b)

for some initial control u(0) = u0. Here, ε is a posi-
tive controller design parameter, chosen sufficiently small
to achieve closed-loop stability and approximate dynamic
inversion. Observe that (6) relaxes the requirement for exact
dynamic inversion while increasing the control in a direction
to reduce the discrepancy (5) so as to approach the exact
dynamic inversion solution.

Let u = h(t, e, z) be an isolated root of f̃(t, e, z, u) = 0.
In accordance with the theory of singular perturbations [2,
Chapter 11], the reduced system for (4), (6) is

ė(t) = Aee(t), e(0) = e0,

ż(t) = g(e(t) + xr(t), z(t), h(t, e(t), z(t))), z(0) = z0.

With v = u − h(t, e, z), and τ = t/ε, the boundary layer
system is

dv

dτ
= − sign

(
∂f

∂u

)
f̃(t, e, z, v + h(t, e, z)). (7)

The main result of [4] for single-input systems, adapted for
the generalization above, is stated below.

Theorem 1 (Hovakimyan et al. [4, Theorem 2]):
Assume that the following conditions hold for all
(t, e, z, u− h(t, e, z), ε) ∈ [0,∞)×De,z ×Dv × [0, ε0] for
some domains De,z ⊂ Rn and Dv ⊂ R, which contain the
origins.

1) On any compact subset of De,z × Dv , the functions
f and g and their first partial derivatives with respect
to (e, z, u), and the first partial derivative of f with
respect to t are continuous and bounded, h(t, e, z)
and ∂f

∂u (t, e, z, u) have bounded first derivatives with
respect to their arguments, ∂f

∂e (t, e, z, h(t, e, z)) and
∂f
∂z (t, e, z, h(t, e, z)) are Lipschitz in e and z, uni-
formly in t.

2) The origin is an exponentially stable equilibrium of the
system

ż(t) = g(xr(t), z(t), h(t,0, z(t))).
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The mapping (e, z) 7→ g(e + xr(t), z, h(t, e, z))
is continuously differentiable and Lipschitz in (e, z)
uniformly in t.

3) (t, e, z, v) 7→ |∂f∂u (t, e, z, v + h(t, e, z))| is bounded
from below by some positive number for all (t, e, z) ∈
[0,∞)×De,z .

Then the origin of (7) is exponentially stable. Moreover, let
Ωv be a compact subset of Rv , where Rv ⊂ Dv denotes the
region of attraction of the autonomous system

dv

dτ
= − sign

(
∂f

∂u

)
f̃(0, e0, z0, v + h(0, e0, z0)).

Then for each compact subset Ωe,z ⊂ De,z , there exists a
positive constant ε∗ and T > 0 such that ∀ t ≥ 0, (e0, z0) ∈
Ωe,z , u0 − h(0, e0, z0) ∈ Ωv , and ∀ ε ∈ (0, ε∗), system (1),
(6) has a unique solution xε(t) on [0,∞) and xε(t) = xr(t)+
O(ε) holds uniformly for t ∈ [T,∞).

A proof of Theorem 1 is provided in [4]. In summary,
Theorem 1 states that when regularity assumptions on the
system dynamics are satisfied to ensure existence and unique-
ness of solutions, and system (1) is minimum phase and
controllable, the ADI control signal u(t) approaches that of
the exact dynamic inversion solution, and the system state
x(t) approaches and maintains within O(ε) of the reference
model state xr(t) for a sufficiently small ε. See [4] for ways
to verify the assumptions and further discussions.

B. Equivalent PI Controller

Here, we recall the main result of [6], [9], which extends
trivially for the above ADI generalization.

Lemma 1: For every Approximate Dynamic Inversion
controller (6) with u(0) = u0, there exists a linear
Proportional-Integral model reference controller realization

u(t) = −1
ε

sign
(
∂f

∂u

)(
cTe(t)

−
∫ t

0

cTAee(λ) dλ− ũ0

)
,

(8)

where ũ0 = cTe(0) + ε sign
(
∂f
∂u

)
u0 .

The proof is available in [9], using similar ideas from [6].
The key is to observe that the relations

f(x(t), z(t), u(t)) = cTẋ(t), (9)

cT
(
Arxr(t) + Brr(t)

)
= cTẋr(t), (10)

follow from (1) and (2) respectively.
It can be seen that the result (8) is a PI controller acting

on the error between the system states and the states of the
reference model. Furthermore, observe that when expressed
in the error coordinates, e(t), the PI controller is not ex-
plicitly dependent on Ar that specifies the reference model
dynamics, in contrast to the form in [6]. This characteristic
is the result of introducing the independent matrix Ae for
error dynamics specification. From (8), it is apparent that
the PI controller attempts to achieve (3), which is equivalent
to achieving (5).

The significance of this result is threefold:

1) The PI controller allows a very simple exact realization
of the ADI control law. Furthermore, no feedback of
z(t) is required.

2) The PI controller is a linear realization of a (in general)
nonlinear control law.

3) The PI controller realization is independent of the
nonlinear function f(x(t), z(t), u(t)) in (1b), except
for the sign of the control effectiveness, sign

(
∂f
∂u

)
.

The existence of a linear realization of a nonlinear control
law hinges critically on the structure of the underlying
system, reference model, error dynamics and control law.
The extension to multi-input nonaffine-in-control systems is
straightforward [9]. In [6], [10], the equivalent PI controller
is compared against the ADI variants in [11], [12] respec-
tively. Because the PI controller is an exact realization, while
the ADI variants in [11], [12] are approximate realizations,
the PI realization achieves/exceeds the tracking performance
of these ADI variants.

III. NONEQUIVALENCE IN PERTURBED SYSTEMS

Consider the scenario where the ADI control law is
designed for a nominal system, but applied to a perturbed
system. As stated above, a PI controller of the form (8) can
be derived from the ADI control law (6). It is clear that
when applied to the exact system (1), the PI controller (8)
is equivalent to the ADI control law (6) in the sense that
they produce identical time responses for the same excitation
and initial conditions. As will be shown in Section IV,
the equivalence only holds for the time response and not,
in particular, to robustness properties. Equivalence in the
time response also does not hold (in general) when these
controllers are applied to a perturbed system. In particular,
it is shown that this equivalence does not hold (in general)
in the presence of:

1) disturbances at plant input/output,
2) perturbations of nonlinear function f(x(t), z(t), u(t))

in (1b), or
3) a single time delay at plant input/output.

The same conclusions hold for the multi-input case [9]. For
notational convenience in the sequel, define

α = sign
(
∂f

∂u

)
∈ {−1, 1}.

A. Disturbances at Plant Input/Output

Let the system to be controlled be defined by (1) with

u(t) = uc(t) + di(t), y(t) =
[
x(t)
z(t)

]
+
[
dxo(t)
dzo(t)

]
, (11)

where uc(t) ∈ R is the control signal, di(t) ∈ R is the input
disturbance, y(t) ∈ Rn is the measurement, dxo(t) ∈ Rρ
and dzo(t) ∈ Rn−ρ are output disturbances acting on x(t)
and z(t) respectively. Define signal h(t) ∈ R as

h(t) = −cT
(
Arxr(t) + Brr(t) + Ae(e(t) + dxo(t))

)
.
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The ADI control law applied to the system with input and
output disturbances defined by (11) is then given by

εu̇c(t) = −α
(
f(x(t) +dxo(t), z(t) +dzo(t), uc(t)) +h(t)

)
.

(12)
The PI controller applied to the same system is given by

uc(t) = −α
ε
cT

(
e(t) + dxo(t)

−Ae

∫ t

0

(e(λ) + dxo(λ)) dλ
)
,

which, using (9) and (10), can be shown to be equivalent to
the following control law

εu̇c(t) = −α
(
f(x(t), z(t), uc(t) + di(t))

+ cTḋxo(t) + h(t)
)
. (13)

It can be seen that, in general, the two controllers given
by (12) and (13) are equivalent only when di(t) = 0,
dxo(t) = 0, and dzo(t) = 0 for all t ≥ 0.

B. Delay-free Perturbation of System

If the system to be controlled is defined by (1), but with
f(x(t), z(t), u(t)) perturbed to fp(x(t), z(t), u(t)), the ADI
control law remains unaltered as in (6). With

h(t) = −cT
(
Arxr(t) + Brr(t) + Aee(t)

)
,

the ADI control law can be rewritten as

εu̇(t) = −α
(
f(x(t), z(t), u(t)) + h(t)

)
. (14)

The PI controller, in contrast, can be shown to be equivalent
to

εu̇(t) = −α
(
fp(x(t), z(t), u(t)) + h(t)

)
. (15)

Observe that (15) differs from (14) in the nonlinear function
fp(x(t), z(t), u(t)). The independence of the PI controller
from the nonlinear function renders it insensitive to delay-
free perturbations of f(x(t), z(t), u(t)). It is clear that for
the system described by (1) with f(x(t), z(t), u(t)) replaced
by fp(x(t), z(t), u(t)), and controlled by (15), Theorem 1
applies unaltered. This implies that for all delay-free per-
turbations described by fp(x(t), z(t), u(t)), there exists a
sufficiently small positive ε for which the PI controller
stabilizes the system.

C. A Single Time Delay at Plant Input/Output

Here, we consider the case where there is a single delay
present at the plant input/output. To simplify the exposition,
we first state a fact which is a property of time-invariant
systems. Let Td > 0 be the delay interval, and let signal
u(t) be defined for t ∈ [−Td, 0]. Let the input-delayed time-
invariant system with input u(t), output y(t), and state x(t),
be defined by

ẋ(t) = f(x(t),u(t− Td)), x(0) = x0,

y(t) = g(x(t),u(t− Td)).
(16)

ẋ(t)=f(x(t),v(t))

w(t)=g(x(t),v(t))
e−sTdIni

u
v w

y- - -

ẋ(t)=f(x(t),v(t))

w(t)=g(x(t),v(t))
e−sTdIno

u
v w

y- - -

~w�

Fig. 1. A single delay at the input/output commutes with a time-invariant
system.

Let the output-delayed time-invariant system with input u(t),
output y(t), and state x̃(t), be defined by

˙̃x(t) = f(x̃(t),u(t)), x̃(−Td) = x0,

y(t) = g(x̃(t− Td),u(t− Td)).
(17)

The solution of systems (16) and (17) are well defined for
t ∈ [0, Td]. In particular, they have identical outputs during
this interval.

Proposition 1: System (16) is equivalent to system (17) in
the sense that both systems produce the same output when
excited by the same input for all t > 0.

Proof: Define x̃(t) = x(t+Td), and perform a change
of the time variable.

Proposition 1 states that the delay operator commutes
with time invariant systems at the input and output, with
an appropriate change in input/output dimensions. This is
illustrated in Fig. 1 schematically, where the delay operator
is represented by e−sTd , and the input and output dimensions
are ni and no respectively. In Proposition 1, it is crucial that
the nonlinear functions f and g are not explicit functions of
the time variable, t.

With Proposition 1, it suffices to consider the case where
the single delay appears at the input. The system to be
controlled is therefore defined by (1) with

u(t) = uc(t− Td),

where Td is the delay interval and uc(t) is the control signal.
With

h(t) = −cT
(
Arxr(t) + Brr(t) + Ae(x(t− Td)− xr(t))

)
,

the ADI control law takes the form

εu̇c(t) = −α
(
f(x(t− Td), z(t− Td), uc(t)) + h(t)

)
.

In contrast, the PI controller can be shown to be equivalent
to

εu̇c(t) = −α
(
f(x(t− Td), z(t− Td), uc(t− 2Td)) + h(t)

)
,

the difference being that uc(t) enters the nonlinear function
f delayed by 2Td.

IV. LINEAR TIME-INVARIANT SYSTEMS

This section uses well established linear system techniques
to compare some robustness properties of the closed loop
system controlled by the PI controller (8) and by the ADI
control law (6) when the system is minimum-phase and LTI.
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Consider the class of ρ-th order single-input minimum-
phase LTI systems described by

ẋ(t) = Ax(t) + bcu(t), (18a)

where b is a constant scalar satisfying |b| ≥ b0 > 0, and

A =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
a0 a1 · · · a(ρ−1)

 , c =


0
...
0
1

 . (18b)

A. Input Sensitivity Function

First, we show that the closed loop system controlled by
the PI controller (8) has a superior input sensitivity function
compared to that controlled by the ADI control law (6). The
PI controller (8) applied to this system can be written as

εu̇PI(t) = − sign(b)cT
(
ẋ(t)− ẋr(t)−Ae(x(t)− xr(t))

)
,

(19)

where Ae defines the error dynamics (3) and xr(t) is the
state of the reference model (2).

Taking Laplace transforms of (18) and (19) yields

x(s) = b(sI −A)−1cu(s),

uPI(s) = − sign(b)
εs

cT(sI −Ae)(x(s)− xr(s)),

respectively. Breaking the loop at the input to the system,
the input loop transfer function is then

LPI(s) =
|b|
εs

cT(sI −Ae)(sI −A)−1c. (20)

The ADI controller (6) applied to the same system is

εu̇ADI(t) = − sign(b)cT
(
Ax(t) + bcuADI(t)

−Arxr(t)−Brr(t)−Ae(x(t)− xr(t))
)
,

with Laplace transform

uADI(s) = − sign(b)
εs+ |b|

cT
(
(A −Ae)x(s)

+ (Ae −Ar)xr(s)−Brr(s)
)
.

The input loop transfer function is then

LADI(s) =
|b|

εs+ |b|
cT(A −Ae)(sI −A)−1c. (21)

The corresponding input sensitivity functions are

SPI(s) = (1 + LPI(s))−1, SADI(s) = (1 + LADI(s))−1.

The following establishes a key relationship between the
input sensitivity functions of identical systems controlled by
the ADI and PI controllers.

Proposition 2: For any ε ∈ (0,∞),

SPI(s) =
εs

εs+ |b|
SADI(s). (22)

For any ε ∈ (0, ε∗), where ε∗ is defined in Theorem 1,

‖SPI(s)‖∞ < ‖SADI(s)‖∞. (23)

Proof: From (20), we have

1 + LPI(s) =
εs+ |b|cT(sI −Ae)(sI −A)−1c

εs
.

and from (21),

1 + LADI(s) =
εs+ |b|+ |b|cT(A −Ae)(sI −A)−1c

εs+ |b|

=
εs+ |b|cT

(
I + (A −Ae)(sI −A)−1

)
c

εs+ |b|
.

Factoring out (sI −A)−1 on the right and canceling terms,
yields

1 + LADI(s) =
εs+ |b|cT(sI −Ae)(sI −A)−1c

εs+ |b|
=

εs

εs+ |b|
(1 + LPI(s)),

which proves (22) for any ε ∈ (0,∞).
Next, observe from Theorem 1 that any choice of

ε ∈ (0, ε∗) results in a stable closed loop system. Then
‖SPI(s)‖∞ and ‖SADI(s)‖∞ are both finite. Let |SPI(jω)|
attain its maximum at ω0 so that ‖SPI(s)‖∞ = |SPI(jω0)|.
From (22), at frequency ω0, we have

|SADI(jω0)| =
∣∣∣∣1− j |b|εω0

∣∣∣∣ |SPI(jω0)| > ‖SPI(s)‖∞.

Since ‖SADI(s)‖∞ ≥ |SADI(jω0)|, (23) is proved.
Observe that ‖S(s)‖∞ is one measure of robustness, the

reciprocal of which is the shortest Euclidean distance in
the complex plane of the Nyquist locus from the critical
point, −1 + j0. From (23), we see that the shortest distance
between the Nyquist locus of LPI(s) and the critical point is
always larger than that of LADI(s). Hence the PI controlled
system can tolerate larger perturbations to LPI(s) while
maintaining stability compared to the ADI controlled system.
This shows that in terms of the input sensitivity function, the
PI controller has better robustness properties.

B. Time Delay Margin

The time delay margin for a system with loop transfer
function L(s) is defined in [13] as

TM sc =
phase margin

gain crossover frequency
=

φm

|ωc|
,

where φm and ωc are the phase margin and gain crossover
frequency of L(s) respectively. It is a measure of the amount
of time delay that an LTI system can tolerate, beyond which
the closed loop system loses stability. It is another measure of
system robustness of practical importance. To be applicable
to systems whose loop transfer functions have no, multiple or
infinite number of crossovers, we use the modified definition

TM = inf {φm/|ωc| ∈ R | ∃ωc ∈ R, |L(jωc)| = 1,
φm =

(
(∠L(jωc) mod 2π)− π

)
},

with the convention that the infimum of an empty set is
+∞. Note that implicit in the above definition is that φm ∈
[−π, π).
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Here, we show that as ε→ 0, the time delay margin of the
system controlled by the PI equivalent, TMPI, approaches
zero. This means that if there are any (non-zero) finite time
delays present within the loop, the system can be destabilized
if ε is made too small.

Proposition 3: The time delay margin of the closed loop
system stabilized by the PI controller (8) satisfy

lim
ε→0

TMPI = 0.
Proof: Since the closed loop system is stable by

assumption, the phase margin satisfy φm ∈ (0, π) if there
exists at least one real ωc such that |LPI(jωc)| = 1, ie.,
that there is at least one gain crossover point. Hence it is
sufficient to show that when ε → 0, there exists a solution
ωc ∈ R satisfying |LPI(jωc)| = 1 such that |ωc| → ∞.

From (20), it can be shown that LPI(s) expands to

LPI(s) =
|b|
εs

sρ + ae(ρ−1)s
ρ−1 + · · ·+ ae1s+ ae0

sρ − a(ρ−1)sρ−1 − · · · − a1s− a0
,

:=
|b|
εs

p(s)
q(s)

.

It can be seen that since LPI(s) is strictly proper, and has a
pole at s = 0, we have that

lim
ω→∞

|LPI(jω)| = 0, lim
ω→0
|LPI(jω)| =∞.

By the continuity of |LPI(jω)| with ω, there must exist a
real ωc that satisfy

|LPI(jωc)| =
|b|
ε|ωc|

|p(jωc)|
|q(jωc)|

= 1.

Rearranging terms and taking limits, we have

lim
ε→0

ε = 0 =
|b|
|ωc|
|p(jωc)|
|q(jωc)|

. (24)

Observe that p(s) is the characteristic polynomial of Ae.
Since Ae is Hurwitz, all roots of p(s) = 0 have negative
real parts, so that none lies on the jω axis and ∀ω ∈ R,
|p(jω)| 6= 0. Since p(s) and q(s) are of the same order, we
must have from (24) that |ωc| → ∞.

This shows that there is a practical lower bound of ε when
implementing the equivalent PI controller. In contrast, for the
limiting case ε → 0, we see from (21) that limε→0 TMADI

is defined entirely by

lim
ε→0

LADI(s) = cT(A −Ae)(sI −A)−1c,

and does not exhibit the zero delay tolerance characteristic
of the PI controlled system.

V. CONCLUSIONS

An extension of the Approximate Dynamic Inversion
(ADI) method for minimum-phase nonaffine-in-control sys-
tems was presented that renders the error dynamics inde-
pendent of the reference model dynamics. In essence, this
decouples the “steady state” response specification from the
transient response specification, where the “steady state”
response is specified by the reference model dynamics while
the transient response is independently specified by the error

dynamics. It was shown that every ADI control law admits
an equivalent linear Proportional-Integral (PI) controller re-
alization that is largely independent of the nonlinearities of
the system.

This equivalence holds only for the time response, and
only when applied to the exact system. In particular, even
when specializing to minimum-phase linear time-invariant
systems, they differ in robustness properties. In terms of the
input sensitivity function, the PI controller was shown to be
more robust than the ADI controller. In terms of time-delay
margin, the ADI controller is superior.

For the practitioner, the choice between implementing the
original ADI control law or PI equivalent lies in whether
a sufficiently accurate characterization of the system is
available, or whether time delays are the major limiting factor
in the system. An interesting research topic not specifically
linked to the ADI or PI controller is, among all equivalent
controllers, to find those with superior robustness properties.
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