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Abstract— Foreign oil dependence, increased cost of fuel,
pollution, global warming are buzz words of today’s era.
Automobiles have a large impact on increasing energy demand,
pollution and related issues. As a consequence, many efforts are
being concentrated on innovative systems for transportation
that could replace petroleum with cleaner fuel, i.e. electricity
from the power grid. The use of plug-in hybrid electric
vehicles (PHEVs) can become a very important change in this
direction, since such vehicles could benefit from the increasing
availability of renewable energy. PHEVs requires new control
and energy management algorithms, that are crucial for vehicle
performance. This paper deals with evaluation of two modes,
Electric Vehicle (EV) mode and Blended mode, for plug-in
hybrid electric vehicles and their comparison with conventional
and hybrid electric vehicle performance.

In this paper two PHEV architectures are considered:
through road parallel plug-in hybrid and series plug-in hybrid.
Similar models have been developed to evaluate vehicle perfor-
mance for conventional and hybrid architectures. Both PHEV
architectures are analyzed with two different modes- EV and
Blended; a modified version of ECMS (Equivalent Consumption
Minimization Strategy) is used for both algorithms. Various
standard as well as custom designed driving cycles are used in
this analysis.

The paper provides quantitative analysis of the control algo-
rithms to analyze their effects on fuel economy, use of electric
energy, cost of operation, etc.; these results are compared
with the simulations for hybrid and conventional vehicles.
Some important relationships between fuel economy, design
architectures and control strategies are shown and can be useful
in the design of the optimal control algorithms for PHEVs. As
shown in the results, the control problem for PHEVs is not
limited to fuel economy but it also involves external factors, such
as price of electricity, energy market and regulations, charging
availability, battery life issues, etc.

I. INTRODUCTION

Effect of climate change and public awareness toward the

importance of energy savings is increasing and governments

are encouraging the use of renewable energy. The energy

consumption of the US is very high as compared to that of

European and Asian countries [1]; particularly, US citizens

consume twice as energy per capita as Europeans and it

is the largest consumer of the petroleum products. A clear

correlation can be observed between vehicle density (cars per

1000 inhabitants) and the GDP (gross domestic product) [2]

[3]; this suggests that as densely populated countries such

as China, India, Brazil achieve higher economic status, it

can be expected that the demand for personal transportation

will increase accordingly, leading to significant increase in

the demand of transportation fuels. Today, this demand can
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be directly translated into increased demand for petroleum,

a fact that is hardly consistent with current data on oil

production. The energy market in US can be classified

into four sectors, transportation, residential, commercial, and

industrial. The transportation sector is the main contributor

to the total energy consumption along with the electric power

generation. It is also important to note that [4] the energy

efficiency of the transportation sector is the lowest of all

other sectors (around 20%) and that approximately 62% of

the petroleum is imported, and it is used almost exclusively

for transportation.

PHEVs have gained interest over the past decade due to

their energy efficiency, convenient and low-cost recharging

capabilities and reduced use of petroleum. The energy man-

agement algorithms for PHEVs are crucial for vehicle per-

formance; the capability to operate in pure electric mode and

to recharge the battery from an external source increases the

complexity of the energy management problem, compared

to hybrid electric vehicles. This paper considers the issues

of PHEV energy management and gives an application of

ECMS algorithm adapted to the PHEV requirements.

The PHEV control problem is similar to the hybrid vehicle

control, with the main difference being that the batteries

used for PHEV applications are almost completely depleted

(usually 95-25 % SOC) and then charged from external

sources (not from the onboard APU). These constraints

create many difficulties in the optimization; in particular, the

performance depends not only on the driving pattern, but also

on initial battery SOC. As shown in the paper, trip length

and initial SOC are key factors to determine fuel economy:

while conventional and hybrid vehicles have a constant mpg

at increasing distance over the same driving pattern, results

for PHEVs show a decrease in fuel economy at increasing

distance.

Given a driving pattern, for trips shorter than the AER

(all electric range, number of miles that can be run in pure

electric mode), a PHEV presents the same fuel economy of a

pure electric vehicle; for much longer trips (AER negligible

with respect to the total trip) a PHEV tends to the same fuel

economy of a hybrid electric vehicle.

Besides analyzing the control strategies on standard driv-

ing cycles, this paper deals with customized driving cycles;

a proper combination of known driving cycles has been

adopted to analyze real world situations, such as going to

work, running errands, etc. The performance of different

control strategies and architectures was evaluated by compar-

ing total electrical energy consumption, fuel economy, cost

of operation etc. with comparable conventional and hybrid
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electric vehicles.
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Fig. 1. Block Diagram of the simulator

The paper is organized as follows: Section II explains the

models used in this analysis; Section III gives details of the

control algorithms; Section IV describes methodology and

simulation approach; Section V presents some results and

discussion; and Section VI gives the conclusion.

II. VEHICLE MODEL

The vehicle simulators were developed to perform the

energy analysis of the vehicle. The main purpose of these

simulators is to analyze fuel consumption and emissions for

a particular driving pattern. The simulators were constructed

using quasi-static models for drivetrain components with

forward-looking model of the vehicle. The quasi-static mod-

els do not consider transient response of vehicle components

and use static efficiency maps and fuel consumption maps

for the engine and the motor. The forward-looking model

also includes a driver model: a PID controller that compares

the vehicle speed with the desired vehicle speed (driving

cycle) and generates acceleration and brake commands [5].

The control algorithm accepts these commands and selects

the optimum power split between the engine and the battery.

The general architecture of the simulator is shown in Figure

1.

This modeling method was used to create four drivetrain

models (Conventional, Hybrid, and two PHEVs) for a sport

utility vehicle. It is worth noting that the hybrid version

of the analyzed vehicle currently exists at The Center for

Automotive Research at The Ohio State University and that

the models for several components were validated starting

from road testing. The same vehicle parameters were used

to develop all other models. The hybrid vehicle is a through

road parallel hybrid and consists of an engine coupled to the

front wheels along with a belted starter alternator (BSA),

and a traction motor to drive the rear wheels. Starting from

this validated model, a PHEV version has been developed by

increasing the battery capacity and adapting the control strat-

egy as explained in the following section. A second PHEV

model was developed for a series powertrain architecture.

The series architecture consists of a 106KW rear electric

motor and a 40KW generator in the front. Details of the

models are given in Table I.

The supervisory control algorithms were developed for

each of the vehicle architectures. The control of the con-

TABLE I

VEHICLE CONFIGURATIONS.

Model Mass
(Kg)

Engine Motor Battery

Conventional 1660 3.4 L (138KW) — —

Hybrid
(Parallel)

2050 1.9 L (103KW*) 67 KW 2.2 KWh,
NiMH

PHEV (Par-
allel)

2130 1.9 L (103KW*) 67 KW 10 KWh,
Li-ion

PHEV (Se-
ries)

2030 1.7 L (40KW**) 106 KW 10 KWh,
Li-ion

* with use of B20 fuel
** Generator output power using gasoline engine.

ventional vehicle is simple - applying all the demanded

torque to the engine; in case of Hybrid and PHEVs the

computation of the optimum power split is performed by

means of Equivalent Consumption Minimization Strategy

(ECMS) [6].

III. PHEV CONTROL

The control problem for PHEVs follows the same concepts

as hybrid vehicles control problem but with different con-

straints. As explained in the previous sections, PHEVs have

larger batteries and the allowable SOC range can extend from

∼ 95% to ∼ 25%. Thus, large amount of energy is available

to assist the engine and displace the fuel energy allowing

better use of the battery and increased all electric driving

range. The control problem for PHEV is very similar to the

hybrid and can be formulated in a similar fashion as follows:

x =: SOC (1)

u =: Pbatt (2)

u∗(t) = arg min
Pbatt,PICE

(J(x, u, ṁf )) (3)

Pwheel = Pbatt + PICE (4)

with the following constraints,

SOCmin ≤ SOC(t) ≤ SOCmax

TEMmin ≤ TEM (t) ≤ TEMmax

TICEmin ≤ TICE(t) ≤ TICEmax

Pbattmin ≤ Pbatt(t) ≤ Pbattmax

where, TEM is the electric machine torque, TICE is the

engine torque, PICE is the engine power, Pbatt is the battery

power, Ebatt is the total battery energy content, J(u, x, ṁf )
is the objective function. x is the state of the system which

is taken as battery state of charge. The objective function J
is taken as,

J =

∫ Tf

0

ṁf (t)dt (5)

where, Tf is the length of driving cycle and ṁf is the fuel

consumption. In a PHEV energy optimization, the objective

function might also consider the effects of battery energy

consumption such as the electricity cost, overall emissions

(from power generation and gasoline) etc.
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PHEV control can be classified in two main categories:

EV mode control and blended mode control. In EV mode

control, the vehicle operates in charge depleting mode as

long as the electric motor can supply the requested power

and battery SOC is greater than a designed threshold. Once

the battery depletes to SOCmin the controller switches to

charge sustaining mode.
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Fig. 2. Comparison of battery SOC profile for different control strategy.
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Fig. 3. Engine on time. Comparison of EV mode control and blended
mode control for 3 UDDS cycles.

In blended mode control, the engine is used consistently

with the electric motor during the entire driving trip. The

power sharing between the motor and the engine is optimized

such that the SOC decreases during the driving trip and

reaches the minimum value only at the end of the trip. Figure

2 shows a comparison of SOC profiles for EV and blended

mode control strategies along with the SOC for a hybrid

architecture; Figure 3 shows the engine “on time” for these

two modes. It is clear that the engine is used consistently in

the blended mode control, while it is used extensively only

at the end of trip for EV mode control.

Obviously, the blended mode requires a priori knowledge

of the driving pattern, thus needing sophisticated control al-

gorithms, i.e. rule based algorithms, dynamic programming,

as used in [7], [8], [9], [10]. [11] uses GPS information and

historical traffic data to characterize the driving pattern and

uses it for control strategy optimization.

ECMS:

In this study, the PHEV control was designed using

a modified Equivalent Consumption Minimization Strategy

(ECMS) algorithm. The ECMS solves the local optimization

problem considering the total energy consumption, while

maintaining the battery SOC constant. In other words the

ECMS regulates SOC at a constant reference point with

minimum fuel consumption.

The ECMS [6] [12] [13] is based on the fact that in a

hybrid vehicle the energy consumption from the battery is

replenished by running the engine. Therefore, battery dis-

charging at any time is equivalent to some fuel consumption

in the future. This equivalent fuel consumption is used as the

objective function for control optimization. The input to the

ECMS algorithm is total power demand at wheels, then the

ECMS searches for the best power split between the engine

and battery that minimizes the equivalent fuel consumption.

The objective function for the ECMS is

J(t) =

∫ Tf

0

ṁeq(t)dt =

∫ Tf

0

(ṁice(t) + ṁbatt,eq(t)) dt

(6)

where, ṁice is the fuel consumption of the IC engine. The

ṁbatt,eq(t) is the equivalent fuel consumed while charg-

ing/discharging the battery. While charging,

ṁbatt,eq(t) = Keqf

Pbatt ∗ ηtotal

Qlhv

(7)

and while discharging,

ṁbatt,eq(t) = Keqf

Pbatt

ηtotal ∗ Qlhv

(8)

where, Keqf is the equivalence factor that acts as a weighting

factor for the electric energy, ηtotal is the total efficiency of

the electric drivetrain including the battery charge-discharge

efficiency and the electric machine efficiency. Qlhv is the

lower heating value of gasoline. The equivalence factor is

very important and it affects the optimum power sharing

between the engine and the motor, and its optimum value

is different for different driving patterns [13]. The objective

function does not consider the battery SOC explicitly, so it

cannot maintain the SOC within specified range. Therefore, a

feedback correction is applied to the equivalence factor based

on the SOC. The modified equivalence factor is calculated

as,

Keqf = EQF ∗ KP ∗ KI (9)

where, EQF is the nominal equivalence factor; its value was

determined by performing several simulation to obtain the

best fuel economy and velocity tracking performance (2.4 for
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the parallel architecture and 2.1 for the series architecture)

The KP and the KI gains are computed as follows [13]

x1 =
SOC(t) − SOCref/2

∆SOC/2
(10)

KP = 1 − x3

1

x2(t) = 0.01 ∗ (SOCref − SOC(t)) + 0.99x2(t − δt)

(11)

KI = 1 + tanh(12 ∗ x2)

where, SOCref is the reference SOC for the ECMS al-

gorithm and ∆SOC is the allowed range of SOC around

SOCref .

EV mode control

The EV mode control has two stages - all electric and

charge sustaining. The control algorithm selects the electric

motor as long as the SOC is greater than SOCmin +
∆SOC/2. The value of 25% is selected to maximize the

useful capacity of the battery without affecting battery per-

formance and life. When the SOC decreases below this

value, the control algorithm switches to the ECMS for charge

sustaining mode. Since the battery for the PHEV has a large

capacity (compared to the maximum power demand) the

∆SOC is set to 4%, and SOCref is set to 27%.

Blended mode control

In blended mode control, the objective is to achieve the

lowest limit of the SOC at the end of trip, when it is

assumed that the total trip length is known. In this case, the

battery SOC is reduced slowly throughout the trip and the

SOC profile is optimally selected by principles from optimal

theory like dynamic programming. In this paper, instead of

using such a complex method, not implementable on board

(due to high computational requirements), a simple strategy

was used to compute the SOC profile. The battery SOC is

linearly decreased with the distance traveled by the vehicle.

The SOC computed in (12) is used as reference SOC for the

ECMS algorithm in (10) and (11).

SOCref (t) = SOC0 −
Dveh(t)

Dtotal

∗ (SOC0 − SOCf ) (12)

where, Dveh is the distance traveled by the vehicle.

Parallel architecture - Application of ECMS

The above explained ECMS algorithm is applied to the

simulation model of through-road parallel hybrid with belted-

starter alternator. This architecture has three degrees of

freedom (ICE power, EM power and BSA power) and

optimum power split between engine, electric motor and

BSA is computed by the ECMS. As explained in [5], the

ECMS searches for the best combination of ICE, EM and

BSA power to minimize the equivalent fuel consumption as

shown in (6). The battery power in (7, 8) is computed as,

Pbatt = PEM + PBSA (13)

Series architecture - Application of ECMS

In series hybrid, the power is supplied by engine-generator

and battery, therefore the ECMS control strategy is used to

select best power split between generator power and battery

power. One of the advantages of this architecture is that the

engine can be always operated in its best operating region.

Therefore, at a given power split, the engine operating point

is selected such that the engine operates at its best efficiency

point [12].

The two control algorithms implemented on the two

PHEV architectures, along with conventional and hybrid

architectures give a total of six different models/controls:

Conventional, Parallel hybrid, Parallel PHEV with EV mode

control, Parallel PHEV with Blended mode control, Series

PHEV with EV mode control, Series PHEV with Blended

mode control.

IV. METHODOLOGY AND SIMULATION

The vehicle architecture models and the control algorithms

were simulated for different standard driving cycles and data

on fuel economy, electrical energy consumption and battery

energy utilization was analyzed. In the case of PHEVs,

standard driving cycles do not provide enough information

to estimate fuel economy for real world driving needs, thus

typical driving patterns and days have been identified and

used as input for the study. The custom driving cycles are

generated as a combination of standard driving cycles as

shown in Table II [14], resulting in 15,428 miles/year. For

a complete analysis it is also important to consider different

charging availability as shown in Figure 4, i.e. how often

it is possible to recharge the battery: controlled charging

(once a day, overnight) and uncontrolled charging (charging

is possible whenever the vehicle is parked). Clearly, through

uncontrolled charging better fuel economy can be achieved,

but at the price of reduced battery life. It is assumed in this

work that charging takes place only during off-peak hours,

without the option of charging during the day. The capability

to include charge-at-will operation will be included in future

work.

V. RESULTS AND ANALYSIS

The models were analyzed for fuel economy on different

driving cycles. Figure 5 shows the improvement in fuel

economy; it is important to note that the fuel economy for

the hybrid configuration is calculated as miles per gallon

gasoline equivalent while for PHEVs the fuel economy is the

combination of gasoline in mpg (the bars of Figure 5) and

electric energy consumed from the battery (numbers over the

bars in Figure 5). As expected, the results show a substantial

reduction in the fuel consumption for PHEVs; for a complete

energy analysis, the electricity needed to recharge the battery

to its initial condition needs to be considered, as shown in

Figure 7.

Analysis of Fig 5 shows that the PHEV provides better

mileage for urban driving but the fuel economy improvement

is smaller for highway driving (two standard driving cycles

are driven for multiple times to generate these graphs). All
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Fig. 4. Hypothetical case where battery is charged at work in the afternoon.

the test results for the PHEVs are obtained by setting the

initial SOC at 95% and lower SOC limit set to 25%. The

numbers over the bars show the net energy consumed from

the battery. The results clearly show the dependence of the

fuel economy on driving distance.

Although the series PHEV performs better than a hybrid,

it provides less improvement over a parallel hybrid vehicle

for highway driving. This effect is caused in part by the

small size of the battery as it cannot supply the required

power while maintaining the battery SOC profile. Therefore,

the engine-generator is operated for more time and also the

effective efficiency from engine to wheels is less in series

hybrid as compared to the parallel hybrid. Therefore, the

combined effect is reduced fuel economy for series hybrid.

The results of fuel consumption show that the blended mode

control is better as compared EV mode control. However,

improvement in fuel economy shown in this paper is smaller

TABLE II

DRIVING AND CHARGING EVENTS

T1 UDDS+US06 (trip to work after full charge)

T1b US06+UDDS (trip to home after work).
Initial SOC is the final SOC of previous trip

T2 UDDS (errands). Initial SOC is the final
SOC of previous trip

T3 UDDS + HWFET + HWFET + HWFET +
HWFET + UDDS (this assumes the vehicle
is only recharged at the end of the day)

C1 Overnight charging after T1b

C2 Overnight charging after T2

C3 Overnight charging after T3

Simulated typical days
Events Frequency

D1 T1-T1b-T2-C2 3 days/week, 48 weeks/year (tot. 144
days/year)

D2 T1-T1b-C1 2 days/week, 48 weeks/year (tot. 96
days/year)

D3 T3-C3 2 days/week, 48 weeks/year + 7days/week,
4 weeks/year (tot. 124 days/year)
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Fig. 5. Fuel economy comparison for different cycles and models.[* mpgge
for Hybrid vehicle.][Number over each bar shows net electric energy used
from the battery in KWhr.]

because the SOC profile has not been optimized with off

line optimization methods. Although these algorithms do not

give the optimum solution, they can be easily implemented

onboard at low computational cost. Work is currently under-

way to assess the optimality of these control strategies with

respect to the dynamic programming.

In all the comparisons it can observed that, as the vehicle

travels longer distances or it is running at higher velocities,

the improvement in the PHEV fuel economy is lower.

Therefore, it might be better to use hybrid control for long

distance trips to reduce the battery depth of discharge while

achieving good fuel economy.

A Similar analysis was performed to assess PHEV perfor-

mance in real world scenarios, by using the driving patterns

described in Section IV. Sample results are shown in Figure

6. Results on fuel economy show consistent improvement as

one goes from conventional to hybrid to PHEVs. The overall

performance of blended mode control is better than EV mode

control. These results also show that for highway driving (T3

cycle) the fuel economy improvement is less as compared to

hybrid.

The numbers over the bars in Fig. 6 show the net energy

used from the battery in KWhr. So the better fuel economy

in PHEV is achieved through use of electrical energy:

the PHEV control strategy depletes the entire battery by

consuming almost 7 KWhr of energy to maximize the use

of electricity instead of gasoline.

In case of hybrids the electricity used from the battery

is generated by the engine, thus the quantity of gasoline

needed to recharge the battery can be known with some

approximations. In case of PHEVs the electricity needed to

recharge the battery can come from different sources like

coal, gas, wind, etc. depending on where, and when the

vehicle is charged (electric energy generation mix varies

with location and time). Its cost is variable, thus making

the analysis of PHEV more complex and function of factors
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Fig. 7. Battery energy and cost analysis.

that are external to the vehicle. In this paper a typical

year is analyzed starting from the driving cycles shown in

Table II; in order to take into account the electricity and

the gasoline needed over the year, an economic analysis

has been performed. The electricity prices are considered

to be 10.4 cents [15] and gasoline price is taken to be

4$/gallon. The results are plotted in Figure 7 along with

the total electric energy exchanged with battery per mile

over the year. This energy considers not only the difference

between initial and final state of charge but also the energy

exchanged during charge sustaining mode (total charging

and discharging energy). It is clear that series configurations

show better fuel economy but at the same time show higher

usage of battery. This will affect battery performance and

life. The figure shows that the blended mode control can be

a good trade-off by providing lower cost of operation and

lower energy exchanged with the battery. It is clear that an

optimal trade-off must be found between cost of operation

and battery life (investment cost).

VI. CONCLUSION

The paper presents an ECMS based control method for

PHEVs. This approach does not require extensive offline

optimization or driving pattern information, except the total

trip distance. The results show that no architecture is op-

timum in all circumstances, and it gives a perspective on

characterizing the strategies for particular driving patterns.

Different architectures and control strategies were imple-

mented and compared both on standard and customized

driving cycles representing real world data. Besides showing

expected improvement in fuel economy for PHEVs, the

results also show that complete analysis on PHEV perfor-

mance needs to consider external factors such as battery

life, charging availability, energy cost, etc. The models and

algorithms presented in this paper can be extended to study

the interaction between driving patterns, the power grid,

charging availability, different charging scenarios and the

vehicle performance.
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