
 

 

Abstract—In this paper, a novel framework for leader-follower 
formation control is developed for the control of multiple 
quadrotor unmanned aerial vehicles (UAVs) based on spherical 
coordinates.  The control objective for the follower UAV is to 
track its leader at a desired- separation, angle of incidence, and 
a bearing by using an auxiliary velocity control.  Then, a novel 
neural network (NN) control law for the dynamical system is 
introduced to learn the complete dynamics of the UAV 
including unmodeled dynamics like aerodynamic friction. 
Additionally, the interconnection dynamic errors between the 
leader and its followers are explicitly considered, and the 
stability of the entire formation is demonstrated using 
Lyapunov theory.  Numerical results verify the theoretical 
conjectures. 
 

Index Terms—Formation Control, Quadrotor UAV, Neural 
Networks, Lyapunov Stability 
 

I. INTRODUCTION 
n recent years, quadrotor helicopters have become a 
popular unmanned aerial vehicle (UAV) platform, and 

their control has been undertaken [1] by many researchers.  
However, a team of UAVs working together is often more 
effective than a single UAV in scenarios like surveillance, 
search and rescue, and perimeter security.  Therefore, the 
formation control of UAVs [2-6] has been proposed. 
 The authors in [2] present a modified leader-follower 
framework with a model predictive nonlinear control 
algorithm without proof of convergence and stability.  In 
[3], a kinematic-based formation control law is proposed 
while ignoring the individual dynamics and the formation 
dynamics of UAVs; proof of stability is not provided.  The 
work [4] offers an algorithm for perimeter security using 
UAVs without considering the UAV and formation 
dynamics. 

On the other hand in [5], cylindrical coordinates and 
contributions from wheeled mobile robot formation control 
[8] are considered for leader-follower based formation 
control scheme by assuming dynamics are known. In [6] 
experimental results are provided by using a dynamic model 
and assuming that measured position and velocity of the 
leader to its followers are communicated.  In [7], a robust 
formation controller is proposed based on higher order 
sliding mode controllers in the presence of disturbances. 
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 By contrast, in this work, a new leader-follower formation 
control framework for quadrotor UAVs based on spherical 
coordinates is introduced where the desired position of a 
follower UAV is specified using a desired separation, ds , a 

desired- angle of incidence, dα  and bearing, dβ .  Then, a 
new control law is derived using neural networks (NN) to 
learn the complete dynamics of the UAV online, including 
unmodeled dynamics like aerodynamic friction and in the 
presence of bounded disturbances.  Although a quadrotor 
UAV is underactuated, a novel virtual NN control input 
scheme is proposed which allows all six degrees of freedom 
of the UAV to be controlled using only four control inputs.  

II. BACKGROUND 

A. Quadrotor UAV Dynamics 
Consider a quadrotor UAV with six DOF defined in the 

inertial coordinate frame , aE , as aT Ezyx ∈],,,,,[ ψθφ  
where aT Ezyx ∈= ],,[ρ  are the position coordinates of the 
UAV and aT E∈=Θ ],,[ ψθφ  describe its orientation 
referred to as roll, pitch, and yaw, respectively.  The 
translational and angular velocities are expressed in the body 
fixed frame attached to the center of mass of the UAV, bE , 
and the dynamics of the UAV in the body fixed frame can 
be written as [1] 
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where [ ] 6
2100 ℜ∈=

TTuuU , 66
3 },{ xJmIdiagM ℜ∈= , m is a 

positive scalar that represents the total mass of the UAV, 
33xJ ℜ∈ represents the positive definite inertia matrix, 

3],,[)( ℜ∈= T
zbybxb vvvtv represents the translational 

velocity, 3],,[)( ℜ∈= T
zbybxbt ωωωω  represents the angular 

velocity, 2,1,)( 13 =ℜ∈• iN x
i ,are the nonlinear aerodynamic 

effects, 66)}(),({)( xJSmSdiagS ℜ∈−= ωωω , 1
1 ℜ∈u  

provides the thrust along the z-direction, 3
2 ℜ∈u provides 

the rotational torques, 6
21 ],[ ℜ∈= TT

d
T
dd τττ  and 

2,1,3 =ℜ∈ idiτ  represents unknown, but bounded 
disturbances such that Md ττ < for all time t , with Mτ being 

an unknown positive constant, nxn
nxnI ℜ∈ is an nxn  identity 

matrix, and mxl
mxl ℜ∈0 represents an mxl  matrix of all 

zeros.  Furthermore, 3)( ℜ∈RG  represents the gravity 
vector and 33)( xS ℜ∈• is the general form of a skew 
symmetric matrix defined in [1]. 
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The matrix 33)( xR ℜ∈Θ is the translational rotation matrix 
which is used to relate a vector in the body fixed frame to 
the inertial coordinate frame defined as [1] 
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where the abbreviations )(•s  and )(•c have been used for 

)sin(• and )cos(• , respectively.   It is important to note that 

maxRR
F
=  for a known constant maxR , TRR =−1 ,  

)(ωRSR =&  and TT RSR )(ω−=& .  It is also necessary to 
define a rotational transformation matrix from the fixed 
body to the inertial coordinate frame as in [1] 
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where the abbreviation )(•t has been used for )tan(• .  The 

transformation matrix T is bounded as long as 
( ) ( ),22 πφπ <<−   ( ) ( )22 πθπ <<−  and πψπ ≤≤− .  

These regions will be referred to as the stable operation 
regions of the UAV, and under these flight conditions, it is 
observed that maxTT

F
< for a known constant maxT . 

 Finally, the kinematics of the UAV can be written as 
ωρ TRv =Θ= && ,   (4) 

B. Neural Networks 
In this work, two-layer NNs are considered consisting of 

one layer of randomly assigned constant weights axL
NV ℜ∈   

in the first layer and one layer of tunable weights Lxb
NW ℜ∈  

in the second with a  inputs, b outputs, and L hidden neurons. 
The sigmoid activation function is considered here.  
Furthermore, on any compact subset of nℜ , the target NN 
weights are bounded by a known positive value MW such 
that

MFN WW ≤  [9].  For complete details of the NN and its 

properties, see [9].   

C. Three Dimensional UAV Formation Framework 
Throughout the development, the follower UAVs will be 

denoted with a subscript ‘j’ while the formation leader will 
be denoted by the subscript ‘i'.  To begin, an alternate 
reference frame is defined by rotating the inertial coordinate 
frame about the z-axis by the yaw angle, jψ , and denoted by 

a
jE .   In order to relate a vector in aE  to a

jE , the 

transformation matrix is given by 
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where 1−= aj
T
aj RR . The objective of the proposed leader-

follower formation control is for the follower UAV to 
 

 
Fig. 1.  UAV leader-follower formation control 

 
 maintain a desired separation, ℜ∈jids , at a desired angle 

of incidence, a
jjid E∈α , and bearing, a

jjid E∈β , with 

respect to its leader. The incidence angle is measured from 
the ajaj yx −  plane of follower j while the bearing angle is 

measured from the positive ajx -axis as shown in Fig. 1.  It 

is important to observe that each quantity is defined relative 
to the follower j instead of the leader i [5],[8]. To specify a 
unique configuration of follower j with respect to its leader, 
the desired yaw of follower j is selected to be the yaw angle 
of leader i, a

i E∈ψ as in [2].  Then, the measured separation 
between follower j and leader i is written as 

jiji
T
ajji sR Ξ=− ρρ                                                              (6) 

where 
T

jijijijijiji )]sin()sin()cos()cos()[cos( αβαβα=Ξ         (7) 

Thus, to solve the leader-follower formation control 
problem in the proposed framework, a control velocity must 
be derived to ensure 

 
⎪⎭

⎪
⎬
⎫

=−=−

=−=−

∞→∞→

∞→∞→

0)(lim,0)(lim

,0)(lim,0)(lim

jjdtjijidt

jijidtjijidt
ss

ψψαα

ββ
. (8)   

Throughout the development, the desired separation, 
angle of incidence and bearing jids , jidα and jidβ , 

respectively, will be taken as constants, while it is assumed 
that each UAV has knowledge of its own constant total 
mass, )(•m , where )(• is i for the leader and j for the 

follower.  Additionally, it will be assumed that reliable 
communication between the leader and its followers is 
available [4],[6], and the leader  communicates its measured 
orientation and angular rate vector, iΘ and iω , respectively, 
and its desired states, ididid ψψψ &&& ,, , idid vv &, .  Future work will 
relax this assumption.   

It is worth noting that communicating the desired states as 
opposed to the measured states does not necessarily reduce 
the amount of communication overhead.  The benefit of 
considering the desired states of the leader in the design of 
the follower UAVs’ control laws becomes significant when 
compensating for the formation dynamics which become 
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incorporated in the follower UAVs dynamic controller 
design.  Further, considering the desired states reduces the 
reliance on noisy sensor measurements. 

III. LEADER-FOLLOWER FORMATION TRACKING CONTROL 

A. Follower UAV Control Law 
Given a leader i subject to the dynamics and kinematics 

(1), and (4), respectively, define a reference trajectory at a 
desired separation jids , at a desired angle of incidence, jidα , 

and bearing, jidβ for follower j given by 

jid
T
ajdjidijd Rs Ξ−= ρρ                                                       (9) 

where ajdR is defined as in (5) but written in terms of jdψ , 

and 
jidΞ is defined as in (7) but written in terms of the 

desired angle of incidence and bearing, 
jidjid βα , ,respectively.  Next, using (6) and (9), define the 

position tracking error as 
a

jid
T
ajdjidji

T
ajjijjdj ERsRse ∈Ξ−Ξ=−= ρρρ                 (10) 

which can be measured using local sensor information.  To 
form the position tracking error dynamics, it is convenient to 
rewrite (10) as jidjid

T
ajdjij sRe Ξ−−= ρρρ revealing 

jidjid
T
ajdjjiij sRvRvRe Ξ−−= && ρ . (11) 

Next, select the desired translational velocity of follower j  
bT

jdzjdyjdxjd Evvvv ∈= ][ , to stabilize (11) is written as  

)( ρρ jjjid
T
ajdjididi

T
jjd eKRsvRRv +Ξ−= &  (12) 

where 33},,{ x
zjyjxjj kkkdiagK ℜ∈= ρρρρ is a diagonal 

positive definite design matrix all with positive design 
constants. Next, the translational velocity tracking error 
systems for follower j and leader i is defined as 

jjd
T

jvzjvyjvxjv vveeee −== ][   (13) 

and iidiv vve −= , respectively.  Applying (12) to (11) while 

observing jvjdj evv −= and similarly ividi evv −= , reveals 

the closed loop position error dynamics to be rewritten as 
ivijvjjjj eReReKe −+−= ρρρ& . (14) 

Next, the translational velocity tracking error dynamics 
are developed.  Differentiating (13), observing  
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adding and subtracting ))(( jdjidij
T
j vRvRKR +ρ , and 

substituting the translational velocity dynamics in (1) allows 
the velocity tracking error dynamics to be written as  

jjjvjjjjjjdjv mRGeSmvNvve )()()(1 −−−=−= ω&&&    

(15) 
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Remark 1:  Examining the velocity tracking error 
dynamics (15), it is observed that the derivative of the 
leader’s control velocity, idv& , is required as a result of using 

idv in (12).  If the measured velocity of the leader, iv , had 
been used instead of idv in (12), the tracking error dynamics 
(15) would be dependent on iv& which are considered to be 
unknown by the follower j in this work.  In the following 
development, a NN is introduced to learn the unknown 
quantities of (15); however, to effectively approximate the 
leader’s dynamics, iv& , terms like the leader’s control thrust 
and rotational torques would be required to be 
communicated to each follower in addition to the leader’s 
measured linear and angular velocities so that the terms 
could be included in the NN input of the follower. 

Moving on, the velocity jzbv  is directly controllable with 

the thrust input.  However, in order to control the 
translational velocities jxbv  and jybv , the pitch and roll must 

be controlled, respectively, thus redirecting the thrust.  Thus, 
we now seek to find expressions for the desired pitch, jdθ , 

and roll, jdφ .  Moreover, it is desirable to specify the 

maximum desired pitch and roll angles to be tracked by the 
follower UAV. 

To accomplish these design objectives, we first define the 
scaled desired orientation vector, T

jdjdjdjd ][ ψφθ=Θ  

where )2( maxdjdjd θπθθ = , )2( maxdjdjd φπφφ = , where 

)2,0(max πθ ∈d  and )2,0(max πφ ∈d  are design constants 
used to specify the maximum desired roll and pitch, 
respectively.  Next, we rewrite translational rotation matrix 
(2) in terms of jdΘ , and define )( jdjjd RR Θ= . 

Then, add and subtract jjd mRG /)(  and j
T
jdR Λ  with 

ρρρ jjjvjjjidjid
T
ajdidij eKeRKsRvR −+Ξ−=Λ &&&  to (15) to yield 
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is an unknown function which can be rewritten as 
3

13121111 ][)( ℜ∈= T
jcjcjcjcjc fffxf . In the forthcoming 

development, the approximation properties of NN will be 
utilized to estimate the unknown function )( 11 jcjc xf  by 

bounded ideal weights T
jc

T
jc VW 11, such that 11 McFjc WW ≤ for 

an unknown constant 1McW , and written as 

111111 )()( jcjc
T
jc

T
jcjcjc xVWxf εσ +=  where 11 Mcjc εε ≤  is the 

bounded NN approximation error where 1Mcε is a known 

constant.  The NN estimate of 1jcf  is written as 

( ) 111111
ˆˆˆ

jc
T
jcjc

T
jc
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jcjc WxVWf σσ == T
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T
jcjc

T
jcjc

T
jc WWW ]ˆˆˆ[ 113112111 σσσ=  
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where T
jcW 1

ˆ is the NN estimate of T
jcW 1 , 3,2,1,ˆ

1 =iW T
ijc is the 

thi row of T
jcW 1

ˆ ,and 1jcx is the NN input 
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Next, the virtual control inputs 
jdθ and

jdφ are identified to 

control to control the translational velocities jxbv and jybv , 

respectively. The key step in the development is identifying 
the desired closed loop velocity tracking error dynamics.  
For convenience, the desired translational velocity closed 
loop system is selected as 

ivijjdjvjvjvjjv eRKeKeSe ρτω −−−−= 1)(&                             (18) 

where }),cos(),cos({ 321 vjdjvjdjvjv kkkdiagK φθ=  is a 

diagonal positive definite design matrix with each 0>vik , 
3,2,1=i , and jjdjd m/11 ττ = .  In the following development, it 

will be shown that )2/,2/( ππθ −∈d , )2/,2/( ππφ −∈d ; therefore, it 
is clear that 0>vK .  Then, equating (16) and (18) while 
considering only the first two velocity error states reveals  
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where T
jjjj ][ 321 ΛΛΛ=Λ was utilized. Then, applying 

basic math operations, the first line of (19) can be rewritten 
as 

=++Λ++Λ ))()(( 1122111 jvxjvjcjjdjcjjdjd ekfsfcc ψψθ  

)( 133 gfs jcjjd −+Λθ
.                                         (20) 

Similarly, the second line of (19) can be rewritten as 
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Next, (20) is solved for the desired pitch jdθ while (21) 

can be solved for the desired roll jdφ .  Using the NN 

estimates, 1
ˆ

cjf , the desired pitch jdθ can be written as 

( )jdjdjd DNa θθπθθ tan)2( max=   (22) 

where 

jvxjvjcjjdjcjjdjd ekfsfcN 1122111 )ˆ()ˆ( ++Λ++Λ= ψψθ  and 

gfD jcjjd −+Λ= 133
ˆ

θ .  Similarly, the desired roll 

angle, jdφ , is found to be 

( )jdjdjd DNa φφπφφ tan)2( max=  (23) 

where 

jvyjvjcjjdjcjjdjd ekfsfcN 2111122 )ˆ()ˆ( ++Λ−+Λ= ψψφ  

and 

)ˆ()ˆ( 122111 jcjjdjdjcjjdjdjdjd fssfcsgcD +Λ−+Λ−= ψθψθθφ

)ˆ( 133 jcjjd fc +Λ− θ
. 

Remark 2:  The expressions for the desired pitch and roll 
in (22) and (23) will always produce desired values in the 
stable operation regions of the UAV since )tan(•a  
approaches 2π±  as its argument increases. Thus, 
introducing the scaling factors in jdθ  and jdφ  results in 

),( maxmax θθθ −∈jd  and ),( maxmaxφφφ −∈jd , and the aggressiveness 

of the UAVs maneuvers can be managed.  Further, if the un-
scaled desired orientation vector were used in the 
development of (16), the maximum desired pitch and roll 
would still remain within the stable operating regions. 

Now that the desired orientation has been found, next 
define the attitude tracking error as 

a
jjdj Ee ∈Θ−Θ=Θ

  (24) 

where dynamics are found using (4) to be jjjdj Te ω−Θ=Θ
&& .  

In order to drive the orientation errors (24) to zero, the 
desired angular velocity, jdω , is selected as  

)(1
ΘΘ

− +Θ= jjjdjjd eKT &ω  (25) 

where 33
321 },,{ x

jjjj kkkdiagK ℜ∈= ΘΘΘΘ  is a diagonal 

matrix of positive design constants.  Define the angular 
velocity tracking error as 

jjdje ωωω −= , (26) 

and observing ωωω jjdj e−= , the closed loop orientation 

tracking error system can be written as 
ωjjjjj eTeKe +−= ΘΘΘ& . (27) 

Examining (25), calculation of the desired angular 
velocity requires knowledge of jdΘ& ; however, jdΘ& is not 

known in view of the fact jΛ& and 1
ˆ

jcf& are not available.  

Further, development of 2ju in the following section will 

reveal jdω& is required which in turn implies jΛ&& and 1
ˆ

jcf&& must 

be known.  Since these requirements are not practical, the 
universal approximation property of NN is invoked to 
estimate jdω and jdω&  [1]. 

To begin the NN virtual control development, we 
rearrange (25) to observe the dynamics of the ideal virtual 
controller to be 
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For convenience, we define a change of variable as 

ΘΘ
−−=Ω jjjjdjd eKT 1ω , and the dynamics (28) become 
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Defining the estimates of jdΘ and jdΩ to be jdΘ̂ and jdΩ̂ , 
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respectively, and the estimation error jdjdjd Θ−Θ=Θ ˆ~ , the 

dynamics of the proposed NN virtual control inputs become 
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where 1ΩjK and 2ΩjK are positive constants.  The estimate 

jdω̂ is then written as 
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subtracting (30) from (29), as well as adding and subtracting 
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error dynamics are found to be 
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unknown function. 
In (30), universal approximation property of NN has been 

utilized to estimate the unknown function )(1 ΩΩ jj xf  by 

bounded ideal weights T
j

T
j VW ΩΩ , such that 

ΩΩ ≤ MFj WW for a 

known constant ΩMW , and written as 

( ) ΩΩΩΩΩΩ += jj
T
j

T
jjj xVWxf εσ)(1  where Ωjε is the bounded 

NN approximation error such that Mj ΩΩ ≤ εε for a known 

constant MΩε .  The NN estimate of Ωjf is written as 
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of the virtual control estimates, desired trajectory, and the 
UAV velocity.  The NN input is chosen to take the form of 

TT
j

T
j

T
jd

T
jd

T
jj vx ]ˆ1[ˆ ωΩΘΛ=Ω .   

Next, differentiating (32), using (33) as well as adding 
and subtracting ΩΩ j

T
jW σ̂ reveals 

ΩΩΩΩΩ
−

ΩΩΩ

+Θ−−−

Θ−+−=

jjdjjjjj

jd
T
jjjdjjd

KKKKT
TxfK

ξ
ωω

~))((

~)ˆ(~~~

3132
1

13
&

 (34) 

where jdjdjd Ω−Ω=Ω ˆ~ , ΩΩΩ = j
T
jj Wf σ̂~~ , T

j
T
j

T
j WWW ΩΩΩ −= ˆ~ , 

ΩΩΩΩ += j
T
jjj W σεξ ~ , and ΩΩΩ −= jjj σσσ ˆ~ . Furthermore, 

Mj ΩΩ ≤ ξξ  with ΩΩΩΩ += NWMMM 2εξ  a computable 

constant with ΩN the constant number of hidden layer 
neurons in the virtual control NN and the 
fact ΩΩ ≤ Njσ was used.  Examination of (33) and (34) 

reveals 0~,0~ ==Θ jd
b
jd ω , and 0~

=Ωjf to be equilibrium 

points of the estimation error dynamics when 0=Ωjξ .  

To this point, the desired translational velocity for 
follower j has been identified to ensure the leader-follower 
objective (8) is achieved.  Then, the desired pitch and roll 
were derived to drive jdxjxb vv → and jdyjyb vv → , 

respectively.  Then, the desired angular velocity was found 
to ensure jdj Θ→Θ .  What remains is to identify the UAV 

thrust to guarantee jdzjzb vv → and rotational torque vector to 

ensure jdj ωω → .  First, the thrust is derived. 

Consider again the translational velocity tracking error 
dynamics (16), as well as the desired velocity tracking error 
dynamics (18).  Equating (16) and (18) and manipulating the 
third error state, the required thrust is found to be 

( ) +++Λ+= 31111 )ˆ( vjjvzjjcjjdjdjdjdjdjj ekmfsscscmu ψφψθφ
 (35) 

( ) ( ) )ˆ(ˆ
122133 jcjjdjdjdjdjdjjcjjdjdj fcssscmgfccm +Λ−+−+Λ ψφψθφφθ

 

where 1
ˆ

jcf is the NN estimate in (17) previously defined.  

Substituting the desired pitch (22), roll (23), and the thrust 
(35) into the translational velocity tracking error dynamics 
(16) yields 

111
~

jcivijjc
T
jc

T
jdjvjvjv eRKWReKe ξσ ρ +−+−=& , (36) 

with 11 jdjc
T
jdjc R τεξ −= , 111

ˆ~
jcjcjc WWW −=  and, 11 Mcjc ξξ ≤  

for a computable constant jMMcMc mR /1max1 τεξ += .  

Additionally, in the formulation of (36), the expressions for 
the desired pitch and roll (22) and (23), respectively, were 
first written in the form of (20) and (21), so that sine and 
cosine of the angles could be substituted as opposed to 
substituting the arctangent expressions directly into the sine 
or cosine function. 

Next, the rotational torque vector, 2ju , will be addressed. 

First, multiply the angular velocity tracking error (26) by the 
constant inertial matrix jJ , take the first derivative with 

respect to time, add and subtract Θj
T
j eT , and substitute the 

UAV dynamics (1) to reveal 

2222 )( jdj
T
jjjcjcjj eTuxfeJ τω −−−= Θ&  (37) 

with Θ+−−= j
T
jjjjjjjdjjcjc eTNJSJxf )()()( 222 ωωωω& . 

Examining )( 22 jcjc xf , it is clear that the function is 

nonlinear and contains unknown terms; therefore, the 
universal approximation property of NN is utilized to 
estimate the function )( 22 jcjc xf  by bounded ideal 

weights T
jc

T
jc VW 22 , such that 

22 McFjc WW ≤ for a known 

constant 2McW  and written as 222222 )()( jcjc
T
jc

T
jcjcjc xVWxf εσ +=  

where 2jcε is the bounded NN functional reconstruction error 

such that 22 Mcjc εε ≤ for a known constant 2Mcε .  The NN 

estimate of 2jcf  is given by == )ˆ(ˆ)ˆ(ˆ
22222 jc

T
jc

T
jcjcjc xVWxf σ  

22 ˆˆ
jc

T
jcW σ  where T

jcW 2
ˆ  is the NN estimate of T

jcW 2  and 
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TT
j

Tb
jd

T
jd

T
jjc ex ]~ˆ1[ˆ 2 ΘΘΩ= &ω  is the input to the NN written 

in terms of the virtual controller estimates.  By the 
construction of the virtual controller, jdω&̂ is not directly 

available; therefore, observing (31), the terms T
jdΩ&̂ , Tb

jdΘ~ , 

and T
je Θ have been included instead.   

Next, using the desired angular velocity (31), we define 
the estimated angular velocity tracking error as 

jjdje ωωω −= ˆˆ .  Now, using the NN estimate 2
ˆ

jcf and ωjê , 

the rotational torque control input is written as 

ωω jjjcj eKfu ˆˆ
22 += , (38) 

and substituting the control input (38) into the angular 
velocity dynamics (37) reveals 

222 ˆˆ
jdj

T
jjjjcjcjj eTeKffeJ τωωω −−−−= Θ&  (39) 

Now, adding and subtracting jc
T
jcW σ̂2  and observing 

jdjj ee ωω
~ˆ −= Ω , the closed loop dynamics (39) become 

222
~ˆ~

jcj
T
jjdjjc

T
jcjjjj eTKWeKeJ ξωσ ωωωω +−++−= Θ&  (40) 

where T
jc

T
jc

T
jc WWW 222

ˆ~ −= , 2222
~

jdjc
T
jcjcjc W τσεξ −+= , and 

222 ˆ~
jcjcjc σσσ −= .  Further, 22 Mcjc ξξ ≤  for a computable 

constant dMcMcMcMc NW τεξ ++= 2222 2 where 2cN is the 

number of hidden layer neurons. 
As a final step, we define the augmented variables 

TT
j

T
jvjD eee ]ˆ[ˆ ω= , ]~0;0~[~

21 jcjcjc WWW =  and 
TT

jc
T
jcjc ]ˆˆ[ˆ 21 σσσ = .  In the following theorem, the stability 

of the follower j is shown while considering 0=ive .  In 
other words, the position, orientation, and velocity tracking 
errors are considered along with the estimation errors of the 
virtual controller and the NN weight estimation errors of 
each NN for follower j while ignoring the interconnection 
errors between the leader and its followers.  This assumption 
will be relaxed later. 

Theorem 1:  (Follower UAV System Stability) Given the 
dynamic system of follower j in the form of (1), let the 
desired translational velocity for follower j to track be 
defined by (12) with the desired pitch and roll defined by 
(22) and (23), respectively.  Let the NN virtual controller be 
defined by (30) and (31), respectively, with the NN update 
law given by 

ΩΩΩΩΩΩ −Θ= jjj
T
jdjjj WFFW ˆ~ˆˆ κσ&  (41) 

where 0>= ΩΩ
T
jj FF and 0>Ωjκ are design parameters. Let 

the dynamic NN controller for follower j be defined by (35) 
and (38), respectively, with the NN update given by 

( ) jcjcjc
T

jDjdjcjcjc WFeAFW ˆˆˆˆ κσ −=&   (42) 

where 66
333333 ]0;0[ x

xxxjdjd IRA ℜ∈= , and 0>= T
jcjc FF  

and 0>jcκ  are constant design parameters.  Then there 

exists positive design constants ,, 21 ΩΩ jj KK 3ΩjK , and 

positive definite design matrices ωρ jjvjj KKKK ,,, Θ , such 

that the virtual controller estimation errors b
jdΘ~ , jdω~  and the 

virtual control NN weight estimation errors, ΩjW~ , the 

position, orientation, and translational and angular velocity 
tracking errors, ωρ jjvjj eeee ,,, Θ , respectively, and the 

controller NN weight estimation errors, jcW~ , are all semi-

globally uniformly ultimately bounded (SGUUB).   
Proof:  Consider the following positive definite 

Lyapunov candidate 
jcjMaxjj VVKV += Ω

2
ω

 (43) 

where 2
MaxjK ω is the maximum singular value of ωjK and 

}~~{
2
1~~

2
1~~

2
1 1

Ω
−
ΩΩΩ ++ΘΘ= jj

T
jjd

T
jdjd

T
jdj WFWtrV ωω  

{ }jcjc
T
jcj

T
jjv

T
jvj

T
jj

T
jjc WFWtrJeeeeeeeeV ~~

2
1

2
1

2
1

2
1

2
1 1−

ΘΘ ++++= ωωρρ

whose first derivative with respect to time is given by 

jcjMaxjj VVKV &&& += Ω
2
ω

.  Considering first, ΩjV& and substituting 

the closed loop virtual control estimation error dynamics 
(33) and (34) as well as the NN tuning law (41), yields 

2
2

2
31

2 ~
4

~
Fj

jMaxj
jd

j
jjMaxjj W

KNKKKV Ω
Ω

Ω

Ω
ΩΩ −Θ⎟

⎠

⎞
⎜
⎝

⎛ −−−≤
κ

κ
ω

ω
&

jFjc
jc

j
Minj

jv
jvMin

jMinjj
jvMin

Max
Minj

jd
MinjMaxjjc

c

j
j

Maxj

We
K

e
K

eKe
K
RK

KK
NNK

K

η
κ

ω
κκ

ω
ω

ρρ

ωω

ω

+−−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−

ΘΘ

Ω

Ω
Ω

22

222
2

2

23

2

~
33

34
3

~
2

3
2

32
2  (44) 

where Ω+= jMaxjjcj K ηηη ω
24/ , )2( 3

22
ΩΩΩΩΩ += jMMjj KW ξκη , 

and MinjMcjvMinMccMjcjc KKW ωξξκη /3/33 2
2

2
1

2 ++= .  Finally, 

(44) is less than zero provided 

ΩΩΩΩ +> jjj NKK κ/31
, 

MinjMaxjjc

c

j
j KK

NNK
ωωκκ 2

3
2

32
23 ++>

Ω

Ω
Ω

 

)4(3 2
jvMinMaxMinj KRK >ρ

 (45) 

and the following inequalities hold: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

>

Ω

ΩΩ

MinjMaxjjc

c

j

j
Maxj

j
jd

KK
NNK

K
ωω

ω κκ

η
ω

4
3

4
3

2

~

2
32

 (46) 

( ) Ω
Ω >

−
>

jMaxj

j

Fj
jvMinMaxMinj

j
j K

W
KRK

e
κ

ηη

ωρ
ρ 22

4~or
)4/(3

or         

jc

j

Fjc
jvMin

j
jv

Minj

j
j W

K
e

K
e

κ
ηηη 3~or

3
oror >>>

Θ
Θ

( )ΩΩΩΩ −−
>Θ>

jjjMaxj

j
jd

Minj

j
j NKKKK

e
κ

ηη

ωω
ω /

~or
3

or
31

2

 

Therefore, it can be concluded using standard extensions of 
Lyapunov theory [9] that jV&  is less than zero outside of a 

compact set, revealing the virtual controller estimation 
errors, b

jdΘ~ , jdω~ , and the NN weight estimation errors, ΩjW~ , 
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the position, orientation, and translational and angular 
velocity tracking errors, ωρ jjvjj eeee ,,, Θ , respectively, and 

the dynamic controller NN weight estimation errors, jcW~ , are 

all SGUUB.   

B. Formation Leader Control Law 
The dynamics and kinematics for the formation leader are 

defined similarly to (1) and (4), respectively.  In our 
previous work [1], an output feedback control law for a 
single quadrotor UAV was designed to ensure the robot 
tracks a desired path, T

idididid zyx ],,[=ρ , and desired yaw 
angle, idψ .  Using the design methods described in this work 
as well as in [1], a state feedback control law for the 
formation leader can be derived which ensures the leader’s 
error systems are SGUUB. 

Next, the stability of the formation consisting of 1 leader 
and N followers is considered in the following theorem 
while considering the interconnection errors between the 
leader and its followers. 

C. Quadrotor UAV Formation Stability 
Before proceeding, it is convenient to define the 

following augmented error systems consisting of the 
position and translational velocity tracking errors of leader i 
and N follower UAVs as 

)1(3

1
]....[ +

==
ℜ∈= NT

Nj

T
jj

T
j

T
i eeee ρρρρ

 

)1(3

1
]....[ +

==
ℜ∈= NT

Nj

T
jvj

T
jv

T
ivv eeee . 

Next, the transformation matrix (2) is augmented as 
)1(3)1(3

1
},,...,{ ++

==
ℜ∈= NxN

NjjjjiF RRRdiagR   

while the NN weights for the translational velocity error 
system are augmented as 

)(
11111

11}ˆ...,,ˆ,ˆ{ˆ icjc NNN

Njjcjjcicc WWWdiagW +⋅

==
ℜ∈=

)(
11111

11]ˆ,...,ˆˆ[ˆ icjc NNNT

Nj

T
jcj

T
jc

T
icc

+⋅

==
ℜ∈= σσσσ  

Now, using the augmented variables above, the augmented 
closed loop position and translational velocity error 
dynamics for the entire formation are written as 

vFF eRGIeKe )( −+−= ρρρ&   

cvFFc
T

cdFvvv eRGKWAeKe ξσ ρ +−+−= 11 ˆ~
&   

where },...,,{
1 NjjdjjdiddF AAAdiagA

==
=  with idA  defined 

similarly to jdA  in terms of idΘ , cξ is an appropriately 

defined vector consisting of 1icξ ,
12 =jjcξ , etc.,  

},...,,{
1 Njjjji KKKdiagK

==
= ρρρρ

 

},,...,,{
1 Njjvjjvivv KKKdiagK

==
=  

FG  is a constant matrix relating to the formation 
interconnection errors defined as 

11]0;00[ ++ℜ∈= xNN
TF FG   

and NxN
TF ℜ∈ is dependent on the specific formation 

topology.  For instance, in a string formation where each 
follower follows the UAV directly in front of it, follower 1 
tracks leader i, follower 2 tracks follower 1, etc., 
and TF becomes the identity matrix. 
 Theorem 2: (UAV Formation Stability) Given the leader-
follower criterion of (8) with 1 leader and N followers, let 
the hypotheses of Theorem 1 hold.  Let the virtual control 
system for the leader i be defined similarly to (30) and (31) 
with the virtual control NN update law defined similarly to 
(41).  Let the control velocity, desire pitch and roll long with 
the thrust and rotation torque vector for the leader be given 
by [1] using state feedback, and let the control NN update 
law be defined identically to (42).  Then, the position, 
orientation, and velocity tracking errors as well as the virtual 
control estimation errors for the entire formation are all 
SGUUB. 
 Proof:  Proof of Theorem 2 is omitted whereas it follows 
as in Theorem 1. 

IV. CONCLUSIONS 
 A new framework for quadrotor UAV leader-follower 

formation control was presented along with a novel NN 
formation control law which allows each follower to track 
its leader without the knowledge of dynamics.  All six DOF 
are successfully tracked using only four control inputs while 
in the presence of unmodeled dynamics and bounded 
disturbances.  Lyapunov analysis guarantees SGUUB of the 
entire formation, and numerical results, although not shown, 
confirm the theoretical conjectures. 
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