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Abstract—Direct yaw moment control generated by differ-
ential friction forces on an axle has been proved to be effective
in improving vehicle lateral yaw stability and in enhancing
handling performance. It consists of two levels of control
tasks: calculating a yaw moment command at vehicle level and
regulating the tire slip to deliver the moment at wheel level.
Advanced powertrain with electrical in-wheel-motor makes fast
wheel level control possible. This paper proposes an adaptive
tire slip controller for Pure Yaw Moment Generation, which
yields the maximal axle yaw moment by asymmetric axle
friction force with no effect on vehicle longitudinal speed. Since
the maximal friction is limited by the tire-road contact, control
constraints at various vehicle speeds and on different surface
conditions has to be taken into account. This algorithm can
generate the optimal longitudinal slip ratio at the presence of
lateral tire force based on a 2D Modified-LuGre tire model. One
major difficulty of such type controllers is the unknown surface
condition. A nonlinear adaptive braking/traction torque control
is proposed to regulate the tire slip ratio with the estimation
of surface condition. Simulation studies show that feeding back
the estimate into the slip control makes the delivered friction
force and yaw moment adaptive to surface conditions.

I. INTRODUCTION

Advanced chassis technology using Direct Yaw Moment

(DYM) generated by differential friction forces of the left

and right side of a vehicle has been implemented in Elec-

tronic Stability Control (ESC) systems. ESC has shown

significant effect on improving vehicle lateral stability. Most

of studies on DYM design reported in literature [1], [2],

[3], [7], [8] have focused on vehicle level yaw moment

regulation. Current ESC implementations use either brake-

based or traction-based differential friction forces to generate

the desired yaw moment. Innovative powertrain technologies

provide additional freedom of utilizing DYM. In-wheel-

motor electric drive is a type of advanced powertrain system

that can be used in future hybrid and fuel cell vehicles.

Each axle contains two independent wheel motors and each

machine can work as either a driving motor in normal drive

or a generator in regenerate braking. The fast response of

the electric motors make it possible to use brake-traction-

based DYM control. In such a case, the motor on one

side of the axle will work in motoring mode to generate

longitudinal traction force and the other one will work in

regenerating mode to provide a brake force in the opposite

direction. Such type approach can maximize the usage of
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Fig. 1. Diagram for wheel slip control

the available friction force since it ideally can double the

moment generated by brake-based or traction-based ESC

systems.

Real-time wheel slip control for DYM is difficult given the

fact that no practical real-time measurement is available for

surface friction condition. It is highly desirable for the con-

trol algorithm to determine and generate an optimal yaw mo-

ment on a wheel-tire system for any given physical surface

condition. In [6], the vehicle stability control problem that

can use maximum available DYM has been formulated as a

multiple-layer control problem as shown in Figure 1. Yaw

Moment Control is a vehicle-level controller determining

the yaw moment command satisfying vehicle yaw stability

request. It yields a command xP to the lower level wheel/tire

controller. The lower level controller is composed of two

parts: Slip Generator and Slip Controller. The Slip Generator

computes the optimal slip ratio �g which maximizes the yaw

moment for a nominal surface condition when the maximum

of xP is commanded. This determination takes into account

the tire lateral deflection. It has been found that the optimal

slip ratio for direct yaw moment generation is not the one

achieved by current ABS systems, which is the one delivering

the maximal longitudinal friction force. The Slip Controller

regulates the tire slip ratio � to the desired quantity �g
by using the braking/traction torque W on the wheel as the

control actuator. The design generated a Pure Yaw Moment

(PYM) controller. It delivered equal friction forces on two

sides of the axle with opposite directions so it has no impact

on vehicle speed. From this perspective, it is the ideal DYM

controller.

One obstacle for the implementation of PYM on current

vehicle platforms is the difference in response time between

the braking system and the powertrain dynamics. This dif-

ference makes it challenging to maintain the asymmetric
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slip ratio. Advanced electric vehicle powertrain with an in-

wheel-motor axle solves the problem. In [10], a vehicle level

Independent Torque Biasing (ITB) control has been designed

to assist steering and to improve vehicle yaw stability by

using the LQG control method.

This paper uses a PYM controller for the ITB Torque

Arbitration in slip Control and surface condition estimation.

Section II gives a brief introduction to the Modified-LuGre

tire model used in this study. Section III calculates the

optimal slip ratio when taking into account the 2D effect

of tire friction in generating a yaw moment. A Lyapunov

function based adaptive control design which identifies the

surface condition and regulate the tire slip ratio is given in

Section IV. The identified surface condition parameter will

be sent back to the slip generator to adjust slip command.

It is an optimal tire traction control, which incorporates

tire traction limits for each wheel. Section V presents the

simulation results of the designed controller and Section VI

is the conclusion from the study.

II. MODIFIED-LUGRE TIRE FRICTION MODEL

The nonlinear brake/traction tire slip control in this study

uses a Modified-LuGre tire model. It is developed in [5]

with a lumped parameter form which captures the transient

of the average dynamics of the tread bristles and a steady

state form which represents the tire tread deflection with

the generated friction force in the steady state. The dynamic

lumped parameter model has the form of a first order partial

differential equation with an unmeasurable state and it is used

in control design. The steady state model can be compared

with empirical models and tire test data for the purpose of

model correlation and parameter fitting. In [5], a new form

of two-dimensional tire friction model is also introduced

which is used in this study for yaw moment generation at

the presence of 2D tire deflection.
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Fig. 2. Wheel velocity and tire slip speed (top view)

The 2D tire slip velocities are shown in Figure 2 for a

wheel planetary velocity Y and rotational speed $. The tire-

road relative slip velocities in the two directions are yu{ =

Y cos(�)� and yu| = Y sin(�), yu =
q
y2u{ + y

2
u|> Y{ =

Y cos� and Y| = Y sin� = yu|= � is the tire side slip

angle and � is the longitudinal slip ratio, � = yu{@Y{ =
(Y{ � uz)@Y{ for the braking case=

The 2D model used in maximum yaw moment control has

to capture the effect of � on the friction force in Y direction

I|. In this study, a 2D modified-LuGre tire friction model

with the form

Il = Iq[
�2nlyul
�(yu> �)

(1�
�

d2l
(
h�dlOw � h�dl(Ow��O)

�O
� (1)

h�dl(Ow��U) � 1

Ow � �U
)) + �2yul]

is used, where l = {> |= It is a steady state friction model

coupling longitudinal and lateral friction, with

�n{(yu) = �f{ + (�v{ � �f{)h
�| yuyv{ |

1@2

(2a)

�n|(yu) = �f| + (�v| � �f|)h
�

��� yuyv|

���
1@2

(2b)

�(yu) =
q
(�n{yu{)

2 + (�n|yu|)
2

and dl =
�̂0l�(yu>�)
�2nl(yu)uz

> � = 2
Ow+�U��O

= �f{> �f| are the

Coulomb friction coefficients and �v{> �v| are the static

friction coefficients of the contact in {� longitudinal and

|� lateral direction. Equation (2a) and (2b) describes the

Stribeck effect of friction at different sliding speeds with

respect to the surface. The 2D tire model (1) uses some

common parameters for the longitudinal and the lateral

direction. The common tire parameters are the length of the

tire-ground contact patch Ow = 0=2> the parameters of the

load shape function �O = 0=09> �U = 0=12= Model (1) can

predict 1D/2D steady state tire friction with good accuracy.

The details of the tire model with fitted model parameter can

be found in [5].

The steady state model (1) has a complex structure and

omits the transient effect of the friction. It is more suitable in

a simulation environment. The lumped parameter Modified-

LuGre model has the form

}̇{(w) = yu{ī �
uz

Ow
�}{(w> Ow)� �*(yu)}{(w) (3)

for longitudinal direction, where *(yu) =
�̂0�(yu)
�2n{(yu)

. It is the

average dynamics of the tire elasticity. }{ represents the

mean of the tire tread deflection and �}{ is the trailing edge

effect term of the contact patch on the average dynamics.

The friction force is composed of three parts: force due to

elasticity, force due to damping and force due to viscous-

damping, i.e.

Ii = �0Ow}{ + �1Ow}̇{ + �2yu{Iq

� �0Ow}{ (4)

The first term in the friction force is the dominant term in

the range of yu{= This is the range we are interested in for

this tire dynamics study.

The Modified-LuGre tire model uses �n{> �n| to represent

the nominal surface 2D friction coefficients at a given slip.

To capture the different surface conditions, from dry to icy,

an additional parameter � is introduced. In model (1) and (3),

� is the surface condition parameter. For a physical surface,

the specific quantity of � can be found to represent the tire

friction but its value is not able to be measured in real time.
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Thus, an adaptive mechanism is needed in the control design

phase to estimate �=

III. DESIRED SLIP GENERATION

A normalized control, xP 5 [�1> 1]> is used for the yaw

moment controller, |xP | = 1 for maximum yaw moment

and |xP | ? 1 in a regular yaw moment generation. It leaves

the freedom of determining the optimal yaw moment to the

wheel level controller.

In this paper, a Pure Yaw Moment Control is designed

based on assumptions on in-wheel-motor electric drive that

(1) The longitudinal friction force can be generated inde-

pendently on each individual wheel, (2) Braking torque and

traction torque can be applied independently by two in wheel

electric motors.

It implies the desired optimum slip ratios �� on the two

sides of tires have same magnitudes but opposite directions

so only the magnitude is calculated. This paper uses the rear

axle moment Pu as the design example.

A. Maximum Yaw Moment Generation

When |xP | = 1, the maximum yaw moment is de-

sired. The contribution of each individual wheel on the

yaw moment is a combination of I{> I|> e.g. Pu(�u) =
P{u(�> �u) + P|u(�> �u)> P{u(�> �u) = I{u(�> �u)De>
P|u(�>�u) = I|u(�> �u)ou> where De is the axle based and

ou is the distance from vehicle CG to the rear axle. The lateral

friction force I|u(�> �u) is determined by vehicle lateral

states (�> u), which are determined by the driver’s intention

or the tracking control requirement. The yaw moment is

limited by physical capacity of tires on a specific surface

condition, i.e. P 5 [�Pmax(�)>Pmax(�)]. Since I| is

determined mainly in vehicle control level by the steering

input, determining the maximum of I{ is the key to find the

optimum yaw moment P�.

I{ is determined by the tire slip ratio �. This slip control

problem, however, is different from the one in an ABS or

Traction control problem since I{ is reduced at the presence

of the lateral friction force. The 2D tire friction force is

determined by an ellipsoid force distribution associated with

2D motion.

By taking into account the tire traction capacity in both

directions, the optimal problem of generating the maximum

yaw moment on one axle reduces to finding �� for given �u
so that the generated differential friction has the largest yaw

moment, i.e.

max
�
Pu(�u) = max

�
(I{u(�> �u)De+ I|u(�> �u)ou) (5)

or

�� = argmax
�
(I{u(�>�u)De+ I|u(�> �u)ou) (6)

Since I{u> I|u are continuous functions of �> the necessary

condition of the maximum Pu is

gPu

g�
=
gI{u(�u)

g�
De+

gI|u(�u)

g�
ou = 0 (7)

Equation (7) gives a necessary condition of ��= It is

straightforward to see that the maximum of Pu is achieved

if and only if the increase of moment due to I{u is equal to

the decrease due to I|u=
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The 2D tire model (1) generates a friction force ellipse for

a fixed �, as shown in Figure 3, when � varies. The fixed

� in the plot are 0=1�> 0=5�> 1�> 2�> 4�> 6�> 8�> 10�> 12�> 14�

respectively. Figure 4 plots the generated friction force

I{> I| as a function of � at the specified �s.

The maximum are obtained directly by searching through

�> � 5 [0> 1]= The stars on each curve correspond to the

optimum slip ratio ��s for the specific �s, �� = [9=6%>
9=1%, 8=6%> 9=1%, 10=6%, 13=1%, 15=6%, 18=1%, 21=1%>
23=6%] in the case of the given �s.

It is observed that each I{(�
�) is smaller than the

maximum at the given �. The larger is �> the larger this

discrepancy is. It implies that the optimum �� for the

maximum yaw moment introduces less longitudinal friction

than the maximum generated in ABS or Traction control

systems. Therefore, an accurate tire slip ratio control is

highly desired to achieve the optimal tire traction in the

Fig. 4. Generated moment with respect to � at given � (I{: Solid, I| :
dash-dot)
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Fig. 5. Diagram of the model for slip control

stability control scenario.

B. Mapping from P{g to �g

When |xP | ? 1> only partial of the maximum yaw

moment is desired. The desired slip �g should be lower than

the �� that we just derived, �g = ��
�> |�| ? 1. By (3), it is

known that in the steady state

}{ =
1

�*(yu)
(yu{iq �

uz

Ow
}O) (8)

and since yu{ = Y{�> the direct yaw moment can be found

to be a function of � in the steady state

P{(�) = I{De

=
�0DeOw
�*(yu)

(Y{�iq �
uz

Ow
}O) (9)

Equation (9) is a nonlinear relationship between the

achieved slip ratio and the generated yaw moment. The

inverse function �(P{) does not have an analytical solution=
Therefore, to generate an appropriate slip ratio command, a

table of the nonlinear mapping between � and P{ is derived

then �g is derived by interpolating the generated table by

command P{g.

IV. ADAPTIVE TIRE SLIP CONTROL

To achieve the slip ratio ��, an accurate braking/traction

torque control is needed. Slip control is a challenging task

in vehicle dynamics study due to the difficulty of accurately

measuring vehicle speed Y and the uncertainty of tire pa-

rameters as well as surface conditions. A nonlinear adaptive

slip controller to surface conditions has been proposed in [4],

[9]. But it is hard to extend such type of control to either a

2D case or to differential slip control. This study also uses

a nonlinear control structure to drive the wheel slip ratio

�$ �g with an adaptive mechanism to identify the surface

condition. Figure 5 shows the relationship between friction

force and brake torque on a wheel, where x = Y{ represent

wheel longitudinal speed.

Here an additional measurement of wheel acceleration is

used to solve the difficulty induced by the trailing edge effect

term �}{(w> Ow) in (3). The control assume Iio = �Iiu

thus the vehicle speed is not affected. The 2nd-order wheel

dynamics in a braking scenario can be modeled by

M$$̇(w) = uIi (w)� W (w) (10a)

}̇{(w) = yu{ī �
uz

Ow
�}{(w> Ow)� �*(yu)}{(w)(10b)

and

Ii = �0Ow}{ (11)

Approximation is used in the previous equation for the

friction force since the term �0Ow}{ dominates Ii in the slip

control problem. The term �}{(w> Ow) can not be measured

but it is known that

0 ? �}O(w) ? }O(Y{> $)> w 5 (0>4) (12)

where }O(Y{> $) is a known function=
Model (10b) captures the nonlinear transient of the tire

tread deflection with respect to the increase of the relative

slip speed yu{= When |yu{| is close to zero, *(yu) is small so

the dynamics of }{ is relatively ”slow”. As yu{ increases, the

dynamics are faster so }{ can converge to the steady state

quickly. In this study, the slip control is of interest thus the

dynamics of the friction is important and the transient effect

of }{ can not be omitted.

The wheel rotation speed $ and acceleration $̇ = d$ are

the only measurements and the torque applied to the wheel

is the control variable. The tire slip ratio has the form

� =
x� uz

x
=
yu{
x

(13)

in brake events and x is assumed to be constant here.

The control goal of this problem is to drive � $ �g or

equivalently if we define a target surface

v = yu{ � �gx (14)

the control goal is to design a control to drive v$ 0= Since

� is not measured directly, an estimator �̂ is introduced here

and the error of the estimation is

�̃ = � � �̂ (15)

The way of constructing the estimator �̂ will be introduced

in the following derivation. � varies much slower than the

transient of this controlled system thus �̇ can be omitted.

Therefore,
˙̃
� = �

˙̂
� (16)

The dynamics of the slip error is obtained by differentiating

equation (14) and it has the form

v̇ = ẏu{ = �u$̇ = �
u

M$
(u�0Ow}{ � W ) (17)

A nonlinear 2nd-order estimator is designed to be

˙̂$ =
u�0Ow
M$

}̂ �
1

M$
W (18a)

=

}̂{ = yu{ī �
uz

Ow
�}̂O � �̂*(yu)}̂{ +D (18b)
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The form of �}̂O and D terms will be determined subse-

quently.

Define the estimation error

}̃{ = }{ � }̂{ (19)

Then

˙̃}{ =
uz

Ow
(�}̂O � �}O)� �̃*(yu)}̂{ � �*(yu)}̃{ �D

The control task here is to drive v$ 0> }̃{ $ 0 and �̃ $ 0
asymptotically so that the slip control task is achieved with

the correct identification of surface condition. Choosing a

Lyapunov function to be

YO|ds =
1

2
v2 +

1

2
}̃2{ +

1

2
�̃
2

(20)

Then

ẎO|ds = vv̇+ }̃{ ˙̃}{ + �̃
=

�̃

= v(�
u2

M$
�0Ow}̂{ +

u

M$
W ) + }̃{[�v

u2

M$
�0Ow

+
uz

Ow
(�}̂O � �}O)� �*(yu)}̃{ �D]

��̃[
˙̂
� + }̃{*(yu)}̂{]

To cancel out the last term in the expression of ẎO|ds, let

the adaptive mechanism take the form

˙̂
� = �}̃{*(yu)}̂{ (21)

and the control braking torque be

W = u�0Ow}̂{ �
M$
u
dvv (22)

where the arbitrary constant dv A 0= Then we choose the

driving term D to be

D = �v
u2

M$
�0Ow + �} }̃{ (23)

where �} A 0 is a constant that can be tuned based on the

control performance. Thus

ẎO|ds � �dvv
2
�(�*(yu)+�})}̃

2
{+
uz

Ow
}̃{(�}̂O��}O) (24)

On the right side of the inequality, the first two terms are

negative definite while the last term is uncertain. It contains

both the error term }̃ and the error term of the end-edge

effect. To make it negative, the sign of }̃ has to be known.

In this estimator design, we use the error between the

measured wheel rotational acceleration d$ and the estimation

as an index of estimator performance. Since we know the

measurement of wheel acceleration $̇ = d$, the error $̃ =
$ � $̂ is governed by the following dynamics

˙̃$ =
u

M$
�0Ow}̃ = d$ �

u�0Ow
M$

}̂{ +
1

M$
W (25)

and thus

}̃ =
M$
u�0Ow

d$ +
1

u�0Ow
W � }̂{ (26)

It shows that the estimation error }̃ can be calculated by the

measurement d$ and the estimation }̂=
To force the last term on the right side of (24) to be

negative, let

�}̂O =

½
0> }̃ A 0
}O(x> $)> }̃ � 0

(27)

thus

ẎO|ds � �dvv
2
� (�*(yu) + �})}̃

2
�
uz

Ow
|}̃| }O � 0 (28)

By Lasalle’s theorem, it can be concluded that

v$ 0> }̃ $ 0> as w$4

or

�$ �g as w$4

The estimator dynamics of }̃ shows the following proper-

ties:

• D $ 0 as v$ 0> }̃ $ 0
•
˙̃} ? 0 when }̃ = 0 if �̃*(yu)}̂ 6= 0

The second property implies that

�̃$ 0> as w$4

for }̂ 6= 0= Therefore, the discussion is based on an assump-

tion that there is no such condition that

}̂{(w) � 0 for all w 5 [w0> w0 + W ] (29)

or in other word if }̂{(w) satisfies the following relationship

for any time interval W

1

W

Z w0+W

w0

}̂2{(w)gw > d0 A 0 (30)

Condition (30) is a sufficient condition for the validity of the

adaptive control and it implies persistent exciting of }̂{(w)=
Intuitively, the adaptive mechanism needs to have the brake

torque applied on the tire to generate }{ and }̂{ to guarantee

�̃
0

s convergent.

V. SIMULATION

A simulation model is set up in MATLAB Simulink

to verify the control design on various surface conditions.

Estimation �̂ from the slip controller is feedback into the

slip generator to take into account the surface friction co-

efficient on the desired slip ratio �g. To eliminate the high

frequency noise in �̂, a Butterworth low-pass filter with cut-

off frequency at 10 rad/s is used in the simulation.

The left figure in Figure 6 plots the transient of �̂ with

respect to time responding to the real surface variation �(w)=
�(w) is given as a ramp function in this simulation. The right

figure in Figure 6 shows the achieved � with respect to the

command �g under the given �(w). It shows the estimation

of � is fast with small offset. Since |�| � 1 in the tire model,

the controller will ignore any estimation that is less than 1.

Thus, a flat �g corresponding to � = 1 is observed at the

beginning= After an effective �̂ is obtained from the feedback,

�g is decreased accordingly. Overall, the achieved � has very

good tracking of �g in this simulation.
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Figure 7 to Figure 8 plot the achieved � and P{ at � = 1
and � = 2 when xP = 1 and xP = 0=5 are commanded.

In Figure 7, a good surface condition with � = 1 is

simulated. The left plot shows �g and � under demands

for full yaw moment and half yaw moment on surface. The

generated P{ are shown in the right plot.

In Figure 8, a slippery surface condition with � = 2 is

simulated. In the left plot, it is shown that the slip generator

reduces �g after obtaining the feedback information of �̂= The

slip controller successfully regulates � to �g in the steady

state with a fast transient.

From the right plot of Figure 7 to Figure 8, one can also

observed that with the command of xP = 1 and xP =
0=5, the achieved yaw moment keeps a linear relationship as

required by xP while the steady state slip ratios are in a

nonlinear form.

VI. CONCLUSIONS

This study makes a connection between the vehicle level

yaw moment controller and the wheel-tire level slip control.

It generates a normalized yaw moment command to the lower

level wheel controller. The lower level controller generates

either the optimal tire slip ratio for the yaw moment or a

slip ratio based on a nonlinear slip-to-yaw moment map.
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It shows that the optimal slip ratio for the maximum yaw

moment generation is not the slip quantity corresponding

to the maximum longitudinal friction force. This result

explains the importance of considering the effect of lateral

deflection of the tire in the yaw moment control design.

The designed controller is adaptive to the surface friction

condition modeled by a parameter in the tire model. The

slip generator uses the estimated surface parameter to make

adaptive generation to the surface condition. The designed

controller has been tested in a simulation model. Both the

slip ratio and surface estimation converge to the real value

under the adaptive controller.

Further work of this study includes implementation of the

designed lower level controller with vehicle controllers and

studies of the slip control mechanism when the vehicle speed

varies due to non-uniform friction generation on each tire.
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