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Abstract— This paper is a continuation of our previous work
and discusses the consensus problem for a network of dynamic
agents with directed information flows and random switching
topologies. The switching is determined by a Markov chain,
each topology corresponding to a state of the Markov chain. We
show that in order to achieve consensus almost surely and from
any initial state, each union of graphs from the sets of graphs
corresponding to the closed positive recurrent sets of states of
the Markov chain must have a spanning tree. The analysis relies
on tools from matrix theory, Markovian jump linear systems
theory and random process theory. The distinctive feature of
this work is addressing the consensus problem with “Markovian
switching” topologies.

I. INTRODUCTION

A consensus problem, which lies at the foundation of
distributed computing, consists of a group of dynamic agents
who seek to agree upon certain quantities of interest by
exchanging information among them according to a set of
rules. This problem can model many phenomena involving
information exchange between agents such as cooperative
control of vehicles, formation control, flocking, synchroniza-
tion, parallel computing, etc. Thus the consensus problem has
been widely studied in the literature. Distributed computation
over networks has a long history in control theory starting
with the work of Borkar and Varaiya [1], Tsitsikils, Bertsekas
and Athans [17], [18] on asynchronous agreement problems
and parallel computing. Olfati-Saber and Murray introduced
in [12], [13] theoretical framework for solving consensus
problems. Jadbabaie et al. studied in [6] alignment problems
involving reaching an agreement. Relevant extensions of the
consensus problem were done by Ren and Beard [11] and
by Moreau in [9].

The communication networks between agents may change
in time due to link failures, packet drops, node failure, etc.
Many of the variations in topology may happen randomly
which lead to considering consensus problems under a
stochastic framework. Hatano and Mesbahi consider in [7]
an agreement problem over random information networks
where the existence of an information channel between a
pair of elements at each time instance is probabilistic and
independent of other channels. In [10], Porfiri and Stilwell
provide sufficient conditions for reaching consensus almost
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surely in the case of a discrete linear system where the
communication flow is given by a directed graph derived
from a random graph process, independent of other time
instances. Under a similar model of the communication
topology, Salehi and Jadbabaie give necessary and sufficient
conditions for almost sure convergence to consensus in [16].

In our previous work [8] we analyzed the consensus
problem for a group of dynamic agents with undirected
information flow and random switching topologies, where
the switching process is governed by a Markov chain whose
states correspond to possible communication topologies. In
this paper we consider the same problem but for directed
information flows which enhances the degree of generality
and at the same it represents the more realistic situation.
As pointed out in [8], the advantage of having Markovian
switching topologies resides in their ability to model a
topology change which depends on previous communication
topologies. As motivation, in [14] it was showed that the
distributed Kalman filtering problem decomposes in two
dynamic consensus problems. If we make the assumption
that the sensors are prone to failure (and assume exponential
distribution for the life-time of the sensors), the communica-
tion topology becomes random with an underlying Markov
process. Thus our proposed framework can be used as a
starting point for treating distributed filtering for sensor
networks with random information flow.

Notations: We will denote by 1 the n-dimensional vector
of all ones. We will use the same symbol for a vector of
all ones with n2 entries. It will be clear from the context
what dimension the vector 1 has. The symbol ⊗ denotes the
Kronecker product.

The outline of the paper is as follows. In Section II we
present the setup and formulation of the problem. In Section
III we state our main result and give an intuitive explanation.
In Section IV we provide first a set of theoretical tools used
in proving the main result and then we proceed with the main
proof.

II. PROBLEM FORMULATION

We consider a group of n agents with a discrete time dy-
namics (labeled as {1, 2, . . . , n}) for which the information
flow is modeled as a directed graph G = (V, E , A) of order
n. The set V = {1, . . . , n} represents the set of vertices,
E ⊆ V × V is the set of edges. We assume there are no self
loops inside the graph. The adjacency matrix of the graph
G is an n × n matrix with non-negative entries A = (aij),
where aij is positive if an arc from i to j exists and zero
otherwise. Also, all diagonal entries are assumed zero.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB19.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1298



Definition 2.1: (Discrete-Time Markovian Random
Graph) Let s be a given positive integer and let θ(k) be
an homogeneous, finite-state, discrete-time Markov chain
which takes values in the set S = {1, · · · , s}, with an s× s
dimensional probability transition matrix P = (pij) (all
rows sum up to one). Consider also a set of graphs of the
same order G = {Gi}si=1. By a discrete-time Markovian
random graph (DTMRG) we understand a map G from S
to G, such that

G(θ(k)) = Gθ(k)

for all positive integer values of k.

In what follows this map will be denoted by Gθ(k). We note
the Gθ(k) is a discrete finite-state Markovian process, whose
probabilistic description is given by the probability transition
matrix P .

We denote by X(k) the n-dimensional vector representing
the state of the agents. We assume that the information flow
among agents is described by a DTMRG Gθ(k) and we
consider a linear, discrete-time, stochastic dynamic system
governing the evolution of the state vector:

X(k + 1) = Fθ(k)X(k), X(0) = X0, (1)

where the n × n random matrix Fθ(k) represents the state
(local) updating rule corresponding to the communication
graph given by Gθ(k) and it takes values in a finite set
of matrices {Fi}si=1. The initial condition X0 is considered
deterministic.

We define the agreement space as the subspace generated
by the vector of all ones A = span(1).

Definition 2.2: We say that the vector X(k) converges
almost surely to consensus if it asymptotically reaches the
agreement space in the almost sure sense

X(k) a.s−−→ A.

We say that the state vector X(k) reaches average consensus
almost surely if

X(k) a.s−−→ av(X0)1,

where av(X0) = 1TX0/1
T1.

Problem 2.1: Given a DTMRG Gθ(k) and the state updat-
ing rule Fθ(k), we derive necessary and sufficient conditions
such that the state vector X(k), evolving according to (1),
converges almost surely to consensus for any initial state X0.

Throughout this paper we will use the local updating rule
(or protocol) constructed using Peron matrices:

Fi = I − εLi, i ∈ S, (2)

where Li = Di−ATi is the Laplacian of the graph Gi (with
Di and Ai being the inner degree matrix and the adjacency
matrix respectively) and ε > maxj{djj} (djj being the jth

entry of Di diagonal). From now on we will refer to this
updating rule as protocol A1. Note that protocol A1 is a

nearest neighbor updating rule and it is appealing since
it allows for a distributed implementation of the consensus
problem.

Remark 2.1: In [11] an apparently more general local
protocol is used:

F = (fij),

where fij = αij/
∑n
j=1 αij . In this protocol (referred from

now on as protocol A2) the coefficients αij are positive if
there exist an information flow from j to i or if i = j and are
zero otherwise. However we can obtain from this protocol
a representation in terms of a Peron matrix if we chose
ε = 1/maxi{

∑
j αij} and compute the adjacency matrix

entries according to aji = fij
ε . The inverse transition is also

possible, in the sense that starting with protocol A1 we can
obtain a representation as in protocol A2. The coefficients
αij are obtained as a solution of a set of linear system of
equations in terms of the adjacency matrix entries. These
resulting coefficients need not be unique. Therefore we can
claim that the two protocols are equivalent.

III. MAIN RESULT

In this section we introduce the necessary and sufficient
conditions for reaching consensus in the almost sure sense
together with some intuitive explanations of these conditions.
We defer the rigorous mathematical proof for Section IV.

Consider the problem setup presented in Section II. By
the Decomposition Theorem of the states of a Markov chain
(see [5]) the state space S can be partitioned uniquely as

S = {T ∪ C1 ∪ · · · ∪ Cq},

where T is the set of transient states and C1, · · · , Cq are
irreducible closed sets of (positive) recurrent states. Since
θ(k) is a finite state Markov chain there exists at least one
(positive) recurrent closed set. We make the assumption that
the initial distribution is such that θ(0) can be in any state
of the sets T or Ci. Let Gi = {Gj1 , Gj2 , , Gj|Ci|} be the
sets of graphs corresponding to the states in the sets Ci with
i ∈ {1, . . . , q} and where by |Ci| we denote the cardinality
of Ci.

Theorem 3.1: (almost sure convergence to consensus)
Consider the stochastic system (1). Then, under protocol A1
(or A2), the state vector X(k) converges almost surely to
consensus for any initial state X0 if and only if each union
of graphs in the sets Gi corresponding to the closed sets Ci
have a spanning tree.

We defer to the next section the proof of this theorem and
rather provide here an intuitive explanation. Regardless of the
initial state of θ(k), there exist a time instant after which θ(k)
will be constrained to take values only in one of the closed
sets Ci. Since Ci are irreducible and (positive) recurrent the
probability of θ(k) to visit each of the states belonging to
Ci will never converge to zero. Thus θ(k) will visit each
of these states infinitely many times and consequently since
the union of graphs corresponding to these states have a

1299



spanning tree, there will be a flow of information going from
at least one agent to all others infinitely many times. Under
protocol A1 (or A2) this is sufficient for the state vector
X(k) to converge to consensus [11]. On the other hand if
we assume the existence of at least one set Ci such that the
union of graphs in Gi does not have a spanning tree, then
with non-zero probability θ(k) may be isolated in such a set
after a while. Since the union of graphs in this set do not
admit a spanning tree, then there will be at least one agent
which will not exchange information with the others and
hence impeding the convergence to consensus. Therefore we
can find an initial state such that with non-zero probability,
consensus is not reached.

Under certain assumptions almost sure convergence to
average consensus can be achieved as well. The assump-
tions consist in having all state updating laws matrices Fi,
be doubly stochastic. Within the protocol A1 this can be
achieved if either the communication graphs are undirected
(case in which matrices Fi are symmetric and therefore
doubly stochastic) or directed, but balanced (for each node
the inner degree is equal to the outer degree - in [13] it
is shown that having balanced graphs is a necessary and
sufficient condition for achieving average consensus for fixed
topologies). Thus we can formulate the following corollary:

Corollary 3.1: (almost sure convergence to average con-
sensus) Consider the stochastic system (1). Then, under
protocol A1, if each union of graphs in the sets Gi, corre-
sponding to the closed sets Ci has a spanning tree and either
all graphs are undirected or all are directed but balanced then
the state vector X(k) converges almost surely to average
consensus for any initial states.

IV. PROOF OF THE MAIN RESULT

In this section we detail the proof of Theorem 3.1 and
introduce a number of supporting results and their proofs.
The proof of our theorem is based on the convergence
properties of some matrices which arise from the analysis
of the state vector’s first and second moment. We start by
stating a number of results from the literature which will
be useful in our analysis and which deal with the properties
of stochastic indecomposable, aperiodic matrices (SIA) (a
stochastic matrix P is SIA if there exist a vector c such that
limk→∞ P k = 1cT ).

Theorem 4.1: ([19]) Let A1, . . . , As be a finite set of
n×n SIA matrices with the property that for each sequence
of matrices Ai1 , . . . , Aij of positive length the product
matrix Aij · · ·Ai1 is SIA. Then for each infinite sequence
Ai1 , Ai2 , . . . there exist a vector c such that

lim
j→∞

AijAij−1 · · ·Ai1 = 1cT (3)

Lemma 4.1: Given a positive integer s, consider a set of
directed graphs {Gi}si=1. If the union of graphs in the set
have a spanning tree then the matrix product Fi1Fi2 . . . Fij
is SIA, where the finite set of indices i1, i2, . . . , ij contains
at least once each of the values 1, 2, . . . , s and where each
matrix Fi is the result of applying protocol A2 to graph Gi.

Remark 4.1: Lemma 4.1 is a slight modification of
Lemma 3.9 in [11]. However the proof is identical and will be
skipped (the proof is based on a result expressed in Lemma 2,
[6]). Note that the matrix product (Fi1 ⊗Fi1) . . . (Fij ⊗Fij )
is also SIA since (Fi1⊗Fi1) . . . (Fij⊗Fij ) = (Fi1 . . . Fij )⊗
(Fi1 . . . Fij ) and the Kronecker product of two SIA matrices
is SIA as well.

Remark 4.2: The result of Lemma 4.1 also holds if the
matrices Fi were obtained by applying protocol A1 since
the two protocols are equivalent (see Remark 2.1).

Lemma 4.2: Let s be a positive integer and let {Aij}si,j=1

be a set of n × n SIA matrices. Let P = (pij) be an
s × s stochastic matrix corresponding to an homogeneous,
irreducible, positive recurrent Markov chain and consider the
ns×ns dimensional matrix Q whose (i, j)th block is defined
as Qij = pjiAij . Then

lim
k→∞

(Qk)ij = p∞ji 1c
T
ij (4)

where p∞ji is the (j, i)th entry of P k for large values of k
and cTij is a vector with non-negative entries summing up to
one.

Proof: The proof of this lemma is based on Theorem
4.1. We can express the (i, j)th block entry of matrix Qk as
follows:

(Qk)ij =
∑

1≤i1,...ik−1≤n

pji1Aii1pi1i2Ai1i2 . . . pik−1iAik−1j

(5)
= p

(k)
ji

∑
1≤i1,...ik−1≤n

αi1,...ik−1Aii1Ai1i2 . . . Aik−1j

where p
(k)
ji is the (j, i)th entry of P k and αi1,...ik−1 =

(pji1pi1i2 . . . pik−1i)/p
(k)
ji if p(k)

ji > 0 and zero otherwise.
Notice from (5) that each (i, j)th block of the matrix Qk is a
convex combination of products of SIA matrices multiplied
by p

(k)
ji . As k goes to infinity, according to Theorem 4.1,

each of the matrix product Aii1Ai1i2 . . . Aik−1j will converge
to a matrix of the form 1cT , for some non-negative vector
c. Hence we will have an infinite convex combination of
matrices of the form 1cT which will result in a matrix of
the same type. Note that the limit may converge to a set of
limit points matrices rather then a single point, depending
on the properties of the Markov chain. A set of limit points
occurs if the Markov chain is periodic, which will force the
terms p∞ji not to converge but rather to oscillate between
some values.

Lemma 4.3: Let s be a positive integer and consider a set
of directed graphs {Gi}si=1 whose union admits a spanning
tree. Let {Fi}si=1 be a set of n × n matrices obtained by
applying protocols A1 or A2 to graphs Gi. Consider also
an homogeneous, irreducible (positive) recurrent finite-state
Markov chain with an s× s transition probability matrix P
and two matrices Q and Q̃ of dimensions ns×ns and n2s×
n2s respectively whose blocks are constructed as: Qij =
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pjiFj and Q̃ij = pjiFj ⊗ Fj . Then

lim
k→∞

(Qk)ij = p∞ji 1c
T
ij , (6)

lim
k→∞

(Q̃k)ij = p∞ji 1c̃
T
ij , (7)

where p∞ji is the (j, i)th entry of P k for large values of k
and cij and c̃ij are two vectors of dimensions n and n2

respectively with non-negative entries summing up to one.
Proof: We will first concentrate on the matrix Q. Our

strategy consists in showing that there exist a k such that
each (ij) block matrix of Qk is given by a weighted SIA
matrix: (Qk)ij = p

(k)
ji A

(k)
ij , where A

(k)
ij is SIA. Then we

can apply Lemma 4.2 to obtain (6). The (ij)th block matrix
of Qk looks as in (5), with the main difference that in the
current case Aij = Fj :

(Qk)ij =
∑

1≤i1,...ik−1≤n

pji1pi1i2 . . . pik−1iFjFi1 . . . Fik−1

(8)
= p

(k)
ji A

(k)
ij ,

where A(k)
ij is obtained as a convex combination of matrix

products of the form FjFi1 . . . Fik−1 . Then a sufficient
condition for A(k)

ij to become SIA is that each matrix product
FjFi1 . . . Fik−1 to be SIA. By Lemma 4.1 and Remark
4.2 this happens if FjFi1 . . . Fik−1 contains at least once
each of the matrices Fj , j ∈ S. Notice from (8) that
to each possible path of length k from state j to state i
(given by pji1pi1i2 . . . pik−1i) we associate a matrix product
FjFi1 . . . Fik−1 . So basically we need to find a k such that
for any two states j and i all possible paths (of length k)
go through the states in the set S − {j} at least once before
arriving to state i. The existence of such k is ensured by
the irreducibility assumption. Indeed if such k does not exist
then there would be a path between j and i arbitrary large
that would never pass through all states in S. If this is
the case we would contradict the irreducibility assumption
which corresponds to the connectedness property between
any to states of the Markov chain. Therefore the irreducibility
assumption guarantees the existence of a k such that each
block matrix (Qk)ij becomes a weighted SIA matrix. Hence
by Lemma 4.2 we obtain (6). Note that if the Markov chain
is periodic, the probability p∞ji will not converge and hence
in (6) we obtain a limiting set of points, whose cardinality is
given by the value of the period. To show (7), we follow the
same argument as before together with the part of Remark
4.1 concerning Kronecker products.

At this point we are ready for the proof of Theorem 4.1.

A. Sufficiency

Proof: Note first that the stochastic system (1) rep-
resents a discrete-time Markovian jump linear system (the
reader may consult for example [2] for a comprehensive
introduction in the theory of Markovian jump linear systems).

We define the error between the state vector X(k) and the
agreement space as:

e(k) = X(k)− arg min
z∈A
‖X(k)− z‖, (9)

where we used Euclidean norm. Showing that the state
vector converges almost surely to consensus is equivalent
to showing that the error vector converges almost surely to
zero or equivalently:

‖e(k)‖2 a.s−−→ 0.

Note that (9) can be also written as

e(k) =
(
I − 11T

1T1

)
X(k). (10)

We will first address the case the Markov chain θ(k) is
irreducible and positive recurrent. At the end of the proof, we
will briefly address the case when θ(k) has transient states
as well.

The proof has the following development. We analyze
the convergence properties of the second moment of the
state vector X(k). From this analysis we will assert that
the second moment of the error vector e(k) converges
exponentially to zero. Then by using the generalized Markov
inequality together with the first Borel-Cantelli Lemma ([5])
we can conclude the almost sure convergence to zero of the
error vector and implicitly the almost sure convergence of
the state vector to the average consensus state.

Let the n × n symmetric matrix V (k) denote the second
moment of the state vector X(k)

V (k) = E[X(k)X(k)T ],

where we used E to denote the expectation operator. Using
an approach similar to [2], consider the matrices Vi(k)

Vi(k) = E[X(k)X(k)Tχ{θ(k)=i}], i ∈ S (11)

where χ{θ(k)=i} is the indicator function of the event
{θ(k) = i}. Then the second moment V (k) can be expressed
as the following sum:

V (k) =
s∑
i=1

Vi(k). (12)

The set of discrete coupled Lyapunov equations governing
the evolution of the matrices Vi(k) is given by:

Vi(k + 1) =
s∑
j=1

pjiFjVj(k)FTj , i ∈ S, (13)

with initial conditions Vi(0) = qiX0X
T
0 where q = (qi) is

the initial distribution of the Markov chain, qi = Pr(θ(0) =
i).

We can further obtain a vectorized form of equations (13):

η(k + 1) = Λη(k), (14)
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where η(k) is an n2s dimensional vector formed by the
columns of all matrices Vi(k) and Λ is an n2s×n2s matrix
given by

Λ =

 p11F1 ⊗ F1 . . . ps1Fs ⊗ Fs
...

. . .
...

p1sF1 ⊗ F1 . . . pssFs ⊗ Fs

 . (15)

The initial vector η(0) has the following structure

η(0)T = [q1col1(X0X
T
0 )T , . . . , q1coln(X0X

T
0 )T , . . .

. . . , qscol1(X0X
T
0 )T , . . . , qscoln(X0X

T
0 )T ],

where by coli we understand the ith column of the consid-
ered matrix. We notice that the current setup satisfies all the
conditions of Lemma 4.3 (the matrix Λ is the matrix Q̃ in
the statement of the lemma) and hence we get

lim
k→∞

(Λk)ij = p∞ji 1c
T
ij , (16)

where p∞ij is either the jth component of the stationary distri-
bution if the Markov chain is aperiodic or a set of recurring
values if the chain is periodic; 1 is the n2 dimensional
vector of all ones and cij is an n2 dimensional vector of
non-negative entries summing up to one. As a consequence
the vector η(k) converges exponentially to a set of limiting
points (whose cardinality is equal to the period of the chain):

lim
k→∞

η(k) = {ηl∞}dl=1 (17)

where d is the period of the chain and ηl∞ is a n2s

dimensional vector of the form ηl∞
T = [αl11

T . . . αls1
T ] with

1 an n2 vector of all ones and αli scalars which depend on the
initial condition, on the probabilities p∞ij and on the limiting
vectors cij .

By collecting the entries of limk→∞ η(k) we obtain

lim
k→∞

Vi(k) = {αli11T }dl=1

and from (12) we finally obtain

lim
k→∞

V (k) = {βl11T }dl=1 (18)

where βl =
∑s
i=1 α

l
i.

From (10) the second moment of the error vector can be
expressed as

E[e(k)e(k)T ] =
(
I − 11T

1T1

)
E[X(k)X(k)T ]

(
I − 11T

1T1

)
and from (18) we deduce that the second moment of the

error vector converges asymptotically (and thus exponentially
since linear systems are involved) to zero

lim
k→∞

E[e(k)e(k)T ] = 0,

Then by the generalized Markov inequality we can write∑
k≥0

Pr(‖e(k)‖2 > ε) ≤
∑
k≥0

E[‖e(k)‖2]
ε

(19)

for any positive ε. Since E[‖e(k)‖2] = trace(E[e(k)e(k)T ])
converges exponentially to zero we can use the first Borel-
Cantelli Lemma [5] to determine the almost sure convergence
of the error vector to zero and implicitly the almost sure
convergence of the state vector to consensus.

If the Markov chain has transient state as well, the result
still holds. Due to space limitation, we will not address
rigorously this case but rather present the idea behind it. Let
us assume that there some transient states. Then, as time goes
to infinity the probability to return to the transient states goes
to zero. Hence the limiting values all blocks (Λk)ij where i
is a transient state will be zero as time goes to infinity. For
the (ij) blocks, where j is a transient state and i belongs to
an irreducible, positive recurrent closed set, is not difficult
to notice that, as time goes to infinity , (Λk)ij will take the
same form as in (16). The convergence of the other blocks is
covered by the case when the Markov chain is irreducible and
positive recurrent, addressed in the beginning. Although not
true in general, the intuition is the following. Let us assume
that we start in a transient state. Then, since the state is
transient then there exist a finite positive integer τ such that
M(τ) belongs to a closed set Ci. Hence the second case can
be regarded as having again an irreducible positive recurrent
chain but with an initial condition given by:

X(τ) = Fi1Fi2 . . . Fiτ−1X0

where {i1, i2, . . . , iτ−1} is a set of indices representing states
in the transient set.

Therefore, the burden of the proof lays on proving the first
addressed case, which was rigorously treated.

B. Necessity

Proof: We show that if there exist at least one irre-
ducible closed set corresponding to a set of graphs whose
union does not have a spanning tree, then there exist some
initial vectors X0 such that the state vector does not converge
in probability to consensus and hence does not converge in
the almost sure sense either.

The complete probabilistic framework of the Markovian
jump linear system (1) can be found for example in [2],pp.20.
In our case the probabilistic description is rather simplified
since X0 was assumed deterministic.

Let Ak(ε) define the following event Ak(ε) = {ωk :
‖e(k)‖2 > ε} for some positive ε, where e(k) is the error
vector defined in (9).

Suppose that there exist an irreducible and positive re-
current set Ci∗ such that the union of the graphs from
the corresponding set Gi∗ does not have a spanning tree.
Conditioning on the initial state of the Markov chain, the
probability of the event Ak(ε) can be expressed as:

Pr(Ak(ε)) =
s∑
j=1

Pr(Ak(ε)|θ(0) = j)Pr(θ(0) = j).

By the assumption on the initial distribution of θ(k) we
have that Pr(θ(0) ∈ Ci∗) > 0. Since the union of graphs
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corresponding to the set Ci∗ does not have a spanning tree,
then there exist at least two agents such that there is no
paths containing these two agents. Therefore we can find an
initial vector such that consensus is not reached implying
that we can find an ε such that Pr(Ak(ε)|θ(0) ∈ Ci∗) does
not converge to zero. As a consequence the state vector does
not converge to consensus almost surely since it does not
converge in probability to consensus.

Notice that the assumptions stated in Corollary 3.1 imply
that the matrices Fi are doubly stochastic matrices. Then
using results from [8] (i.e. versions of Lemmas 4.2 and 4.3
particularised for doubly stochastic matrices), the proof of
Corollary 3.1 follows.

Remark 4.3: The implications of modeling the communi-
cation flows between agents as Markovian random graphs
are more subtle then they may appear at first glance. In
[16], Salehi and Jadbabaie pointed out that in the case
of independent and identically distributed random graphs a
necessary and sufficient condition for reaching the agreement
space almost surely is that |λ2(E[F (k)])| < 1, where λ2 is
the second largest eigenvalue of E[F (k)] and F (k) is the
updating rule at time k. In the case of Markovian random
graphs a similar condition such as |λ2(E[Fθ(k)])| < 1, k ≥ 0
or |λ2(limk→∞E[Fθ(k)])| < 1 is not necessary. For example
consider a Markovian random graph Gθ(k) which can take
only two values {G1, G2}. Assume that the graphs G1 and
G2 have both three vertices. In the first graph node 1 and
2 are connected and in the second one nodes 2 and 3 are
connected. Clearly the union of G1 and G2 has a spanning
tree. Assume that the underlying Markov chain θ(k) of Gθ(k)
has the probability transition matrix

P =
(

0 1
1 0

)
.

Thus the process Gθ(k) oscillates between the two graphs at
each time instant. Choosing for instance to start with graph
G1 we get that

E[Fθ(k)]) =
{
F1 if k is odd
F2 otherwise

Clearly since G1 or G2 are not connected the multiplicity of
eigenvalue 1 of both F1 and F2 will not be one. Therefore
λ2(E[Fθ(k)]) < 1 will not hold for any k. Moreover, since
E[Fθ(k)] does not actually converge the previous condition
will not hold in the limit either.

V. CONCLUSION

In this paper we extended our previous work to the anal-
ysis of a stochastic consensus problem for a group of agents
with directed information flow, using a Markovian random
graph as model for the stochastic communication topology.
This model has a higher degree of generality (e.g. it includes
the i.i.d. random graphs models consider until know in the
literature) and also represents the more realistic situation.
We showed that a necessary and sufficient condition for the
state vector to converge to consensus almost surely consists

in having a spanning tree for each union of graphs in the sets
corresponding to the positive recurrent closed set of states of
the Markov chain. We also showed that average consensus
can be reached as well provided the graphs are undirected or
directed but balanced. Under the Markovian random graph
modeling, the dynamic stochastic equation determining the
evolution of the agents became a Markovian jump linear
system, which proved to be instrumental in showing the
almost sure convergence. Our analysis relied on several tools
from algebraic matrix theory, matrix theory and Markovian
jump linear systems theory.
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