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Abstract: Most higher order root finding methods require
evaluation of a function and/or its derivatives at one or multiple
points. There are cases where the derivatives of a given function
are costly to compute. In this paper, higher order methods which
do not require computation of any derivatives are derived. As-
ymptotic analysis has shown that these methods are approxima-
tions of root iterations. One of the main features of the proposed
approaches is that one can develop multi-point derivative-free
methods of any desired order. For lower order methods, these
correspond to the Newton, and Ostrowski iterations. Several ex-
amples involving polynomials and entire functions have shown
that the proposed methods can be applied to polynomial and non-
polynomial equations.
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1 Introduction

Let f be a polynomial of degree n with coefficients in C, where
C denotes the field of complex numbers, and assume that the
zeros of f are ξ1, · · · , ξn. There are many higher order methods
for computing zeros of the polynomial f . These methods may
be classified into one-point and multi-point zero-finding meth-
ods. In one-point zero-finding methods, new approximations in
each iteration are found by using the values of f and perhaps
its derivatives at only one point. In multi-point methods, new
approximations are obtained by using the values of f and some-
times its derivatives at a number of points. Newton’s and Halley’s
methods are examples of one-point methods, while the secant and
Muller’s methods are examples of multi-point methods. Analy-
sis related to one-point zero-finding methods appears in [1]-[2],
while multi-point methods are analyzed in [3]-[4]. Good treat-
ments of general root-finding methods can be found in [5]-[6] and
the references therein.

In this paper, we will analyze some known methods and con-
vert them into derivative-free methods. This conversion is based
on optimal approximation of derivatives using multi-point com-
putation of the original function. Other methods proposed in
this work are based on approximating the first and higher order
derivatives of log(f(z)), the natural logarithm of f(z). These
approximations are then utilized for developing derivative-free
multi-point root iteration methods.

The following notation will be used throughout. The sets IR
and C denote the fields of real and complex numbers, respectively.

If z ∈ C, then z = x + jy where x, y ∈ IR and j =
√
−1. The

number z∗ = x − jy is the complex conjugate of z. In this
presentation, it will be assumed that f is a polynomial of degree
n with simple zeros ξ1, · · · , ξn, unless stated otherwise.

For a given algorithm, the order of convergence is defined as
follows: Let zk be a sequence of complex numbers and λ ∈ C. If
there is a real number r ≥ 1 and a constant Cr ∈ IR, such that
|zk+1 − λ| ≤ Cr |zk − λ|r as k → ∞ whenever z0 is sufficiently
near λ, then the sequence zk is said to be order r convergent
to λ. If r = 1, we further require that Cr < 1 and we call Cr

the asymptotic linear convergence constant for the sequence if
it is the smallest such a constant. Alternatively, assume that
the sequence zk is generated by the fixed point iteration zk+1 =
Φ(zk) where Φ is analytic in a bounded neighborhood Vr of a
root ξ of a polynomial f having only simple roots. If for some ξ
we have Φ(ξ) = ξ, Φ′(ξ) = 0, · · · ,Φ(r−1)(ξ) = 0 and Φ(r)(ξ) 6= 0,
then the root-finding algorithm is at least rth order convergent.
Here, Φ′(z), Φ′′(z), Φ′′′(z), · · · , Φ(r)(z), denote the first, second,
third, and rth derivatives of Φ evaluated at the complex number
z. We also use the convention that Φ(k) = Φ if k = 0.

Most multi-point iterations have fractional order of conver-
gence, however it is often the case that one-point methods have
integer order of convergence. The following result provides con-
ditions for a given one-point iteration to be of a given order.

Theorem 1[7]. Let f be a polynomial of degree n with zeros
ξ1, · · · , ξn. Let g be analytic function in a neighborhood of ξk,
k = 1, · · · , n. Assume that each zero of f is simple. Then the

iteration Φ(z) = z − f(z)
g(z)

is rth order iff g(i)(ξj) =
f(i+1)(ξj)

i+1
for

j = 1, · · · , n and i = 0, · · · , r − 1. Hence if ξ is a simple zero of
f , then the Taylor expansion of g around z = ξ is given as:

g(z) =

r−1∑

k=0

f(k+1)(ξ)

(k + 1)!
(z − ξ)k + O((z − ξ)r) (1a)

Additionally, a method is of infinite order if

g(z) =

∞∑

k=0

f(k+1)(ξ)

(k + 1)!
(z − ξ)k =

f(z)

z − ξ
. (1b)

Hence if g can be expressed as

g = f ′ +

r−1∑

k=1

hkfk + O(fr), (1c)

where {hk}r−1
k=1

are analytic functions around neighborhoods of
the zeros of f , then Φ is at least rth order fixed point function.

Proof. A version of this result is stated in [7]. The proof follows
by showing that Φ(ξ) = ξ, and Φ(k)(ξ) = 0, for k = 1, · · · , r − 1.
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2 Review of Some Zero-Finding Meth-
ods

To understand the derivation and convergence behavior of dif-
ferent methods, a brief review of well-known methods [8]-[12] is
given in this section. Newton’s method and many of its vari-
ations are quadratically convergent, while Halley’s, Chebyshev,
the square root iteration, Laguerre, and Euler methods are cu-
bically convergent. Derivations and new perspective regarding
some of these methods, and other multi-point methods are high-
lighted.

The Secant Method: This is a two-point iteration and is given
by

zk+1 = zk −
f(zk)(zk − zk−1)

f(zk) − f(zk−1)
. (2)

This corresponds to interpolating the equation y = f(z) using
the straight line between the points (zk , f(zk)), (zk−1, f(zk−1)),
where zk−1 and zk are approximations of a zero of f . The next
iterate is now given by the root of the equation y = 0. This yields
the recurrence relation (2).

Muller’s Method: In this method, three points are used to
locally fit a parabola to approximate a function f . New ap-
proximations are obtained from the intersection of the parabola
with the z-axis. The three initial values needed are denoted as
zk, zk−1 and zk−2. The parabola passes through the three points
(zk, f(zk)), (zk−1, f(zk−1)) and (zk−2, f(zk−2)), may be written
as y = az2 + bz + c, for some a, b, c ∈ C. The next iterate is now
given by the root of a quadratic equation y = 0.

Newton’s Method: Newton’s method and many of its varia-
tions are quadratically convergent. It is derived from the Taylor
expansion of f : f(zk) = f(ξ)+(zk −ξ)f ′(zk)+O(zk−ξ)2, where
zk is an approximation of a zero ξ of f . The iteration formula
for the Newton’s method is

zk+1 = zk −
f(zk)

f ′(zk)
. (3)

Note that the secant method follows from Newton’s method by

replacing f ′(zk) with the quotient
f(zk)−f(zk−1)

zk−zk−1
.

Halley’s Method: This is a cubically convergent method for
computing simple zeros of f . The iteration formula for the Hal-
ley’s method is

zk+1 = zk −
f(zk)

f ′(zk) − f(zk)f ′′(zk)
2f ′(zk)

. (4)

There are many approaches in the literature for the derivation of
Halley’s method. As shown in [13], Halley’s method can be ob-

tained by applying Newton’s method to the function f√
f ′ . Ger-

lach [14], gives a generalization of this approach.

It is interesting to note that Halley’s method can also be de-
rived using the generalized Taylor expansion. The first few terms
of the generalized Taylor expansion [15] is given by

f(z) = f(a) +
z − a

2
(f ′(a) + f ′(z)) −

(z − a)3

12
f ′′′(θ). (5)

where θ is between a and z. Hence, if a = ξ is a zero of f ,
i.e.,f(ξ) = 0, then

ξ ≈ Φ(z) = z −
2f(z)

f ′(ξ) + f ′(z)
. (6a)

Theorem 1 may be used to show that this implicit iteration is
third order. Clearly, if it is assumed that f(ξ) = 0 and f ′(ξ) = 1,
the following third order iteration will be obtained

Φ(z) = z −
2f(z)

1 + f ′(z)
. (6b)

Generally, f ′(ξ) 6= 1 and thus we may consider the function g =
f
f ′ . Then g′ = f ′2−ff ′′

f ′2 , i.e., g′(ξ) = 1 provided that ξ is a simple

zero of f . Consequently, the iteration function (6b) for solving
g(z) = 0 simplifies to

Φ(z) = z −
2

f(z)
f ′(z)

1 +
f ′(z)2−f(z)f ′′(z)

f ′(z)2

= z −
f(z)

f ′(z) − f(z)f ′′(z)
2f ′(z)

(6c)

which is the Halley’s iteration. Up to the author knowledge these
derivations of Halley’s method using the generalized Taylor ex-
pansion are not discussed in the literature.

Another version of Halley’s iteration also follows from (6a) by

replacing f ′(ξ) with h(z) = f ′(z − f(z)
f ′(z)

), where z − f(z)
f ′(z)

is the

Newton’s approximation of ξ. Clearly the first few terms of the

Taylor expansion of h around z is h(z) = f ′(z) − f(z)f ′′(z)
f ′(z)

+

O(f(z)2).

Ostrowski’s and Root Iteratons: Ostrowski’s method is an-
other cubically convergent iteration and is also known as the
square root iteration [5]. The square root iteration has been gen-
eralized in [16] to obtain radical methods of any desired order.

Root iterations are based on the observation that if f(z) =
Πn

k=1(z − ξk), then

{
f ′(z)

f(z)
}(r) = r!(−1)r

n∑

k=1

1

(z − ξk)r+1
. (7)

Thus if r = 1 and z is sufficiently close to a zero ξ of f , then
higher order logarithmic derivatives of f can be expressed as:

{
f ′(z)

f(z)
}′ = −

n∑

k=1

1

(z − ξk)2
≈

−1

(z − ξ)2
, (8)

or equivalently

f ′(z)2 − f(z)f ′′(z)

f(z)2
≈

1

(z − ξ)2
. (9)

By solving (9) for ξ and setting zk+1 = ξ, it follows that

zk+1 = zk −
f(zk)√

f ′2(zk) − f(zk)f ′′(zk)
, (10)

which is the square root iteration.
Generally, if z is close to ξ, (7) implies that

1

r!
(−1)r{

f ′(z)

f(z)
}(r) ≈

1

(z − ξ)r+1
. (11)

From (11), an (r + 1) root iteration can be expressed as

Φ(z) = z −
1

r+1

√
1
r!

(−1)r{ f ′(z)
f(z)

}(r)

. (12)

For r = 2, (12) simplifies to

φ(z) = z −
f(z)

3
√

f ′(z)3 − 3
2
f(z)f ′(z)f ′′(z) + 1

2
f(z)2f ′′′(z)

, (13)

which is a fourth order iteration [16].
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An Example: Consider the entire function f(z) = sin(z), then
f ′(z) = cos(z), f ′′(z) = − sin(z), f(0) = 0 and f ′(0) = 1. By
applying (6b) we obtain

zk+1 = zk −
2 sin(zk)

1 + cos(zk)
,

= zk −
2 sin( zk

2
) cos( zk

2
)

cos2( zk
2

)
,

= zk −
2 sin( zk

2
)

cos( zk
2

)
,

= zk − 2 tan(
zk

2
).

Note that if the Halley’s method is applied, the following iteration
will follow

zk+1 = zk − cos(zk) sin(zk) = zk −
1

2
sin(2zk).

Using the square root iteration, we obtain

zk+1 = zk − sin(zk).

This shows that there are many ways of developing third order
iterations for the same equation.

3 Derivative-Free Higher Order Meth-
ods

Let h ∈ C such that h 6= 0 and |h| is sufficiently small. Let f be
a polynomial of degree n and consider the function F2 defined as

F2(z, h) = f(z + h)f(z − h) − f(z)2. (14)

Clearly, F2 is an even function of h and hence it can easily be
verified that F2(x, h) = G2(z, h2) for some function G2. From
the Taylor expansion of f(z +h) and f(z−h) around z it follows
that

F2(z, h) = f(z + h)f(z − h) − f(z)2

= −h2(f ′(z)2 − f(z)f ′′(z)) + O(h4),
(15)

and therefore, one can show that

−h2f(z)2

F2(z, h)
=

f(z)2

f ′(z)2 − f(z)f ′′(z)
+ O(h2). (16)

Now considering the expression f2

f ′2−ff ′′ and comparing that

with the term in Ostrowski method, we obtain

φ(z) = z −
hf(z)

2
√

f(z)2 − f(z + h)f(z − h)
, (17)

which is an approximated square root iteration. Specifically, it
can be shown that (17) is asymptotically of order 3 as h → 0.
The main advantages of this iteration is that it only requires
function computation at three points z, z + h, z −h, and without
calculating any derivatives.

An asymptotically fourth order method that does not in-
volve computation of derivatives may be derived as follows. Let
F3(z, h) = f(z + h)f(z + wh)f(z + w2h) − f(z)3, where w is a

primitive cube root of 1, i.e., ω = −1+j
√

3
2

, or ω = −1−j
√

3
2

. It

is easy to verify that F3(z, h) = F3(z, wh) = F3(z, w2h). This
implies that F3(z, h) = G3(z, h3) for some function G3. Using
this symmetric property and after algebraic simplifications, the
expression F3(z, h) = f(z + h)f(z + wh)f(z + w2h) − f(z)3 can
be written as

F3(z, h) = h3(f ′(z)3 −
3

2
f(z)f ′(z)f ′′(z)+

1

2
f(z)2f ′′′(z))+O(h6)

(18)

or F3(z, h) = 1
2
f(z)3(

f ′(z)
f(z)

)′′h3 + O(h6). Thus using the root

iteration formula (12) with r = 3, we obtain

φ(z) = z −
hf(z)

3
√

f(z + h)f(z + wh)f(z + w2h) − f(z)3
, (19)

which is asymptotically a fourth order iteration near a simple
zero of f .

A generalization of the above observations to multi-point ver-
sion of the root iteration is given in the next result.

Theorem 2. Let w be a primitive r-th root of 1, and consider
the following function

Fr(z, h) = f(z+h)f(z +wh)f(z +w2h) · · · f(z +wr−1h)−f(z)r ,
(20a)

Then Fr(z, h) can be written as

Fr(z, h) = f(z)r − hr{
∑

(z − zk1)r · · · (z − zkn−1)r}

+ h2r{
∑

(z − zk1)r · · · (z − zkn−2)r} + · · ·

hr(n−1){
∑

(z − zk)r} + (−1)nhrn,

(20b)

where {k1, · · · , kr} is an rth order combination of the set of in-
tegers {1, 2, · · · , n}.

Proof: Assume that f(z) = (z − ξ1)(z − ξ1) · · · (z − ξn), then for
each 1 ≤ k ≤ n there holds:

f(z + wkh) = (z + wkh − ξ1)(z + wkh − ξ1) · · · (z + wkh − ξn).

Therefore,

Fr(z, h) = Πn
k=1{(z − ξk)r − hr} − f(z)r ,

from which (20b) follows. Clearly, Fr(z, h) = Fr(z, wh) =
Fr(z, w2h) · · · = Fr(z,wr−1h). Consequently, Fr(z, h) =
Gr(z, hr) for some function Gr . This implies that

Fr(z, h)

f(z)r
=

Πn
k=1{(z − ξk)r − hr} − f(z)r

f(z)r

= −hr

n∑

k=1

1

(z − ξk)r
+ O(h2r),

and hence

±
n∑

k=1

1

(z − ξk)r
=

Fr(z, h) − f(z)r

hrf(z)r
+ O(hr).

The ± depends on whether r is even or odd.
Recall that if f(z) = Πn

k=1(z − ξk), then

{
f ′

f
}(r) = r!(−1)r

n∑

k=1

1

(z − ξk)r+1
.

This shows that

{
f ′

f
}(r) = Kr

n∑

k=1

1

(z − ξk)r
=

Fr(z, h) − f(z)r

hrf(z)r
+ O(hr), (21)

for some constant Kr which is a function of r.

4 Derivative Approximations

The first order derivative of f may be approximated using for-
ward, backward, or central differences. It is known that forward,
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backward differences are of order O(ε) while the central difference
approximation is of order O(ε2). Specifically, forward, backward,
and central differences are respectively given by:

f(z) − f(z − ε)

ε
= f ′(z) + O(ε), (22a)

f(z + ε) − f(z)

ε
= f ′(z) + O(ε), (22b)

f(z + ε) − f(z − ε)

2ε
= f ′(z) + O(ε2). (23c)

4.1 Two-Point Approximation

For two-point approximation of f ′(z), it can be shown that the
approximation

f ′(z) ≈
f(z + ε) − f(z − ε)

2ε
, (23d)

is optimal in the sense that if

f ′(z) = α1f(z + h1ε) + α2f(z + h2ε) + O(ε2)

for some nonzero numbers α1, α2, h1, h2, h1 6= h2, then α1 = −α2

and h1 = −h2. By using the Taylor expansions of f(z +h1ε) and
f(z + h2ε) around z, it follows that

α1 + α2 = 0,

α1h1 + α2h2 = 1,

α1h2
1 + α2h2

2 = 0.

(24)

The sysyem of equations in (24)implies that

α2 = −α1,

h2
1 = h2

2,

α1(h1 − h2) = 1.

(25)

Therefore, acceptible solutions are h2 = −h1, α2 = −α1 = − 1
2h1

.

Note that we can not obtain a higher order two-point approxi-
mation of the form

f ′(z) = α1f(zk + h1ε) + α2f(z + h2ε) + O(εr)

where r is a positive integer such that r ≥ 3. In this case, the
following equation must hold (if r = 3):

α1h3
1 + α2h3

2 = 0. (26)

This equation along with the third equation of (25) imply that
α2h2

2(h1 − h2) = 0 which yields α2 = 0, h2 = 0, or h1 = h2.
Each of these solutions is unacceptible since they contradict the
solutions of the three equations in (24). This shows that opti-
mal two-point approximation of f ′ is second order. From this
observation one may assume that

α1h3
1 + α2h3

2 = γ, (27)

where γ is any nonzero complex number. By incorporating (27)
into (24), we obtain 2α1h3

1 = γ and 2α1h1 = 1. These two

equations show that h2
1 = h2

2 = γ. Thus h1 = −h2 = 1√
γ

and

α1 = −α2 = 1
2
√

γ
. Consequently, a second order approximation

of f ′ has the form

f ′(z) =
f(z +

√
γε) − f(z −√

γε)

2
√

γε
+ O(ε2). (28)

An alternative method for determining h1 and h2 is by noting
that h1 and h2 must satisfy a second order polynomial equation
h2 + a1h + a2 = 0 where a1, a2 are obtained as:

[
0 1
1 0

]−1 [
0
γ

]
=

[
−a2

−a1

]
(29)

where γ = α1h3
1 + α2h3

2. Thus

[
−a2

−a1

]
=

[
γ
0

]
. This shows that

h1, h2 satisfy the second order equation h2 − γ = 0. The last
equation has two solutions h1 = −h2 = 1√

γ
and α1, α2 can be

determined from solving the following system

[
1 1
h1 h2

] [
α1

α2

]
=

[
0
1

]
. (30)

Note that exact derivatives will be obtained if (28) is applied to
polynomials of degree at most 2.

4.2 Three-Point Approximation

The second approach can be easily generalized for three-point
approximation of first order derivative as follows. Let a three-
point approximation be given by

f ′(z) =

3∑

k=1

αkf(z + hkε) + O(εr). (31)

The objective is to find h1, h2, h3 and α1, α2, α3, and the highest
integer r such that the hk’s are distinct and each of αk is nonzero.
The Taylor expansion of (31) around z leads to the following
equations:

α1 + α2 + α3 = 0,

α1h1 + α2h2 + α3h3 = 1,

α1h2
1 + α2h2

2 + α3h2
3 = 0,

α1h3
1 + α2h3

2 + α3h3
3 = 0,

α1h4
1 + α2h4

2 + α3h4
3 = γ1,

α1h5
1 + α2h5

2 + α3h5
3 = γ2.

(32)

The optimal order of approximation can be determined first since
the case where γ1 = 0 implies that

H =

[
h2
1 h2

2 h2
3

h3
1 h3

2 h3
3

h4
1 h4

2 h4
3

]

is singular. Since the determinant |H| is given by

|H| = h2
1h2

2h2
3(h2 − h1)(h3 − h2)(h3 − h1),

it follows that H is nonsingular if and only if h1, h2, h3 are
nonzero distinct numbers. This shows that γ1 can not be zero
and consequently r = 3. Now assuming that r = 3 and γ1, γ2

are arbitrary complex numbers such that γ1 6= 0, then h1, h2, h3

must solve the equation h3+a1h2+a2h+a3 = 0, where a1, a2 , a3

are determined from the following equation

[
0 1 0
1 0 0
0 0 γ

]−1 [
0
γ1

γ2

]
=

[
−a3

−a2

−a1

]
, (33)

or [
a3

a2

a1

]
= −

[
0 1 0
1 0 0
0 0 1

γ1

][
0
γ1

γ2

]
= −

[
γ1

0
γ2
γ1

]
. (34)

This shows that h1, h2, h3 satisfy the equation

h3 −
γ2

γ1
h2 − γ1 = 0. (35)

Since γ1, γ2 are arbitrary complex numbers such that γ1 6= 0, one
may assume for convenience that γ2 = 0, and γ1 = γ3 for some
γ 6= 0, then h1, h2, h3 satisfy the third order equation h3−γ3 = 0,
i.e, h = γ,wγ,w2γ, where w is a primitive cube root of 1, (i,e.,
w3 = 1, and w 6= 1). Thus the corresponding values of α1, α2

and α3 are determined from the system
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[
1 1 1
h1 h2 h3

h2
1 h2

2 h2
3

][
α1

α2

α3

]
=

[
0
1
0

]
. (36)

Hence
[

α1

α2

α3

]
=

[
1 1 1
h1 h2 h3

h2
1 h2

2 h2
3

]−1 [
0
1
0

]
=




1
3γ

w2

3γ
w
3γ


 . (37)

Consequently a third order approximation for f ′(z) is given by

f ′(z) =
1

3γ
f(z + γε) +

w2

3γ
f(z + γwε)

+
w

3γ
f(z + γw2ε) + O(ε3).

(38)

As indicated earlier, this approximation is not unique in that it
depends on the parameter γ. Generally one may obtain a two
parameter approximation of f ′ by assigning different values of γ1

and γ2.

Remark: The cubic equation (35) can be solved using Cardano’s
formula [17] or any other cubic equation solver. However, the
main characterstics of (35) is that if h1, h2, h3 are its zeros then
h1h2 + h1h3 + h2h3 = 0. Thus one may choose γ1 and γ2 so
as to guarantee that h1, h2, h3 are real. Choosing real values of
h1, h2, h3 makes it more convenient and more efficient for approx-
imating derivatives using real arithmetic. Thus, assuming that h1

and h2 are real numbers such that h1+h2 6= 0, then h3 = −h1h2
h1+h2

.

This implies that γ1 =
−h2

1h2
2

h1+h2
and γ2 =

h2
1+h1h2+h2

2
h1+h2

.

4.3 Four-Point Approximation

Similar analysis may be applied to derive a four-point approxi-
mation of first order derivative as follows. Let a four-point ap-
proximation be given by

f ′(z) =

4∑

k=1

αkf(z + hkε) + O(εr). (39)

Taylor expansion will be used to find h1, · · · , h4 and α1, · · · , α4

and the highest integer r such that the hk’s are distinct and
each of αk is nonzero. As in the three-point case, h1, h2, h3, h4

must solve the equation h4 + a1h3 + a2h2 + a3h + a4 = 0, where
a1, a2 , a3, a4 are determined from the following equation




0 1 0 0
1 0 0 0
0 0 0 γ1

0 0 γ1 γ2




−1 


0
γ1

γ2

γ3


 =




−a4

−a3

−a2

−a1


 , (40)

or




a4

a3

a2

a1


 = −




0 1 0 0
1 0 0 0
0 0 −γ2

γ2
1

1
γ1

0 0 1
γ1

0







0
γ1

γ2

γ3


 = −




γ1

0
γ3
γ1

− γ2
2

γ2
1

γ2
γ1


 .

(41)
This shows that h1, h2, h3, h4 satisfy the equation

h4 −
γ2

γ1
h3 + (

γ3

γ1
−

γ2
2

γ2
1

)h2 − γ1 = 0. (42)

Since γ1, γ2, γ3 are arbitrary complex numbers such that γ1 6= 0,
one may assume for convenience that γ2 = γ3 = 0, and γ1 = γ4

for some γ 6= 0, then h1, h2, h3, h4 satisfy the quartic equation

h4 − γ4 = 0, i.e, h = γ, wγ,w2γ, w3γ, where w is a primitive
4th root of 1, (i,e., w4 = 1, and w 6= 1, w = ±j). Thus the
corresponding values of α1, α2, α3 and α4 are determined from
the system




1 1 1
h1 h2 h3 h4

h2
1 h2

2 h2
3 h2

4
h3
1 h3

2 h3
3 h3

4







α1

α2

α3

a4


 =




0
1
0
0


 . (43)

This implies that




α1

α2

α3

α4


 =




1 1 1 1
γ jγ −γ −jγ
γ2 −γ2 γ2 −γ2

γ3 −jγ3 −γ3 jγ3




−1 


0
1
0
0


 =




1
4γ
−j
4γ
−1
4γ
j
4γ


 . (44)

Consequently the fourth order approximation for f ′(z) is given
by

f ′(z) =
1

4γ
f(z + γε) −

j

4γ
f(z + γjε) −

1

4γ
f(z − γε)

+
j

4γ
f(z − jγε) + O(ε4).

(45)

Finally, one can show that

f ′(z) =
1

5γ
f(z + γε) +

w4

5γ
f(z + γwε) +

w3

5γ
f(z + w2γε)

+
w2

5γ
f(z + w4γε) +

w

5γ
f(z + w4γε) + O(ε5),

(46)

is a five-point approximation for f ′(z) of order five. Here w is a
primitive 5th root of 1, γ, and ε are nonzero numbers.

5 Multi-Point Approximation of f ′′(z)

The ideas of the previous sections can be generalized to derive
multi-point approximations of f ′′(z), i.e., to find the parameters
hk’s, αk ’s and r in the following

f ′′(z) =

N∑

k=1

αkf(z + hkε) + O(εr), (47)

for some desired integer N . For example if w is a primitive cube
root of 1 and N = 3, then

f ′′(z) =
2

3γ2
f(z + γε) +

2w

3γ2
f(z + γwε)

+
2w2

3γ2
f(z + w2γε) + O(ε3),

(48)

is a three-point approximation of f ′′(z). As in the previous sec-
tions, the parametrers hk’s, and αk’s can be chosen to be real.
This will be analyzed in upcoming article.

6 Multi-Point Zero-Finding Methods

One application of multi-point approximation of derivatives, is to
modify existing methods such as Halley’s and Ostrowski’s meth-
ods as shown in the following formulas, respectively:

Φ(z) = z−
f(z)

∑N

k=1
αkf(z + hkε) −

f(z)
∑

N

k=1
αkf(z+hkε)

2
∑

N

k=1
βkf(z+lkε)

, (49)
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and

Φ(z) = z−
f(z)√

(
∑N

k=1
αkf(z + hkε))2 − f(z)

∑N

k=1
βkf(z + lkε)

. (50)

Here N is a positive integer greater than 2, the expressions∑N

k=1
αkf(z+hkε), and

∑N

k=1
βkf(z+lkε), are N-point approxi-

mations of f ′(z) and f ′′(z) for some coefficients hk, lk, αk , βk, k =
1, · · · ,N .

7 Examples

We present here two examples to show that the proposed methods
can also be applied to entire functions. Let f(z) = sin(z), then

f(z)2 − f(z + h)f(z − h) = sin(z)2 − sin(z + h) sin(z − h)

= sin(z)2 − sin(z)2 cos(h)2 + cos(z)2 sin(h)2 = sin(h)2.

Therefore, a third order iteration can be obtained as:

Φ(z) = z −
h sin(z)√

sin(h)2
= z −

sin(z)

sinc(h)

if h > 0. Here sinc(h) =
sin(h)

h
for h 6= 0 and sinc(0) = 1.

Similarly, if f(z) = cos(z), then

f(z)2 − f(z + h)f(z − h) = cos(z)2 − cos(z + h) cos(z − h)

= cos(z)2 − cos(z)2 cos(h)2 + sin(z)2 sin(h)2 = sin(h)2.

A third order iteration can be obtained as:

Φ(z) = z −
h cos(z)√

sin(h)2
.

It is interesting to note that the expression f(z)2 − f(z +
h)f(z − h) is independent of z. This property for polynomials
holds only for polynomials of degree 1 or less.

It should also be noted that as h → 0 the ratio h√
sin(h)2

→

±1. Consequently, these iterations for the equations sin(z) = 0
and cos(z) = 0 redue to the square root iteration applied to these
equations.

8 Conclusion

A multi-parameter derivative-free family of methods for finding
simple zeros of nonlinear equations is presented. The approxi-
mation approach is carried out by approximating the logarithmic
derivative of polynomials. Newton, Ostrowski, and higher order
root iteration developed by the author in [16] are seen as special
cases of the family. Additionally, an optimal method is given
for developing multi-point approximation of first and higher or-
der derivatives. Thus, by utilizing multi-point approximation of
derivatives, one-point higher order methods can be converted to
multi-point methods. Preliminary numerical computation, which
will be included in the final version, indicated that the multi-
point methods described in (17) and (19) converge fast when
applied to polynomial equations. There are some adjustments
that need to be made regarding which square or cubic root is to
be chosen.
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