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Abstract— This paper presents for the first time a fault
detection and identification technique for bimodal piecewise
affine (PWA) systems. A Luenberger-based observer structure
is applied to the state estimation problem of the PWA system.
The unknown value of the fault parameter is estimated by
an observer equation obtained from a Lyapunov function.
The design procedure is formulated as a set of linear matrix
inequalities (LMIs) and guarantees global asymptotic stability
of the estimation error, provided the norm of the input is upper
and lower bounded by positive constants. The proposed method
is applied to estimation of the amount of partial loss in control
authority for a PWA model of a wheeled Mobile Robot (WMR).

I. INTRODUCTION

Increasing reliability of modern complex systems has re-

ceived much attention for the past two decades [1], [6]. This

interest has spurred a growing demand for fault detection

and identification (FDI) in complex systems. Most of the

present FDI methods can only address linear systems [1],

[6]. However, most of complex dynamical systems exhibit

nonlinear behavior. Unfortunately, the FDI methods which

are synthesized for linear models of nonlinear systems are

valid only within a small range around the equilibrium point

about which the system is linearized. This creates the need

for FDI methods that can work at a more global scale. In

this paper, complex nonlinear systems are approximated by

PWA models.

The theory of continuous-time PWA systems has been

applied to several different systems, such as, production

systems [2], aerospace systems [3], wheeled robots [4] and

electric circuits [5]. PWA systems are a class of hybrid

systems and are a good modeling framework for nonlinear

phenomena. Each mode of the PWA system approximates

the nonlinear phenomena by linear or affine dynamics when

the switching state is in a certain range. Using a PWA

model of a complex nonlinear system enables the designer to

have a global approximation and to use it for detection and

identification of a fault. The type of fault which is studied in

this paper is partial loss of control authority, which is widely

used to model the faults in actuators [6]. State observer

design for general PWA systems was first considered in

[7] and later addressed for PWA bimodal systems in [8].

Our paper builds on these previous methods and proposes

for the first time a state and fault parameter observer for

bimodal PWA systems. The observer design is cast as a

set of Linear Matrix Inequalities (LMIs) and solved with

SeDuMi/YALMIP [9]. The design technique is applied to an

FDI problem for a WMR. It is observed that the occurrence

of a fault is detected and the amount of fault is estimated

accurately.

The paper is organized as follows. First the system and

observer structure are introduced. Then, the observer design

method is developed. Finally, a numerical example is pre-

sented, followed by conclusions.

II. SYSTEM AND OBSERVER STRUCTURE

Consider a bimodal PWA representation for a system with

partial loss of control authority and the corresponding state

space partitioning:
{

ẋ(t) = A1x(t) + B1ρu(t) + m1 ∀x ∈ R1

y(t) = C1x(t)

{

ẋ(t) = A2x(t) + B2ρu(t) + m2 ∀x ∈ R2

y(t) = C2x(t)

(1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

k is the

input to the system. The vector mi ∀ i ∈ {1, 2} is the affine

term for each PWA model. The actual input might be reduced

by a coefficient matrix ρ due to faults in the system. The

diagonal matrix ρ is composed of unknown values of partial

loss of control authority for j ∈ {1, 2, ..., k} actuators in the

system yielding a faulty input

uF
j (t) = ρjuj(t)

ρ = diag[ρ1, ρ2, ..., ρk]
(2)

PWA slab systems switch among affine models based on

variations of one state variable in the system. State space

partitioning can be described by ellipsoidal cell boundings

for PWA slab systems as

ǫi = {x | ‖ Eix + fi ‖< 1} (3)

More precisely, if Ri = {x | d1 < cT
i x < d2}, then

the associated ellipsoidal covering is described by E i =
2cT

i /(d2−d1) and fi = −(d2 +d1)/(d2−d1). The structure

of the proposed observer is as follows,

∀x̂ ∈ R1

{

˙̂x(t) = A1x̂(t) + B1ρ̂(t)u(t) + m1 + G1(ŷ(t) − y(t))
ŷ(t) = C1x̂(t)

∀x̂ ∈ R2

{

˙̂x(t) = A2x̂(t) + B2ρ̂(t)u(t) + m2 + G2(ŷ(t) − y(t))
ŷ(t) = C2x̂(t)

(4)
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Depending on the initial conditions of the system and the

observer they might or might not work in the same mode.

Therefore, the dynamics of the estimation error of the

observer e(t) = x̂(t) − x(t) can be divided in four different

cases,

Case 1: ∀x ∈ R1, ∀x̂ ∈ R1

ė(t) = (A1 + G1C1)e(t) +

k
∑

j=1

b1j ρ̃j(t) uj(t) (5)

Case 2: ∀x ∈ R1, ∀x̂ ∈ R2

ė(t) =(A2 + G2C2)e(t)

+ m2 − m1 + [(A2 − A1) + G2(C2 − C1)]x(t)

+ (B2 − B1)ρu(t) +

k
∑

j=1

b2j ρ̃j(t) uj(t)

(6)

Case 3: ∀x ∈ R2, ∀x̂ ∈ R1

ė(t) =(A1 + G1C1)e(t)

+ m1 − m2 + [(A1 − A2) + G1(C1 − C2)]x(t)

+ (B1 − B2)ρu(t) +
k

∑

j=1

b1j ρ̃j(t) uj(t)

(7)

Case 4: ∀x ∈ R2, ∀x̂ ∈ R2

ė(t) = (A2 + G2C2)e(t) +

k
∑

j=1

b2j ρ̃j(t) uj(t) (8)

where ρ̃(t) = ρ̂(t) − ρ and bji corresponds the ith column

of the Bj matrix.. The next theorem presents a result on the

stability of the state and fault estimation errors.

Theorem 1: Assume ǫ < |u(t)| < ū for all t where

ǫ, ū > 0 and that the real amount of fault does not change

during the estimation procedure. The observer state estima-

tion error and fault estimation error ρ̃(t) = ρ̂(t) − ρ are

globally asymptotically stable if there exist positive definite

matrices P = P T > 0 and Q = QT > 0, observer gains

G1, G2, multipliers λ1, λ2 > 0 and fixed positive constants

li = 1, . . . , k such that the following matrix inequalities are

satisfied and the estimation laws for the fault parameter have

the following structure (for each ith actuator):

∀x ∈ R1, ∀x̂ ∈ R1

(A1 + G1C1)
T P + P (A1 + G1C1) + Q ≤ 0

˙̃ρi(t) = −lie
T (t)Pb1iui(t)

(9)

∀x ∈ R1, ∀x̂ ∈ R2
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≤ 0

(10)
˙̃ρi(t) = −lie

T (t)Pb2iui(t) − lie
T (t)P∆b2iρiρ̃

−1

i (t)ui(t)

∀x ∈ R2, ∀x̂ ∈ R1
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(11)
˙̃ρi(t) = −lie

T (t)Pb1iui(t) − lie
T (t)P∆b1iρiρ̃

−1

i (t)ui(t)

∀x ∈ R2, ∀x̂ ∈ R2

(A2 + G2C2)
T P + P (A2 + G2C2) + Q ≤ 0

˙̃ρi(t) = −lie
T (t)Pb2iui(t)

(12)

where Π2 = (A2 + G2C2)
T P + P (A2 + G2C2) ,

Ξ2 = (∆A + G2∆C), ∆A = A1 − A2, ∆B = B1 − B2,

∆C = C1 − C2.

Proof:

Assuming that the real amount of fault does not change

during the estimation procedure then ˙̃ρ(t) = ˙̂ρ(t). We

consider a candidate Lyapunov function of the form

V = eT (t)Pe(t) +

k
∑

i=1

ρ̃2

i (t)

li
(13)

This function is positive definite because P > 0 and li >
0, i = 1, . . . , k. Therefore, to prove asymptotic stability,

it suffices to show that the derivative of V with respect to

time is negative semi-definite and then we use La Salle’s

argument. To do this, we enforce that

V̇ + eT (t)Qe(t) ≤ 0, (14)

where Q > 0 is a tuning performance parameter, yielding

ėT (t)Pe(t)+eT (t)P ė(t)+2

k
∑

i=1

˙̃ρi(t)ρ̃i(t)

li
+eT (t)Qe(t) ≤ 0

(15)
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Replacing the estimation error dynamics (5), (6), (7) and

(8) into (15) yields the following four cases:

Case 1: ∀x ∈ R1, ∀x̂ ∈ R1

eT (t)[(A1 + G1C1)
T P + P (A1 + G1C1) + Q]e(t)

+ 2

k
∑

i=1

eT (t)Pb1iρ̃i(t)ui(t) + 2

k
∑

i=1

˙̃ρi(t)ρ̃i(t)

li
≤ 0

(16)

The last two terms in equation (16) cancel out each other if
˙̃ρi(t) has the following structure:

˙̃ρi(t) = −lie
T (t)Pb1iui(t) (17)

This yields

[(A1 + G1C1)
T P + P (A1 + G1C1) + Q] ≤ 0 (18)

Case 2: ∀x ∈ R1, ∀x̂ ∈ R2

eT (t)[(A2 + G2C2)
T P + P (A2 + G2C2) + Q]e(t)

+ xT (t)[−∆A − G2∆C]T Pe(t)

+ eT (t)P [−∆A − G2∆C]x(t)

− ∆mT Pe(t) − eT (t)P∆m + 2

k
∑

i=1

˙̃ρi(t)ρ̃i(t)

li

+ 2

k
∑

i=1

eT (t)Pb2iρ̃i(t)ui(t) − 2

k
∑

i=1

eT (t)P∆biρiui(t)

(19)

The suggested structure for ˙̃ρi(t) in Case 2 is:

˙̃ρi(t) = −lie
T (t)Pb2iui(t) + lie

T (t)P∆biρiui(t) (20)

From the fact that for case 2, the state of the system x is

in R1 and the state of the observer x̂ is in R2, one obtains

1

2
(E1x + f1)

T (E2x̂ + f2) +
1

2
(E2x̂ + f2)

T (E1x + f1) < 1

(21)

The S-procedure method is now applied yielding the

following matrix inequality:
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


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≤ 0

(22)
˙̃ρi(t) = −lie

T (t)Pb2iui(t) − lie
T (t)P∆b2iρiρ̃

−1

i (t)ui(t)
The procedure for the proof of matrix inequalities (11) and

(12) is similar to the proof of (9) and (10), respectively.

This yields V̇ ≤ 0. Using La Salle’s theorem, we can see

that the trajectories will converge to the largest invariant set

for which V̇ = 0. But V̇ = 0 if and only if e = 0. If e = 0,

since the control input has bounded norm, then the equations

for ˙̃ρ in the four different cases yield ˙̃ρ = 0, which implies ρ̃
will be constant. This constant value must be zero from the

error dynamics (5), (6), (7) and (8) because 0 < ǫ < |u(t)|,
or otherwise, e �= 0, which would be a contradiction to La

Salle’s argument.

�

Remark: Notice that one needs the assumption that the

control input will not be zero while detecting the fault. This

assumption is needed for La Salle’s argument in the proof

and it physically corresponds to a persistent excitation.

In order to represent the matrix inequalities (9), (10), (11)

and (12) in a convex form, new variables W1 and W2 are

defined as:
W1 = PG1

W2 = PG2

(23)

The new variables for the 4 cases yield the following LMIs
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Fig. 1. Schematic of the Wheeled Mobile Robot (WMR)

Case 4:

AT
2
P + PA2 + W2C2 + CT

2
WT

2
+ Q ≤ 0 (27)

To design the observer gains, the following convex problem

will be solved.

Definition 2.1: (Design Problem) For fixed ǫ > 0,

min η
s.t. η > 0, ǫI < P < ηǫI

(24), (25), (26), (27)

From the solution to this problem one gets G1 = P−1W1

and G2 = P−1W2.

III. EXAMPLE: FAULT DETECTION AND IDENTIFICATION

IN A WMR

In this section, a dynamical model of a WMR is used as

an example. The WMR is shown in Fig. 1 and is assumed

to be rigid and to be driven by a torque T to control the

heading angle ψ of the WMR. The forward velocity u0 is

in the direction of the X-body axis and it is assumed to

be already made constant by the proper design of a cruise

controller. The heading angle of the WMR ψ is measured

from the positive X-axis in the inertial frame. The kinematic

equations of the WMR are

ẏ = u0 sinψ

ψ̇ = R
(28)

The dynamic equation of the WMR is

Ṙ =
1

I
T (29)

where T is the torque generated by the DC motors and is the

input to the system. The moment of inertia of the WMR with

respect to the center of mass is represented by I = 1 kg.m2

In this paper, it is desired that the WMR follows the path

y = 0. The above differential equations are cast in matrix

form as follows





ẏ

ψ̇

Ṙ



 =


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0 0 0
0 0 1
0 0 0


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
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
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0
0


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
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0
0
1



T (30)

Piecewise-affine models of the system are derived for the

following state-space partitioning

Fig. 2. Fault detection and identification in WMR actuator tf = 2(s), ρ =
0.3

Fig. 3. Fault detection and identification in WMR actuator tf = 2(s), ρ =
0.1

R1 = {x ∈ R
3 | x2 ∈ (−

π

2
,
π

2
)}

R2 = {x ∈ R
3 | x2 ∈ (

π

2
,
3π

2
)}

(31)

The ellipsoidal covering of the state-space partitioning is:

ǫ1 = {x | ‖
[

0 2

π
0
]

x + 0 ‖� 1}

ǫ2 = {x | ‖
[

0 2

π
0
]

x − 2 ‖� 1}
(32)

Thus, the PWA models before the fault occurrence are
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∀x ∈ R2
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After fault occurrence at t = tf the PWA model becomes

∀x ∈ R1
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Fig. 4. Fault detection and identification in WMR actuator tf = 5(s), ρ =
0.3

Fig. 5. Fault detection and identification in WMR actuator tf = 5(s), ρ =
0.1

where the amount of fault ρ must be estimated by the

observer. An LQR controller is designed for a linear model

of the system as shown in (33) and the signal from this con-

troller is used as the input to the system in the simulations.

The weighting matrices for the LQR controller are

Q =





0.1 0 0
0 0.1 0
0 0 0.1





R = 0.1

The gain of the LQR controller is

KLQR =
[

1.00 2.4142 2.4142
]

(37)

It is assumed that G1 = G2 = G. A solution to the design

problem 2.1 is sought and obtained by SeDuMi/YALMIP [9]

as

G =





−986.4253 −65.9326 −66.4396
−57.1708 −784.1655 −90.7489
−57.6103 −90.7488 −789.7087



 (38)

P =





3992.0 0 0
0 4603.8 −0.0037
0 −0.0037 4603.8



 (39)

Figures 2-6 show FDI results for different values of partial

loss of control and different fault occurrence times. It is

observed that the FDI method works accurately while the

control input to the system is large enough for rapid updating

of the estimated amount of fault.

Fig. 6. Fault detection and identification in WMR actuator tf = 7(s), ρ =
0.1

IV. CONCLUSIONS

In this paper a fault detection and identification technique

for bimodal PWA systems is proposed for the first time.

The proposed method enables the FDI algorithm to precisely

estimate the unknown amount of fault based on a PWA

representation of the system. The unknown value of the

fault parameter is estimated by a law obtained from the

Lyapunov function of the system. Global asymptotic stability

of the estimation error is guaranteed provided the input

norm is upper and lower bounded by positive constants. The

proposed method is applied successfully to estimation of the

amount of partial loss of control authority for a WMR.
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