

Abstract—For the congestion problems in high-speed

networks, a Q-learning model-independent flow controller is

proposed. Because of the uncertainties and highly time-varying,

it is not easy to accurately obtain the complete information for

high-speed networks. In this case, the Q-learning, which is

independent of mathematic model and prior-knowledge, has

good performance. In this paper, the flow with higher priority in

the network is considered. The competition of the flows with

different priorities is regarded as a two-player game. Through

learning process, the proposed controller can achieve the optimal

sending rate for the sources with lower priority while the sources

with higher priority existing. Simulation results show that the

proposed controller can learn to regulate source flow with the

features of high throughput and low packet loss ratio, and can

avoid the occurrence of congestion effectively.

I. INTRODUCTION

HE growing interest on congestion problems in high-

speed networks arise from the control of sending rates of

traffic sources. Congestion problems result from a mismatch

of offered load and available link bandwidth between network

nodes. Such problems can cause high packet loss ratio (PLR)

and long delays, and can even break down the entire network

system because of the congestion collapse. Therefore,

high-speed networks must have an applicable flow control

scheme not only to guarantee the quality of service (QoS) for

the existing links but also to achieve high system utilization.

The flow control of high-speed networks is difficult owing

to the uncertainties and highly time-varying of different traffic

patterns. The flow control mainly checks the availability of

bandwidth and buffer space necessary to guarantee the

requested QoS. A major problem here is the lack of

information related to the characteristics of source flow.

Devising a mathematical model for source flow is the

fundamental issue. However, it has been revealed to be a very

difficult task, especially for broadband sources. In order to

overcome the above-mentioned difficulties, the flow control

scheme with learning capability has been employed in

high-speed networks [1, 2]. But the priori-knowledge of

network to train the parameters in the controller is hard to

This work is supported by the National Natural Science Foundation of

China under Grant 60274009 and Specialized Research Fund for the

Doctoral Program of Higher Education under Grant20020145007.

Xin Li, Yuanwei Jing, and Siying Zhang are with Faculty of Information

Science and Engineering, Northeastern University, Shenyang, Liaoning,

110004, P.R. of China (e-mail: lixin820106@126.com).

Georgi M. Dimirovski is with Faculty of Engineering, Computer Engg.

Dept, Dogus University of Istanbul, TR-347222 Istanbul, Rep. of Turkey

(e-mail: gdimirovski@dogus.edu.tr).

achieve for high-speed networks.

In this case, the reinforcement learning (RL) shows its

particular superiority, which just needs very simple

information such as estimable and critical information, “right”

or “wrong” [3]. RL is independent of mathematic model and

priori-knowledge of system. It obtains the knowledge through

trial-and-error and interaction with environment to improve its

behavior policy. So it has the ability of self-learning. Because

of the advantages above, RL has been played a very important

role in the flow control in high-speed networks [4-7]. The

Q-learning algorithm of RL is easy for application and has a

firm foundation in the theory [8]. In [9], we combined the

Q-learning and simulated annealing to solve the problems of

ABR flow control in ATM networks.

In order to satisfy various classes of flow with different QoS

requirements, high-speed networks must support different

service categories, for example the real-time applications and

nonreal-time applications. Among them, the real-time

applications have higher priority then the nonreal-time

applications. Link bandwidth is first allocated to the flow with

higher priority and the remaining bandwidth is given to the

flow with lower priority we need to control. We can control

the sending rates of the flow by feedback mechanism. In this

paper, we consider the competition of the flows with different

priorities as a two-player game for controller optimization.

In this paper, a Q-learning model-independent flow

controller for high-speed networks is proposed. The proposed

controller can behave optimally without the mathematic

model of the network environment, only relying on the

interaction with the unknown environment and provide the

best action for a given state. By means of learning procedures,

the proposed controller adjusts the source sending rate to the

optimal value to reduce the average length of queue in the

buffer. Simulation results show that the proposed controller

can avoid the occurrence of congestion effectively with the

features of high throughput, low PLR, low end-to-end delay,

and high utilization.

II. DESIGN OF CONTROLLER

A. Architecture of Flow Controller Proposed

This section gives the detailed architecture of the proposed

flow controller as shown in Fig.1.

In high-speed networks, the proposed controller in

bottleneck node acts as a flow control agent with flow control

ability. The inputs of controller are state variable in

A Q-Learning Model-Independent Flow Controller for High-speed

Networks

Xin Li, Georgi M. Dimirovski, Senior Member, IEEE, Yuanwei Jing, and Siying Zhang

T

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC06.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1544

high-speed networks composed of the current queue length in

the buffer and the available bandwidth for the controlled

traffic sources. The output of controller is the feedback signal

to the traffic sources we need to control, which is the

determined source sending rate. The learning agent and the

network environment interact continually in the learning

process.

Switch

Server
Multiplexer's

 buffer

Learning

Agent

States

#
Feedback

 Signal
T raffic

Sources

Fig. 1. Architecture of the proposed flow controller

B. Theoretical Framework

In this section, we consider the following discrete time

system as the model of the high-speed networks

 ()1 , , ,k k k k k k kx f x u v Ax Bu Cv+ = = + + (1)

with feedback control

 ,k ku Lx= (2)

and

 ,k kv Kx= (3)

where kx is the state of the high-speed networks, composed

of the queue length in the buffer and the available bandwidth

for the controlled traffic sources; ku and kv are the control

inputs of the controller, ku means the controlled sending rate

of traffic sources with lower priority; kv means the sending

rate of traffic sources with higher priority. L and K are the

control policies for ku and kv respectively. Here A , B , L ,

and K are the matrices of dimensions 2 2× , 2 1× , 1 2× , and

1 2× respectively. L and K are chosen so that the matrix

A BL CK+ + has all of its eigenvalues strictly within the unit

circle.

From (1), we can see that if , ,A B C in high-speed networks

is known, we can design the flow controllers adopting many

model-dependent control method. But because of the

difficulty to devise a mathematic model for high-speed

networks, the value of , ,A B C is hard to achieve or hard to

achieve accurately. So, we need model-independent control

method to deal with the above-mentioned difficulties.

Q-learning is a model-independent control method which has

good performance.

Associated with the network system we define a one step

cost as

(), , .T T T
k k k k k k k k k kc c x u v x Rx u Eu v Fv= = + − (4)

where R is a symmetric positive semidefinite matrix of

dimensions 2 2× .

The total cost of a state kx under the control policy (,)L K ,

()kV x , is defined as the discounted sum of all costs that will be

incurred by using (,)L K from time k onward, i.e.,

()
0

 .i
k k i

i

V x cβ
∞

+
=

=¦ (5)

where 0 1β≤ ≤ is the discount factor.

In Q-learning, the learning agent in the flow controller tries

to optimize the function ()kV x when the sources with lower

priority taking the sending rate ku while the sources with

higher priority taking the sending rate kv at state kx . The

definition of ()kV x implies the recurrence relation

() () ()1, , .k k k k kV x c x Lx Kx V xβ += + (6)

()kV x is a quadratic function in the state and therefore can

be expressed as

() ,T
k k kV x x Px= (7)

where P is the 2 2× cost matrix for policy (,)L K . * *
(,)L K

denotes the policy which is optimal in the sense that the total

discounted cost of every state is minimized. *P represents the

cost matrix associated with * *
(,)L K .

It is a simple matter to derive * *
(,)L K if accurate models of

the network and cost function are available. The problem we

address is how to derive * *
(,)L K without access to such

models.

Watkins defined the Q-function for a stable control policy

(,)L K as

() () ()(), , , , , , .Q x u v c x u v V f x u vβ= + (8)

The value of (, ,)Q x u v is the sum of the one step cost incurred

by taking action (,)u v from state x , plus the total cost that

would accrue if the fixed policy (,)L K were followed from

the state (, ,)f x u v and all subsequent states. The function Q

can also be defined recursively as

() () ()1 1 1, , , , , , ,k k k k k k k k kQ x u v c x u v Q x Lx Kxβ + + += + (9)

by noting that

() () ()() (), , , , , , .Q x Lx Kx c x Lx Kx V f x Lx Kx V xβ= + = (10)

The Q-function can be computed explicitly by

()

() ()()

() ()

() ()
()

 , ,

, , , ,

TT T T

T T T T

T T T T T T

T T T T T T T T

T T TT

T T T

Q x u v

c x u v V f x u v

x Rx u Eu v Fv Ax Bu Cv P Ax Bu Cv

x A PA R x u B PB E u

v C PC F v x A PBu x A PCv

u B PAx u B PCv v C PAx v C PBu

A PA R A PB A PCx

u B PA B PB E B

v

β

β

β β

β β β

β β β β

β β β

β β β

= +

= + − + + + + +

= + + + +

− + + +

+ + +

+ª º
« »= +« »
« »¬ ¼

(11) (12) (13)

(21) (22) (23)

(31) (32) (33)

 .

T T T

T

T

T

x

PC u

vC PA C PB C PC F

x H H H x

u H H H u

v H H H v

x x

u H u y Hy

v v

β β β

ª º ª º
« » « »
« » « »
« » « »− ¬ ¼« »¬ ¼

ª ºª º ª º
« »« » « »= « »« » « »
« »« » « »¬ ¼ ¬ ¼¬ ¼

ª º ª º
« » « »= =« » « »
« » « »¬ ¼ ¬ ¼

(11)

where [, ,]
T T T T

y x u v= is the column vector concatenation of

1545

x , u , and v . H is a symmetric positive definite matrix of

dimensions (2 1 1) (2 1 1)+ + × + + .

Given the policy (,)j jL K and the value function V , we can

find an improved policy, 1 1(,)j jL K+ + , by minimized Q . So we

can find the minimizing u and v by taking the partial

derivative of (, ,)Q x u v with respect to u and v respectively.

Taking the derivative we get

() ()
() ()

, ,
2 2 2

 .
, ,

2 2 2

T T T

T T T

Q x u v
B PB E u B PCv B PAx

u

Q x u v
C PBu C PC F v C PAx

v

β β β

β β β

∂
= + + +°° ∂

®
∂° = + − +° ∂¯

 (12)

Setting that to zero and solving for u and v yields

()()
()()

1
1

2

1
2

1

 ,

T T T T
j j j j

T T T T
j j j j

j

u B P B E B P C C P C F C P B

B P C C P C F C P A B P A x

L x

β β β

β β β

−−

−

+

= + − − ×

− −

=

 (13)

and

()()
()()

1
1

2

1
2

1

 .

T T T T
j j j j

T T T T
j j j j

j

v C P C F C P B B P B E B P C

C P B B P B E B P A C P A x

K x

β β β

β β β

−−

−

+

= − − + ×

+ −

=

 (14)

Since the new policy 1 1(,)j jL K+ + does not depend on x , it is

the minimizing policy for all x . Using (11), 1 1(,)j jL K+ + can

be written in the terms of H as

()
()

()
()

1
1

1 (22) (23) (33) (32)

1
(23) (33) (31) (21)

1
1

1 (33) (32) (22) (23)

1
(32) (22) (21) (31)

 .

j j j j j

j j j j

j j j j j

j j j j

L H H H H

H H H H

K H H H H

H H H H

−
−

+

−

−
−

+

−

 = − ×°
°

−°
®
° = − ×
°
° −
¯

 (15)

Note that (15) depends only on the H matrix, and they are

needed to find the control gains. If H is known, then the

network model is not needed to compute the controller gains

[10].

C. Learning Process of the controller

In this section, we show how the function Q can be directly

estimated using recursive least squares (RLS). It is not

necessary to identify either the network model or the one-step

cost function separately.

First, we define the “overbar” function for vectors so that

y is the vector whose elements are all of the quadratic basis

functions over the elements of y , i.e.,
2 2 2 2
1 1 2 2 3 1 1(, , , , , , , ,) .n n n n ny y y y y y y y y y y− −= " " (16)

where n is the sum of dimensions of x , u , and v .

Next, we define the vector function Θ for square matrices.

()HΘ is the vector whose elements are the n diagonal entries

of H and the (1) / 2n n n+ − distinct sums ()ij jiH H+ .

The elements of y and ()HΘ are ordered so that

() () (), , .
T

Q x u v Q y y Hy y H= = = Θ (17)

Finally, we rearrange equation (9) to yield

()

() ()

() ()

1 1 1

1 1 1 1 1 1

1 1 1

 , ,

, , , ,

, , , ,

 , , , ,

, , , ,

 ,

k k k

k k k k k k

T
T T T T T T
k k k k k k

T
T T T T T T
k k k k k k

T T
T T T T T T
k k k k k k

T
k

c x u v

Q x u v Q x Lx Kx

x u v H x u v

x Lx Kx H x Lx Kx

x u v H x Lx Kx H

β

β

β

φ θ

+ + +

+ + + + + +

+ + +

= −

ª º ª º= −¬ ¼ ¬ ¼

ª º ª º
¬ ¼ ¬ ¼

ª º ª º= Θ − Θ¬ ¼ ¬ ¼

=

where

1 1 1, , , , ,
T T T T T T

k k k k k k kx u v x Lx Kxφ β + + +
ª º ª º= −¬ ¼ ¬ ¼ (18)

and

() .Hθ = Θ (19)

Recursive Least Squares (RLS) can now be used to estimate

θ . The recurrence relations for RLS are given by

() ()
() ()()

()

ˆ1 1
ˆ ˆ 1 ,

1 1

T
j k k k j

j j T
k j k

U i c i
i i

U i

φ φ θ
θ θ

φ φ

− − −
= − +

+ −
 (20)

() ()
() ()

()

1 1
1 ,

1 1

T
j k k j

j j T
k j k

U i U i
U i U i

U i

φ φ

φ φ

− −
= − −

+ −
 (21)

() 00 .jU U= (22)

where 0U Iα= for some large positive constant α .

()j jHθ = Θ is the true parameter vector for the function jQ .
ˆ ()j iθ is the thi estimate of jθ . The subscript k and the index

i are both incremented at each time step.

It is shown that this algorithm converges to the true

parameters if jθ is fixed and kφ satisfies the persistent

excitation condition

0 0 0 0

1

1
 for all and ,

N
T

k i k i

i

I I k N N N
N

ε φ φ ε− −
=

≤ ≤ ≥ ≥¦ (23)

where 0 0ε ε≤ , and 0N is a positive number.

The policy improvement starts with the network system in

some initial state 0x and with some stabilizing controller

0 0(,)L K . j keeps track of the number of policy iteration steps.

k keeps track of the total number of time steps. i counts the

number of time steps since the last change of policy. When

i N= , one policy improvement step is executed.

Each policy iteration step consists of two phases: estimation

of the Q-function for the current controller, and policy

improvement based on that estimate. Consider the th
j policy

iteration step. (,)j jL K is the current controller. ˆ ˆ ()j j Nθ θ= is

the estimate of jθ at the end of the parameter estimation

interval. Each estimation interval is N time-steps long. The

algorithm is initialized at the start of the th
j estimation

interval by setting () 00jU U= and initializing the parameter

estimates for the th
j estimation interval to the final parameter

estimates from the previous interval, i.e., 1
ˆ ˆ(0) ()j j Nθ θ −= . The

index i used in equation (20) and (21) counts the number of

time steps since the beginning of the estimation interval. After

identifying the parameters ()jHΘ for N time-steps, one

policy improvement step is taken based on the estimate ˆ
jθ .

This produces the new controller 1 1(,)j jL K+ + , and a new

policy iteration step is begun.

1546

III. SIMULATION RESULTS

The simulation model of high-speed networks, as shown in

Fig.2, is composed of two switches, Sw1 with a control agent

and Sw2 with no controller are cascaded. The constant output

link L is 80Mbps. The sending rates of the sources are

regulated by the flow controllers individually.

Sw1

control

agent

Sw2

Sn Dn

D1

L

L:80Mbps

S1

#

Fig. 2. The simulation model of network with two switches

In the simulation, we assume that all packets are with a

fixed length of 1000bytes, and adopt a finite buffer length of

20packets in the node. The traffic flow with higher priority

exists during the whole course of learning process. The

offered loading of the simulation varies between 0.6 and 1.2

corresponding to the systems’ dynamics; therefore, higher

loading results in heavier traffic and vice versa. For the link of

80Mbps, the theoretical throughput is 62.5K packets.

In the simulation, four schemes of flow control agent,

AIMD, the model based PID flow controller, neural network

(NN) flow controller with learning ability, and the proposed

flow controller are implemented individually in high-speed

networks. The first scheme AIMD increases its sending rate

by a fixed increment (0.11) if the queue length is less than the

predefined threshold; otherwise the sending rate is decreased

by a multiple of 0.8 of the previous sending rate to avoid

congestion [11]. Finally, for the other schemes, the sending

rate is controlled by the flow controller.

For assuring controller proposed applied to high-speed

networks to be achievable and feasible, comparisons among

those schemes are analyzed. Four measures, throughput, PLR,

buffer utilization, and packets’ mean delay, are used as the

performance indices. The throughput is the amount of

received packets at specified nodes (switches) without

retransmission. The status of the input multiplexer’s buffer in

node reflects the degree of congestion resulting in possible

packet losses. For simplicity, packets’ mean delay only takes

into consideration the processing time at node plus the time

needed to transmit packets.

The performance comparison of throughput, PLR, buffer

utilization, and mean delay controlled by four different kinds

of agents individually are shown in Fig.3-6. The throughput

for AIMD method decrease seriously at loading of 0.9.

Conversely, the controller proposed remains a higher

throughput even though the offered loading is over 1.0. It is

obvious that PLR is high, even though we adopt AIMD

scheme. However, the controller proposed can decrease the

PLR enormously with high throughput and low mean delay.

The controller proposed has a better performance over PID

flow controller and NN flow controller in PLR, buffer

utilization, and mean delay. It demonstrates once again that

controller proposed possesses the ability to predict the

network behavior in advance.

0.6 0.7 0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

7
x 10

5

offered loading

th
ro

u
g

h
p

u
t

AIMD
PID
NN
Q-learning

Fig. 3. Throughput versus various offered loading

0.6 0.7 0.8 0.9 1 1.1 1.2
10

-8

10
-6

10
-4

10
-2

10
0

offered loading

p
a
c
k

e
t

lo
ss

 r
a
ti

o

AIMD
PID
NN
Q-learning

Fig. 4. PLR versus various offered loading

0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

offered loading

m
e
a
n

 b
u

ff
e
r

(p
a
c
k

e
t)

AIMD
PID
NN
Q-learning

Fig. 5. Mean buffer versus various offered loading

0.6 0.7 0.8 0.9 1 1.1 1.2
10

-5

10
-4

10
-3

10
-2

10
-1

offered loading

m
e
a
n

 d
e
la

y
 (

se
c
)

AIMD
PID
NN
Q-learning

Fig. 6. Mean delay versus various offered loading

1547

IV. CONCLUSION

In this paper, a Q-learning model-independent flow

controller is proposed to deal with the congestion problems in

high-speed networks. Because of the interaction with the

environment, the proposed controller has good performance

in the congestion control of high-speed networks considering

the competition of the flows with different priorities. It is seen

that the proposed controller indeed performs an efficiently

flow control, and is capable of learning the system behavior.

The simulation results show that the proposed controller is

superior to the other flow controller in comparison with

respect to the performance of high-speed networks.

REFERENCES

[1] R. G. Cheng, C. J. Chang and L. F. Lin, “A QoS-provisioning neural

fuzzy connection admission controller for multimedia high-speed

networks,” IEEE/ACM Transactions on Networking, vol. 7, no. 1, pp.

111-121, 1999.

[2] M. Lestas, A. Pitsillides, P. Ioannou, and G. Hadjipollas, “Adaptive

congestion protocol: a congestion control protocol with learning

capability,” Computer Networks: The International Journal of

Computer and Telecommunications Networking, vol. 51, no. 13. pp.

3773-3798, Sep. 2007.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning an Introduction.

Cambridge, MA.: MIT Press, 1998.

[4] A. Chatovich, S. Okug, and G. Dundar, “Hierarchical neuro-fuzzy call

admission controller for ATM networks,” Computer Communications,

vol. 24, no. 11, pp. 1031-1044, Jun. 2001.

[5] M. C. Hsiao, S. W. Tan, K. S. Hwang, and C. S. Wu, “A reinforcement

learning approach to congestion control of high-speed multimedia

networks,” Cybernetics and Systems, vol. 36, no. 2, pp. 181-202, Jan.

2005.

[6] K. S. Hwang, S. W. Tan, M. C. Hsiao, and C. S. Wu, “Cooperative

multiagent congestion control for high-speed networks,” IEEE

Transactions on System, Man, and Cybernetics-Part B: Cybernetics,

vol. 35, no. 2, pp. 255-268, Apr. 2005.

[7] X. Li, X. J. Shen, Y. W. Jing, and S. Y. Zhang, “Simulated

annealing-reinforcement learning algorithm for ABR traffic control of

ATM networks,” in Proc. of the46th IEEE Conf. on Decision and

Control, New Orleans, LA, USA, Dec. 2007, pp. 5716-5721.

[8] C. J. C. H. Watkins, and P. Dayan, “Q-learning,” Machine Learning,

vol. 8, no. 3, pp. 279-292, May 1992.

[9] X. Li, Y. C. Zhou, G. M. Dimirovski, and Y. W. Jing, “Simulated

annealing Q-learning algorithm for ABR traffic control of ATM

networks,” in Proc. of the 2008 American Control Conf., Seattle,

Washington, USA, Jun. 2008.

[10] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic

control using policy iteration,” Proceedings of the American control

conference, pp.3475-3479, 1994.

[11] P. Gevros, J. Crowcoft, P. Kirstein, and S. Bhatti, “Congestion control

mechanisms and the best effort service model,” IEEE Network, vol. 15,

no. 3, pp. 16-26, May/Jun. 2001.

1548

