
  

  

Abstract—For the congestion problems in high-speed 

networks, a Q-learning model-independent flow controller is 

proposed. Because of the uncertainties and highly time-varying, 

it is not easy to accurately obtain the complete information for 

high-speed networks. In this case, the Q-learning, which is 

independent of mathematic model and prior-knowledge, has 

good performance. In this paper, the flow with higher priority in 

the network is considered. The competition of the flows with 

different priorities is regarded as a two-player game. Through 

learning process, the proposed controller can achieve the optimal 

sending rate for the sources with lower priority while the sources 

with higher priority existing. Simulation results show that the 

proposed controller can learn to regulate source flow with the 

features of high throughput and low packet loss ratio, and can 

avoid the occurrence of congestion effectively. 

I. INTRODUCTION 

HE growing interest on congestion problems in high- 

speed networks arise from the control of sending rates of 

traffic sources. Congestion problems result from a mismatch 

of offered load and available link bandwidth between network 

nodes. Such problems can cause high packet loss ratio (PLR) 

and long delays, and can even break down the entire network 

system because of the congestion collapse. Therefore, 

high-speed networks must have an applicable flow control 

scheme not only to guarantee the quality of service (QoS) for 

the existing links but also to achieve high system utilization. 

The flow control of high-speed networks is difficult owing 

to the uncertainties and highly time-varying of different traffic 

patterns. The flow control mainly checks the availability of 

bandwidth and buffer space necessary to guarantee the 

requested QoS. A major problem here is the lack of 

information related to the characteristics of source flow. 

Devising a mathematical model for source flow is the 

fundamental issue. However, it has been revealed to be a very 

difficult task, especially for broadband sources. In order to 

overcome the above-mentioned difficulties, the flow control 

scheme with learning capability has been employed in 

high-speed networks [1, 2]. But the priori-knowledge of 

network to train the parameters in the controller is hard to 
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achieve for high-speed networks. 

In this case, the reinforcement learning (RL) shows its 

particular superiority, which just needs very simple 

information such as estimable and critical information, “right” 

or “wrong” [3]. RL is independent of mathematic model and 

priori-knowledge of system. It obtains the knowledge through 

trial-and-error and interaction with environment to improve its 

behavior policy. So it has the ability of self-learning. Because 

of the advantages above, RL has been played a very important 

role in the flow control in high-speed networks [4-7]. The 

Q-learning algorithm of RL is easy for application and has a 

firm foundation in the theory [8]. In [9], we combined the 

Q-learning and simulated annealing to solve the problems of 

ABR flow control in ATM networks. 

In order to satisfy various classes of flow with different QoS 

requirements, high-speed networks must support different 

service categories, for example the real-time applications and 

nonreal-time applications. Among them, the real-time 

applications have higher priority then the nonreal-time 

applications. Link bandwidth is first allocated to the flow with 

higher priority and the remaining bandwidth is given to the 

flow with lower priority we need to control. We can control 

the sending rates of the flow by feedback mechanism. In this 

paper, we consider the competition of the flows with different 

priorities as a two-player game for controller optimization. 

In this paper, a Q-learning model-independent flow 

controller for high-speed networks is proposed. The proposed 

controller can behave optimally without the mathematic 

model of the network environment, only relying on the 

interaction with the unknown environment and provide the 

best action for a given state. By means of learning procedures, 

the proposed controller adjusts the source sending rate to the 

optimal value to reduce the average length of queue in the 

buffer. Simulation results show that the proposed controller 

can avoid the occurrence of congestion effectively with the 

features of high throughput, low PLR, low end-to-end delay, 

and high utilization. 

II. DESIGN OF CONTROLLER 

A. Architecture of Flow Controller Proposed 

This section gives the detailed architecture of the proposed 

flow controller as shown in Fig.1. 

In high-speed networks, the proposed controller in 

bottleneck node acts as a flow control agent with flow control 

ability. The inputs of controller are state variable in 
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high-speed networks composed of the current queue length in 

the buffer and the available bandwidth for the controlled 

traffic sources. The output of controller is the feedback signal 

to the traffic sources we need to control, which is the 

determined source sending rate. The learning agent and the 

network environment interact continually in the learning 

process. 
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Fig. 1.  Architecture of the proposed flow controller 

B. Theoretical Framework 

In this section, we consider the following discrete time 

system as the model of the high-speed networks 

   ( )1 , ,  ,k k k k k k kx f x u v Ax Bu Cv+ = = + +                (1) 

with feedback control 

 ,k ku Lx=                                   (2) 

and 

 ,k kv Kx=                                   (3) 

where kx  is the state of the high-speed networks, composed 

of the queue length in the buffer and the available bandwidth 

for the controlled traffic sources; ku  and kv are the control 

inputs of the controller, ku  means the controlled sending rate 

of traffic sources with lower priority; kv  means the sending 

rate of traffic sources with higher priority. L  and K  are the 

control policies for ku  and kv  respectively. Here A , B , L , 

and K are the matrices of dimensions 2 2× , 2 1× , 1 2× , and 

1 2×  respectively. L  and K  are chosen so that the matrix 

A BL CK+ +  has all of its eigenvalues strictly within the unit 

circle. 

From (1), we can see that if , ,A B C  in high-speed networks 

is known, we can design the flow controllers adopting many 

model-dependent control method. But because of the 

difficulty to devise a mathematic model for high-speed 

networks, the value of , ,A B C  is hard to achieve or hard to 

achieve accurately. So, we need model-independent control 

method to deal with the above-mentioned difficulties. 

Q-learning is a model-independent control method which has 

good performance. 

Associated with the network system we define a one step 

cost as 

( ), ,  .T T T
k k k k k k k k k kc c x u v x Rx u Eu v Fv= = + −            (4) 

where R is a symmetric positive semidefinite matrix of 

dimensions 2 2× . 

The total cost of a state kx  under the control policy ( , )L K , 

( )kV x , is defined as the discounted sum of all costs that will be 

incurred by using ( , )L K  from time k  onward, i.e., 

( )
0

 .i
k k i

i

V x cβ
∞

+
=

=¦                              (5) 

where 0 1β≤ ≤  is the discount factor. 

In Q-learning, the learning agent in the flow controller tries 

to optimize the function ( )kV x  when the sources with lower 

priority taking the sending rate ku  while the sources with 

higher priority taking the sending rate kv  at state kx . The 

definition of ( )kV x  implies the recurrence relation 

( ) ( ) ( )1, ,  .k k k k kV x c x Lx Kx V xβ += +               (6) 

( )kV x  is a quadratic function in the state and therefore can 

be expressed as 

( )  ,T
k k kV x x Px=                               (7) 

where P  is the 2 2×  cost matrix for policy ( , )L K . * *
( , )L K  

denotes the policy which is optimal in the sense that the total 

discounted cost of every state is minimized. *P  represents the 

cost matrix associated with * *
( , )L K . 

It is a simple matter to derive * *
( , )L K  if accurate models of 

the network and cost function are available. The problem we 

address is how to derive * *
( , )L K  without access to such 

models. 

Watkins defined the Q-function for a stable control policy 

( , )L K  as 

( ) ( ) ( )( ), , , , , ,  .Q x u v c x u v V f x u vβ= +               (8) 

The value of ( , , )Q x u v  is the sum of the one step cost incurred 

by taking action ( , )u v  from state x , plus the total cost that 

would accrue if the fixed policy ( , )L K  were followed from 

the state ( , , )f x u v  and all subsequent states. The function Q  

can also be defined recursively as 

( ) ( ) ( )1 1 1, , , , , ,  ,k k k k k k k k kQ x u v c x u v Q x Lx Kxβ + + += +      (9) 

by noting that 

( ) ( ) ( )( ) ( ), , , , , ,  .Q x Lx Kx c x Lx Kx V f x Lx Kx V xβ= + = (10) 

The Q-function can be computed explicitly by 

( )

( ) ( )( )

( ) ( )

( ) ( )
( )

   , ,

, , , ,

   

   

TT T T

T T T T

T T T T T T

T T T T T T T T

T T TT

T T T

Q x u v

c x u v V f x u v

x Rx u Eu v Fv Ax Bu Cv P Ax Bu Cv

x A PA R x u B PB E u

v C PC F v x A PBu x A PCv

u B PAx u B PCv v C PAx v C PBu

A PA R A PB A PCx

u B PA B PB E B

v

β

β

β β

β β β

β β β β

β β β

β β β

= +

= + − + + + + +

= + + + +

− + + +

+ + +

+ª º
« »= +« »
« »¬ ¼

(11) (12) (13)

(21) (22) (23)

(31) (32) (33)

 .

T T T

T

T

T

x

PC u

vC PA C PB C PC F

x H H H x

u H H H u

v H H H v

x x

u H u y Hy

v v

β β β

ª º ª º
« » « »
« » « »
« » « »− ¬ ¼« »¬ ¼

ª ºª º ª º
« »« » « »= « »« » « »
« »« » « »¬ ¼ ¬ ¼¬ ¼

ª º ª º
« » « »= =« » « »
« » « »¬ ¼ ¬ ¼

(11) 

where  [ , , ]
T T T T

y x u v=  is the column vector concatenation of 
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x , u , and v . H  is a symmetric positive definite matrix of 

dimensions (2 1 1) (2 1 1)+ + × + + . 

Given the policy ( , )j jL K  and the value function V , we can 

find an improved policy, 1 1( , )j jL K+ + , by minimized Q . So we 

can find the minimizing u  and v  by taking the partial 

derivative of ( , , )Q x u v  with respect to u  and v  respectively. 

Taking the derivative we get 

( ) ( )
( ) ( )

, ,
2 2 2

 .
, ,

2 2 2

T T T

T T T

Q x u v
B PB E u B PCv B PAx

u

Q x u v
C PBu C PC F v C PAx

v

β β β

β β β

∂
= + + +°° ∂

®
∂° = + − +° ∂¯

  (12) 

Setting that to zero and solving for u  and v  yields 

( )( )
( )( )

1
1

2

1
2

1

               

   ,

T T T T
j j j j

T T T T
j j j j

j

u B P B E B P C C P C F C P B

B P C C P C F C P A B P A x

L x

β β β

β β β

−−

−

+

= + − − ×

− −

=

  (13) 

and 

( )( )
( )( )

1
1

2

1
2

1

               

   .

T T T T
j j j j

T T T T
j j j j

j

v C P C F C P B B P B E B P C

C P B B P B E B P A C P A x

K x

β β β

β β β

−−

−

+

= − − + ×

+ −

=

   (14) 

Since the new policy 1 1( , )j jL K+ +  does not depend on x , it is 

the minimizing policy for all x . Using (11), 1 1( , )j jL K+ +  can 

be written in the terms of H as 

( )
( )

( )
( )

1
1

1 (22) (23) (33) (32)

1
(23) (33) (31) (21)

1
1

1 (33) (32) (22) (23)

1
(32) (22) (21) (31)

             
 .

             

j j j j j

j j j j

j j j j j

j j j j

L H H H H

H H H H

K H H H H

H H H H

−
−

+

−

−
−

+

−

 = − ×°
°

−°
®
° = − ×
°
° −
¯

              (15) 

Note that (15) depends only on the H  matrix, and they are 

needed to find the control gains. If H  is known, then the 

network model is not needed to compute the controller gains 

[10]. 

C. Learning Process of the controller 

In this section, we show how the function Q  can be directly 

estimated using recursive least squares (RLS). It is not 

necessary to identify either the network model or the one-step 

cost function separately.  

First, we define the “overbar” function for vectors so that 

y  is the vector whose elements are all of the quadratic basis 

functions over the elements of y , i.e., 
2 2 2 2
1 1 2 2 3 1 1( , , , , , , , , ) .n n n n ny y y y y y y y y y y− −= " "          (16) 

where n  is the sum of dimensions of x , u , and v . 

Next, we define the vector function Θ  for square matrices. 

( )HΘ  is the vector whose elements are the n  diagonal entries 

of H  and the ( 1) / 2n n n+ −  distinct sums ( )ij jiH H+ . 

The elements of y  and ( )HΘ  are ordered so that 

( ) ( ) ( ), ,  .
T

Q x u v Q y y Hy y H= = = Θ              (17) 

Finally, we rearrange equation (9) to yield 

( )

( ) ( )

( ) ( )

1 1 1

1 1 1 1 1 1

1 1 1

   , ,

, , , ,

, , , ,

   , , , ,

, , , ,

 ,

k k k

k k k k k k

T
T T T T T T
k k k k k k

T
T T T T T T
k k k k k k

T T
T T T T T T
k k k k k k

T
k

c x u v

Q x u v Q x Lx Kx

x u v H x u v

x Lx Kx H x Lx Kx

x u v H x Lx Kx H

β

β

β

φ θ

+ + +

+ + + + + +

+ + +

= −

ª º ª º= −¬ ¼ ¬ ¼

ª º ª º
¬ ¼ ¬ ¼

ª º ª º= Θ − Θ¬ ¼ ¬ ¼

=

              

where 

1 1 1, , , ,  ,
T T T T T T

k k k k k k kx u v x Lx Kxφ β + + +
ª º ª º= −¬ ¼ ¬ ¼                (18) 

and 

( )  .Hθ = Θ                                  (19) 

Recursive Least Squares (RLS) can now be used to estimate 

θ . The recurrence relations for RLS are given by 

( ) ( )
( ) ( )( )

( )

ˆ1 1
ˆ ˆ 1  ,

1 1

T
j k k k j

j j T
k j k

U i c i
i i

U i

φ φ θ
θ θ

φ φ

− − −
= − +

+ −
       (20) 

( ) ( )
( ) ( )

( )

1 1
1  ,

1 1

T
j k k j

j j T
k j k

U i U i
U i U i

U i

φ φ

φ φ

− −
= − −

+ −
          (21) 

( ) 00  .jU U=                                 (22) 

where 0U Iα=  for some large positive constant α . 

( )j jHθ = Θ  is the true parameter vector for the function jQ . 
ˆ ( )j iθ  is the thi  estimate of jθ . The subscript k  and the index 

i  are both incremented at each time step. 

It is shown that this algorithm converges to the true 

parameters if jθ  is fixed and kφ  satisfies the persistent 

excitation condition 

0 0 0 0

1

1
   for all      and    ,

N
T

k i k i

i

I I k N N N
N

ε φ φ ε− −
=

≤ ≤ ≥ ≥¦   (23) 

where 0 0ε ε≤ , and 0N  is a positive number. 

The policy improvement starts with the network system in 

some initial state 0x  and with some stabilizing controller 

0 0( , )L K . j  keeps track of the number of policy iteration steps. 

k  keeps track of the total number of time steps. i  counts the 

number of time steps since the last change of policy. When 

i N= , one policy improvement step is executed. 

Each policy iteration step consists of two phases: estimation 

of the Q-function for the current controller, and policy 

improvement based on that estimate. Consider the th
j  policy 

iteration step. ( , )j jL K  is the current controller. ˆ ˆ ( )j j Nθ θ=  is 

the estimate of jθ  at the end of the parameter estimation 

interval. Each estimation interval is N  time-steps long. The 

algorithm is initialized at the start of the th
j  estimation 

interval by setting ( ) 00jU U=  and initializing the parameter 

estimates for the th
j  estimation interval to the final parameter 

estimates from the previous interval, i.e., 1
ˆ ˆ(0) ( )j j Nθ θ −= . The 

index i  used in equation (20) and (21) counts the number of 

time steps since the beginning of the estimation interval. After 

identifying the parameters ( )jHΘ  for N  time-steps, one 

policy improvement step is taken based on the estimate ˆ
jθ . 

This produces the new controller 1 1( , )j jL K+ + , and a new 

policy iteration step is begun. 
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III. SIMULATION RESULTS 

The simulation model of high-speed networks, as shown in 

Fig.2, is composed of two switches, Sw1 with a control agent 

and Sw2 with no controller are cascaded. The constant output 

link L is 80Mbps. The sending rates of the sources are 

regulated by the flow controllers individually. 

Sw1

control

agent

Sw2

Sn Dn

D1

L

L:80Mbps

S1

# #

 
Fig. 2. The simulation model of network with two switches 

In the simulation, we assume that all packets are with a 

fixed length of 1000bytes, and adopt a finite buffer length of 

20packets in the node. The traffic flow with higher priority 

exists during the whole course of learning process. The 

offered loading of the simulation varies between 0.6 and 1.2 

corresponding to the systems’ dynamics; therefore, higher 

loading results in heavier traffic and vice versa. For the link of 

80Mbps, the theoretical throughput is 62.5K packets. 

In the simulation, four schemes of flow control agent, 

AIMD, the model based PID flow controller, neural network 

(NN) flow controller with learning ability, and the proposed 

flow controller are implemented individually in high-speed 

networks. The first scheme AIMD increases its sending rate 

by a fixed increment (0.11) if the queue length is less than the 

predefined threshold; otherwise the sending rate is decreased 

by a multiple of 0.8 of the previous sending rate to avoid 

congestion [11]. Finally, for the other schemes, the sending 

rate is controlled by the flow controller. 

For assuring controller proposed applied to high-speed 

networks to be achievable and feasible, comparisons among 

those schemes are analyzed. Four measures, throughput, PLR, 

buffer utilization, and packets’ mean delay, are used as the 

performance indices. The throughput is the amount of 

received packets at specified nodes (switches) without 

retransmission. The status of the input multiplexer’s buffer in 

node reflects the degree of congestion resulting in possible 

packet losses. For simplicity, packets’ mean delay only takes 

into consideration the processing time at node plus the time 

needed to transmit packets. 

The performance comparison of throughput, PLR, buffer 

utilization, and mean delay controlled by four different kinds 

of agents individually are shown in Fig.3-6. The throughput 

for AIMD method decrease seriously at loading of 0.9. 

Conversely, the controller proposed remains a higher 

throughput even though the offered loading is over 1.0. It is 

obvious that PLR is high, even though we adopt AIMD 

scheme. However, the controller proposed can decrease the 

PLR enormously with high throughput and low mean delay. 

The controller proposed has a better performance over PID 

flow controller and NN flow controller in PLR, buffer 

utilization, and mean delay. It demonstrates once again that 

controller proposed possesses the ability to predict the 

network behavior in advance. 
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Fig. 3. Throughput versus various offered loading 
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Fig. 4. PLR versus various offered loading 
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Fig. 5. Mean buffer versus various offered loading 
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Fig. 6. Mean delay versus various offered loading 
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IV. CONCLUSION 

In this paper, a Q-learning model-independent flow 

controller is proposed to deal with the congestion problems in 

high-speed networks. Because of the interaction with the 

environment, the proposed controller has good performance 

in the congestion control of high-speed networks considering 

the competition of the flows with different priorities. It is seen 

that the proposed controller indeed performs an efficiently 

flow control, and is capable of learning the system behavior. 

The simulation results show that the proposed controller is 

superior to the other flow controller in comparison with 

respect to the performance of high-speed networks. 

REFERENCES 

[1] R. G. Cheng, C. J. Chang and L. F. Lin, “A QoS-provisioning neural 

fuzzy connection admission controller for multimedia high-speed 

networks,” IEEE/ACM Transactions on Networking, vol. 7, no. 1, pp.  

111-121, 1999. 

[2] M. Lestas, A. Pitsillides, P. Ioannou, and G. Hadjipollas, “Adaptive 

congestion protocol: a congestion control protocol with learning 

capability,” Computer Networks: The International Journal of 

Computer and Telecommunications Networking, vol. 51, no. 13. pp. 

3773-3798, Sep. 2007. 

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning an Introduction. 

Cambridge, MA.: MIT Press, 1998. 

[4] A. Chatovich, S. Okug, and G. Dundar, “Hierarchical neuro-fuzzy call 

admission controller for ATM networks,” Computer Communications, 

vol. 24, no. 11, pp. 1031-1044, Jun. 2001. 

[5] M. C. Hsiao, S. W. Tan, K. S. Hwang, and C. S. Wu, “A reinforcement 

learning approach to congestion control of high-speed multimedia 

networks,” Cybernetics and Systems, vol. 36, no. 2, pp. 181-202, Jan. 

2005. 

[6] K. S. Hwang, S. W. Tan, M. C. Hsiao, and C. S. Wu, “Cooperative 

multiagent congestion control for high-speed networks,” IEEE 

Transactions on System, Man, and Cybernetics-Part B: Cybernetics, 

vol. 35, no. 2, pp. 255-268, Apr. 2005. 

[7] X. Li, X. J. Shen, Y. W. Jing, and S. Y. Zhang, “Simulated 

annealing-reinforcement learning algorithm for ABR traffic control of 

ATM networks,” in Proc. of the46th IEEE Conf. on Decision and 

Control, New Orleans, LA, USA, Dec. 2007, pp. 5716-5721. 

[8] C. J. C. H. Watkins, and P. Dayan, “Q-learning,” Machine Learning, 

vol. 8, no. 3, pp. 279-292, May 1992. 

[9] X. Li, Y. C. Zhou, G. M. Dimirovski, and Y. W. Jing, “Simulated 

annealing Q-learning algorithm for ABR traffic control of ATM 

networks,” in Proc. of  the 2008 American Control Conf., Seattle, 

Washington, USA, Jun. 2008. 

[10] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic 

control using policy iteration,” Proceedings of the American control 

conference, pp.3475-3479, 1994. 

[11] P. Gevros, J. Crowcoft, P. Kirstein, and S. Bhatti, “Congestion control 

mechanisms and the best effort service model,” IEEE Network, vol. 15, 

no. 3, pp. 16-26, May/Jun. 2001. 

1548


