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Abstract— The evolution of a system from the transient
phase into a steady-state or asymptotic phase is an important
area of study in engineering and the mathematical sciences.
While analytic methods exist for determining the steady-state
behavior of a system, the transient analysis is typically more
difficult. Transient analysis is often approached in either an
ad hoc, case-by-case manner or is performed by simulation.
In this paper we explore the transient analysis of absorbing
Markov chains by counting discrete-time events. We derive
a closed-form expression for the expectation of these events
and give some examples. We then show how several single-
agent systems may be combined into a multi-agent system
where the interactions between agents can be analyzed. This
affords a model for analyzing competition. For example, we
can determine advantages to specific players and determine
the expected number of lead changes. After developing these
ideas we present simulation results to verify our methods.

I. INTRODUCTION

An important phenomenon in the mathematical sciences
is the evolution of a system from a transient phase into a
steady state. Damped harmonic motion is a classic example
in mechanics. Problems in chemistry and biology often deal
with the diffusion of a molecule across a membrane. In
business and finance the convergence of interest rates and
prices to market equilibrium exhibits this behavior. In elec-
trical systems a voltage change causes oscillations for some
time before establishing a steady state current. Structural
oscillations, due to wind for example, factor into the design
and construction of bridges and high-rise buildings.

Many of these examples have been analyzed mathemat-
ically and myriad results exist describing their asymptotic
behavior. The transient analysis is often difficult; moreover,
it is important for a viable solution. An excessively long
period of below-equilibrium prices can ruin a company that
cannot cover production costs or overhead. On the other
hand, above-equilibrium prices can result in wasted inventory
or the inability to sell enough product to cover fixed costs.
Too frequent price changes can be costly and disconcerting
to customers. Hence, approaching equilibrium price with
the fewest changes is desirable. Similarly, spikes in current
can damage electrical devices and large-amplitude or high-
frequency oscillations in buildings can cause structural dam-
age.

Transient analysis is particularly interesting in multi-agent,
competitive systems. In environments such as business and
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athletics, competitive systems occur naturally. Political cam-
paigns, both for ballot measures and for candidacy, can be
modeled as a competition. Portfolio management can be seen
as a competition between a portfolio of financial instruments
and an index fund. If a fund manager is unable to consistently
beat an index fund, he may have difficulty securing market
share.

In this paper, we develop a method for analyzing the
transient behavior of finite state, absorbing Markov chains.
These models are familiar and provide a reasonable level
of flexibility and sophistication. Our method allows us to
determine the expected time to absorption and the frequency
of specific states or transitions. We also develop a method for
combining several single-agent systems into a multi-agent
Markov chain. We use this composite system to analyze
competitive systems. In particular, we measure the advantage
of specific agents as well as the number of times that the lead
changes.

Meyer [10] showed among other things that the group
generalized inverse, a special case of the Drazin inverse,
could be used to determine (i) the expected number of
visits to any given transient state, and (ii) the probabil-
ity of absorption into a particular state. Whereas Meyer’s
method determines the expected number of occurrences of
state events, our method computes the expected number of
occurrences of transition events. Nonetheless, by summing
the expectation of all transitions that arrive into a given state,
one can also compute the expected number of occurrences of
state events. Therefore, this approach is a generalization of
Meyer’s method for determining expectations such as (i) and
(ii). For example, with Meyer’s method, the expected time
to absorption is produced by summing the expected number
of visits to each transient state, while our method sums the
expected number of traversals of any transition leaving a
transient state.

Although the emphasis is on transient analysis, our method
can also be used to determine steady state behavior as well.
The result of the paper is that computations which would
otherwise be performed on a problem-by-problem basis or
which would have been approximated using simulation can
now be computed explicitly using a closed-form expression.
This expression is a matrix computation that depends on
a mask, the transition matrix, and the initial distribution.
The expression can be easily computed using a matrix
algebra platform such as MATLAB. Additionally, the paper
enables theoretical results which may have previously been
unattainable.

The paper is organized as follows. In Section II, we show
how to represent transition events using masks and define
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the associated random variables. We then give an expression
for the expectation of these random variables on reducible
Markov chains. Next we examine the time-average case,
which yields the steady-state behavior of reducible chains.
In Section III, we give examples of masks. In Section V,
we present a series of simulations and compare them to the
expectations directly computed from Section II.

II. MAIN RESULTS

In this section we develop the main results of the pa-
per. After dispensing with the preliminaries, we give an
expression for the expected number of occurrences of a
transition event on an absorbing Markov chain. Following
this we generalize to arbitrary reducible chains. Finally, we
show how masks may be used to determine the steady-state
behavior of reducible chains.

A. Preliminaries

To avoid confusion with the transition matrix T we denote
the transpose of a matrix by A∗. Let A � B denote the
Hadamard product, that is (A � B)i,j = Ai,jBi,j . The fol-
lowing theorem, found in [4, pg. 305], relates the Hadamard
product to matrix multiplication.

Theorem 2.1: Let x ∈ Rn, A,B ∈ Rm×n be given and
let D = diag(x). Then (ADB∗)i,i = [(A�B)x]i.

In this paper we consider finite, stationary (temporally
homogeneous) Markov chains, denoted Xk; see for example
[2]. Here, S = {1, . . . , n} is the state space. If µ ∈ Rn is
stochastic, that is µi ≥ 0 and ‖µ‖1 = 1, then Pµ is the
unique probability measure on Ω = S × S × · · · satisfying

Pµ(X0 = i) = µi

and having transition probabilities associated with the
Markov chain Xk. Furthermore, Eµ is expectation with
respect to Pµ. The (column)-stochastic matrix T ∈ Rn×n
with entries

Ti,j = P (Xk+1 = i | Xk = j)

is the transition matrix. The k-step transition probabilities
are found in T k. To summarize,

Pµ(Xk = i) =
[
T kµ

]
i
.

A mask is a matrix M ∈ Rn×n that describes the weight
assigned to the transitions of a Markov chain. Here Mi,j

is the weight assigned to the transition from the jth state
to the ith state. The transition event for M is the random
variable whose value is the sum of the mask entries on any
realization,

YM =
∞∑
k=0

MXk+1,Xk
.

Example 2.2: Consider a three-state Markov chain. The
number of times the chain transitions from the second state
to the first state is a transition event which can be described
by the mask

M =

0 1 0
0 0 0
0 0 0

 .

For this mask, the random variable YM (ω) defined as above
gives the number of times the chain transitions from the
second state to the first during the instance ω.

Lemma 2.3: Let M,T ∈ Rn×n be given with T stochas-
tic. For any stochastic µ ∈ Rn,

EµMXk+1,Xk
=

n∑
i=1

[
(M � T )T kµ

]
i
.

Proof: By application of the law of total probability,

EµMXk+1,Xk
=

n∑
i,j=1

Mi,jPµ(Xk+1 = i,Xk = j)

=
n∑

i,j=1

Mi,jTi,j
[
T kµ

]
j

=
n∑
i=1

[
(M � T )T kµ

]
i

B. Cumulative Events on Absorbing Chains

We now consider transition events on absorbing chains.
In the next section we generalize to reducible chains. For
details on terminology see [1], [6], [7], [9]. An absorbing
state a ∈ S is any state satisfying

P (Xk+1 = a | Xk = a) = 1.

Denote the set of absorbing states by A. A Markov chain
Xk is absorbing if A 6= ∅ and for every s ∈ S there exists
k ∈ N such that

P (Xk ∈ A|X0 = s) > 0.

In other words, an absorbing chain is a reducible chain in
which all the ergodic classes are single states.

Without loss of generality, the transition matrix of an
absorbing chain assumes the form

T =
[
AT 0
BT I

]
, (1)

where AT ∈ Rm×m, m = |S| − |A|. Thus, AT , BT are the
transitions leaving the m transient states and I represents the
n−m absorbing states. In particular, AT does not have 1’s
on the diagonal. Furthermore,

T k =
[

AkT 0
BT
∑k−1
m=0A

m
T I

]
, (2)

which brings us to the following observation.
Lemma 2.4: If T is the transition matrix of an absorb-

ing Markov chain then the spectral radius of AT satisfies
ρ(AT ) < 1. Moreover, (I −AT )−1 exists and

(I −AT )−1 =
∞∑
k=0

AkT .

Proof: Let k be chosen sufficiently large so that
Pei

(Xk ∈ A) > 0 for all 1 ≤ i ≤ n where ei is the ith

standard unit vector in Rn. Consider the block form of T k

given by (1). Our choice of k implies that each column of
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BTk = BT
∑n−1
m=0A

m
T has a nonzero entry. Since T k is

column-stochastic each column of ATk = AkT has a column
sum strictly less than 1. Equivalently, ‖AkT ‖1 < 1 and it
follows that ρ(AT ) ≤ ‖AT ‖1 < 1.

Lemma 2.5: Let M,T ∈ Rn×n where T is the transition
matrix of an absorbing Markov chain. If Mi,i = 0 for each
i ∈ A then

∞∑
k=0

(M � T )T k = (M � T )
[
(I −AT )−1 0

0 0

]
.

Proof: Since Ti,j = 0 for j ∈ A, i 6= j, then Mi,i = 0
for i ∈ A guarantees that (M � T )i,j = 0 for all j ∈ A.
Using the block form (1) for M and T , and (2) for T k we
have

(M � T )T k =
[
AM �AT 0
BM �BT 0

] [
AkT 0

BT
∑k−1
m=0A

m
T I

]
=
[
(AM �AT )AkT 0
(BM �BT )AkT 0

]
= (M � T )

[
AkT 0
0 0

]
.

Summing over k yields

∞∑
k=0

(M � T )T k = (M � T )
∞∑
k=0

[
AkT 0
0 0

]
= (M � T )

[
(I −AT )−1 0

0 0

]
.

Remark. Let Q = I − T . Notice that

Q− =
[
(I −AT )−1 0

0 0

]
satisfies QQ−Q = Q and Q−QQ− = Q− so that Q− is a
(1,2)-inverse of Q; see for example [1]. However, it is not
always the case that (QQ−)∗ = QQ− nor that (Q−Q)∗ =
Q−Q so Q− is not the Moore-Penrose inverse. Nor is it
the Drazin inverse of Q since Q and Q− do not necessarily
commute.

Theorem 2.6: Let M,T ∈ Rn×n, µ ∈ Rn be given where
T is the transition matrix of an absorbing Markov chain and
µ is stochastic. Set D = diag(Q−µ). If Mi,i = 0 for all
i ∈ A then the random variable

YM =
∞∑
k=0

MXk+1,Xk

has finite expectation

EµYM = tr(MDT ∗).
Proof: Suppose that Mi,j ≥ 0 for all i, j so that YM is

an increasing series. Then by the Monotone Convergence
Theorem we may exchange the order of summation and

expectation

EµYM = Eµ

∞∑
k=0

MXk+1,Xk

=
∞∑
k=0

EµMXk+1,Xk

=
∞∑
k=0

n∑
i=1

[
(M � T )T kµ

]
i

=
n∑
i=1

[( ∞∑
k=0

(M � T )T k
)
µ

]
i

=
n∑
i=1

[
(M � T )Q−µ

]
i

= tr(MDT ∗).

Notice that we have only used the assumption Mi,j ≥ 0
in the first step where we exchanged the order of expectation
and summation. For the general case let Z be the random
variable given by

Z =
∞∑
k=0

|MXk+1,Xk
|.

For all m ∈ N the triangle inequality indicates that∣∣∣∣∣
m∑
k=0

MXk+1,Xk

∣∣∣∣∣ ≤
m∑
k=0

|MXk+1,Xk
| ≤

∞∑
k=0

|MXk+1,Xk
| = Z.

Our previous work indicates that Eµ|Z| = EµZ < ∞ so
that the Dominated Convergence Theorem allows us to again
exchange the order of summation with expectation in EµYM .
The remainder of the argument is identical to the nonnegative
case.

In Theorem 2.6 we show that on an absorbing chain a
sufficient condition to guarantee Eµ|YM | <∞ is that Mi,i =
0 for i ∈ A. This condition is practically necessary in the
sense that for i ∈ A, if Pµ(Xk = i) > 0 for some k ∈ N
then Mi,i 6= 0 implies that Eµ|YM | =∞. Thus, Mi,i = 0 is
required of all absorbing states that are “reachable.”

C. Cumulative Events on Reducible Markov Chains

In the previous section we considered a special case of
reducible Markov chains. We now generalize to any reducible
chain using the canonical form for reducible matrices; see for
example [10], [9], [7]. Every reducible Markov chain can be
written in the canonical form for reducible Markov chains,
given in Fig. 1.

The blocks T11 through Trr are the transient classes and
the blocks Tr+1,r+1 through Tmm are the ergodic classes.
It is well known that ρ(Tii) < 1 for the transient classes,
i ≤ r. The ergodic classes of a reducible chain generalize
the notion of an absorbing state to a collection of states. We
generalize the block form (1) for T to

T =
[
AT 0
BT ET

]
,
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Fig. 1. The canonical form for reducible Markov chain. The blocks T11, . . . , Trr represent the transient states and the block Tr+1,r+1, . . . , Tmm

represent the ergodic classes.

T =



T11 0 . . . 0 0 0 . . . 0
T21 T22 . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

Tr1 Tr2 . . . Trr 0 0 . . . 0
Tr+1,1 Tr+1,2 . . . Tr+1,r Tr+1,r+1 0 . . . 0
Tr+2,1 Tr+2,2 . . . Tr+2,r 0 Tr+2,r+2 0

...
...

. . .
...

...
...

. . .
...

Tm1 Tm2 . . . Tmr 0 0 . . . Tmm


.

where AT corresponds to the transient states, BT is the
transition into the ergodic classes, and ET is block diagonal
containing the ergodic classes. We denote the ergodic states
by E , the ith ergodic class by Ei, and the transient states by
T .

Theorem 2.7: Let M,T ∈ Rn×n be given where T is a
reducible stochastic matrix in canonical form and let E be
the indices of the ergodic states. Let µ ∈ Rn be stochastic
and set D = diag(Q−µ). If Mi,j = 0 whenever either of
i, j ∈ E then the random variable

YM =
∞∑
k=0

MXk+1,Xk

has expectation given by

EµYM = tr(MDT ∗).
Proof: Since ρ(Tii) < 1 for all the transient classes

it follows that ρ(AT ) < 1 as in Lemma 2.4. The condition
Mi,j = 0 for either of i, j ∈ E guarantees the result of
Lemma 2.5. With these results, the remainder of the proof
is identical to the proof of Theorem 2.6.

D. Time-Average Events

The previous sections address reducible Markov chains.
Masks may be used for any general chain although the sum

∞∑
k=0

MXk+1,Xk

does not converge in the general case. However, for any
stochastic matrix T the limit

lim
N→∞

1
N

N∑
k=0

T k = G (3)

exists. If we let Q = I−T as above, then G is the projector
onto the null space N (Q) along the range R(Q). In terms
of the group generalized inverse, or Drazin inverse Q#, we
can write G = I −QQ#; see for example [1], [7], [10]. For
a square matrix A, there exists a matrix P such that

A = P−1

[
B 0
0 N

]
P

where N is nilpotent and B is invertible. Here N is the
Jordan segment of A corresponding to the eigenvalue λ = 0.
Then the group generalized inverse of A is given by

A# = P−1

[
B−1 0

0 0

]
P.

Theorem 2.8: Let M,T ∈ Rn×n be given with T stochas-
tic. For any stochastic µ ∈ Rn, set D = diag(Gµ). Then the
random variable

YM = lim
N→∞

1
N

N∑
k=0

MXk+1,Xk

has expectation given by

EµYM = tr(MDT ∗).
Proof: Let γ = max {|Mi,j | | 1 ≤ i, j ≤ n}. Then for

all N ∈ N,

1
N

N∑
k=0

MXk+1,Xk
≤ 1
N

N∑
k=0

γ =
N + 1
N

γ < 2γ

so that we may apply the Dominated Convergence Theorem.
This and the linearity of expectation give

EµYM = Eµ lim
N→∞

1
N

N∑
k=0

MXk+1,Xk

= lim
N→∞

1
N

N∑
k=0

EµMXk+1,Xk

= lim
N→∞

1
N

N∑
k=0

n∑
i=1

[
(M � T )T kµ

]
i

=
n∑
i=1

[
(M � T )

(
lim
N→∞

1
N

N∑
k=0

T k

)
µ

]
i

=
n∑
i=1

[(M � T )Gµ]i

= tr(MDT ∗).

Time-average events may also be applied to reducible
chains. In this case, the value of the mask M on the
transitions leaving transient states is irrelevant since YM (ω)
is determined by the time-average value on the ergodic class
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that ω enters. Thus, YM represents the steady-state behavior
of T . For example, for an absorbing chain

EµYM =
∑
i∈A

Pµ(Xk → i)Mi,i.

For example, if Mi,i = 1 for a given i ∈ A and Mi,j = 0
elsewhere then EµYM is the probability of absorption into i
given the initial distribution µ.

III. EXAMPLES

In this section we present examples of masks for deter-
mining some of the canonical quantities for reducible chains,
specifically, those presented by Meyer. We then give a novel
example.

A. Canonical Examples

Meyer [10] showed that Q# and I − QQ# contain the
following values for absorbing chains.

(a) For j ∈ A, (I − QQ#)i,j is the probability of being
absorbed into state j when initially in state i.

(b) If i, j /∈ A then (Q#)i,j is the expected number of
times the chain will be in state j when initially in
state i.

(c) The expected number of steps until absorption when
initially in state i /∈ A is

∑
j /∈A(Q#)i,j .

For general reducible chains, Meyer suggests representing
the ergodic class by a single state and using the above
results to determine the same values. Notice that this method
focuses on counting visits to states. By counting transitions
we recover the same quantities and are not obligated to
reduce a chain to its absorbing representation.

For any ergodic class Em, let

Mi,j =

{
1 j ∈ Em, i ∈ T ,
0 otherwise.

Then YM is 1 on any realization which enters Em and zero
elsewhere. Thus, EµYM is the probability of absorbtion into
E which gives (a) for any reducible chain.

For (b), given any s ∈ T , let

Mi,j =

{
1 i = s,

0 otherwise.

Then EµYM is the expected number of arrivals at state s
given the initial distribution µ. Setting Mi,j = 1 when j = s
instead of i = s gives the expected number of departures
from state s. These quantities may differ depending on the
initial distribution.

To find (c) let

Mi,j =

{
1 j ∈ T ,
0 otherwise.

EµYM is the expected number of steps until absorption into
some ergodic class.

B. Composite Markov Chains

Suppose T1 ∈ Rn1×n1 and T2 ∈ Rn2×n2 are stochastic
matrices. Let T = T1 ⊗ T2 ∈ Rn1n2×n1n2 be the Kronecker
product of T1 and T2; see for example [4], [3], [8]. For
simplicity, we label the entries of T by T(i1,i2),(j1,j2) which
represents the i2, j2 entry of the i1, j1 block of T . It is
straightforward to check that T is also column stochastic.
Indeed, if Xk is the Markov chain of T1 and Yk is the Markov
chain of T2 then
T(i1,i2),(j1,j2)

= P (Xk+1 = i1, Yk+1 = i2 | Xk = j1, Yk = j2).

Similarly, given stochastic µ1 ∈ Rn1 and µ2 ∈ Rn2 , the
vector µ = µ1 ⊗ µ2 ∈ Rn1n2 is stochastic and the same
indexing scheme applies:

Pµ(X0 = i1, Y0 = i2) = µ(i1,i2).

Clearly, this generalizes to any p ≥ 2.
Suppose T1 represents a competitive system and the states

are ordered such that higher indices are states closer to
winning, that is, states that are closer to absorption. Then
T = T1 ⊗ · · · ⊗ Tp represents the competition between p
players taking turns. It is natural to ask what the expected
number of lead changes is, where a lead change is a
permutation in the ordering of the players.

For the sake of clarity, let p = 2. We count a lead change
if a player comes from behind and ends in the lead. In the
case that a tie is either created or broken on a turn, we count
a half a lead change. The mask for two-player lead changes
is given by

M(i1,i2),(j1,j2) =



0 j1 ∈ A1 or j2 ∈ A2

1 j2 < j1, i2 > i1

1 j2 > j1, i2 < i1

1/2 j2 = j1, i2 6= i1

1/2 j2 6= j1, i2 = i1

0 otherwise.

When j1 ∈ A the (i1, j1) block is zero. For j1 /∈ A1 the
(i1, j1) block is

M(i1,j1) =



0 . . . 0 1/2 1 . . . 1
...

...
...

...
...

0 . . . 0 1/2 1 . . . 1
...

1/2 . . . 1/2 0 1/2 . . . 1/2 0

1 . . . 1 1/2 0 . . . 0
...

...
...

...
...

...
1 . . . 1 1/2 0 . . . 0


.

When p > 2, there are at least two natural ways to define
a lead change. The first is to count a lead change whenever
the player in the lead is passed by another. We count a half
lead change for breaking or establishing a tie in the leading
position. Define the lead set L({x1, . . . , xp}) to be

L ({x1, . . . , xp}) = {1 ≤ m ≤ p | xm ≥ xl for 1 ≤ l ≤ p} .
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Thus, L(i1, . . . , ip) is the set of indices of the players tied
for the lead at the end of a turn and L(j1, . . . , jp) is the set
of indices of the players tied for the lead at the beginning of
a turn. The lead change mask is
M(i1,...,ip),(j1,...,jp) =

0 jm ∈ Am for some 1 ≤ m ≤ p,

1
L(i1, . . . , ip) 6= L(j1, . . . , jp) and

|L(i1, . . . , ip)| = |L(j1, . . . , jp)| = 1,
1/2 |L(i1, . . . , ip)| = 1 and |L(j1, . . . , jp)| > 1,
1/2 |L(i1, . . . , ip)| > 1 and |L(j1, . . . , jp)| = 1,
0 otherwise.

The second way to extend lead changes for p > 2 is to
count the permutations in the players positions. For example,
if j1 > j2 > · · · > jp and i1 < i2 < · · · < ip, then this
is a complete reordering of position, which would count as
1 + . . .+ p lead changes. Of course, lead changes may have
useful interpretations in contexts other than games or explicit
competitions.

IV. COMPUTATION

In this section we discuss practical computation of The-
orem 2.6. We treat only the common, absorbing case. The
theorem assumes the states are ordered to obtain the sub-
matrix AT . We can perform the computation without any
reordering.

(a) Set Q = I − T .
(b) Set Qi,j = 0 for any i, j satisfying either Qi,i = 0 or

Qj,j = 0. That is, zero the rows and columns of Q
corresponding to the absorbing states of T .

(c) Solve the system Qν = µ.
(d) Set D = diag(ν) and compute R = DT ∗.

The quantity R is independent of the mask. For each mask,
we compute EµYM = tr(MR). Of course, the trace requires
the computation of only n scalar products of the rows of M
and the columns of R, which correspond to the diagonal
entries of MR.

V. SIMULATIONS

In this section we compute the expectations of several
transition events on a specific Markov chain and compare the
results to a Monte Carlo simulation as a verification of our
results. We use the game Chutes and Ladders (or Snakes and
Ladders), which is characterized by a substantial number of
states (82) and exhibits a gradual drift towards the absorbing
state combined with occasional large jumps. The MATLAB
script used for computing expectations and the code for the
simulations can be found in [5].

We simulated the following events in 100 million games.
• Second-To-Last Square: The number of times a player

gets stuck on the second-to-last square.
• Large Ladder Traversal: The number of times the ladder

from 28→ 84 is traversed.
• Game Length: The number of turns in the game.

In addition to the above events the following were simulated
for a two-player game.
• Lead Changes: The number of lead changes in the game.
• First-player Advantage: The probability that both play-

ers finish in the same number of turns (player 1 is the
winner in this case).

• First-player Win Frequency: The probability that player
1 wins.

Table I compares the sample mean obtained from simula-
tion with the expectation computed using Theorem 2.6. The
results agree up to at least three significant digits in every
case.

TABLE I
RESULTS OF EVENT SIMULATIONS

Expectation Computed
Event Sample Mean Using Theorem 2.6

Single-Player Events
Second-To-Last Square 1.2954 1.2958

Large Ladder 0.5895 0.5896
Game Length 39.596 39.598

Two-Player Events
Second-To-Last Square 1.1159 1.1166

Large Ladder 0.8181 0.8180
Game Length 26.513 26.513
Lead Changes 3.9679 3.9679

First-Player Advantage 0.0156 0.0156
First-Player Wins 0.5078 0.5078
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