
 
 

 

  

Abstract— We are considering the problem of controlling 
synchronous motors driven through AC/DC rectifiers and 
DC/AC inverters. The control objectives are threefold: (i) 
forcing the motor speed to track a reference signal, (ii) 
regulating the DC Link voltage, (iii) enforcing power factor 
correction (PFC) with respect to the power supply net. First, 
a nonlinear model of the whole controlled system is 
developed in the Park-coordinates. Then, a nonlinear multi-
loop controller is synthesized using the backstepping design 
technique. A formal analysis based on Lyapunov stability 
and average theory is developed to describe the control 
system performances. In addition to closed-loop global 
asymptotic stability, it is proved that all control objectives 
(motor speed tracking, DC link voltage regulation, and 
unitary power factor) are asymptotically achieved up to 
small harmonic errors (ripples).. The above results are 
confirmed by simulations which, besides, show that the 
proposed regulator is quite robust with respect to uncertain 
changes of load torque. 

I. INTRODUCTION 
ERAMANENT magnet synchronous (PMS) motors are 
more suitable for electric traction compared with 

induction motors. Indeed, they possess a better 
mass/power ratio, develop a much higher power level and 
present a more satisfactory efficiency. In effect, the Joule 
losses in PMS motors are much less important as these 
involve no field and rotor currents. The spectacular 
development of power electronics technology, over the 
last recent years, has resulted in reliable power electronic 
converters which make it possible to drive synchronous 
machines in varying speed mode. Indeed, speed variation 
can only be achieved for these machines by acting on the 
supply net frequency. Until the recent development of 
modern power electronics, there was no effective solution 
to AC machine speed control because there was no simple 
way to vary the net frequency. On the other hand, in the 
electric traction domain, the used power nets are either DC 
or AC but mono-phase. Therefore, three-phase DC/AC 
inverters turn out to be the only possible interface 
(between railway nets and 3-phase AC motors) due to 
their important capability to ensure a flexible voltage and 
frequency variation. The above considerations illustrate 
the major role of modern power electronics in the recent 
development of electrical traction applications. 

As mentioned above, a three-phase DC/AC inverter 
used in traction is supplied by a power net that can be 
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either DC or mono-phase AC. In the case of AC supply, 
the (mono-phase) net is connected to the three-phase 
DC/AC inverter through a transformer and AC/DC 
rectifier (Fig 1). The connection line between the rectifier 
and the inverter is called DC link. 
The system consisting of the AC/DC converter, the 
DC/AD inverter and the PMS motor has to be controlled 
to achieve varying speed reference tracking. The point is 
that such system behaves as a nonlinear load vis-à-vis to 
the AC supply line. Then, undesirable current harmonics 
are likely to be generated in the AC line. These harmonics 
reduce the rectifier efficiency, induce voltage distortion in 
the AC supply line and cause electromagnetic 
compatibility problems. The pollution caused by the 
converter may be reduced resorting to additional 
protection equipments (transformers, condensers…) 
and/or over-dimensioning the converter and net elements. 
However, this solution is costly and may not be sufficient. 
To overcome this drawback, the control problem must 
have as objective not only motor speed control but also 
rejection of current harmonics. The last objective is 
referred to power factor correction (PFC), [1].  

Previous works on synchronous machine speed control 
simplified the control problem neglecting the dynamics of 
the AC/DC rectifier and so making the focus only on the 
set ‘DC/AC inverter - Motor’. A wide range of control 
solutions have thus been proposed. These involved as well 
simple techniques such as field-oriented control (FOC) [7] 
and NL techniques such as feedback linearization (FL) 
[10], direct torque control (DTC) [8] or sliding mode 
(SM) [9]. Ignoring the AC/DC rectifier in the 
development of a control strategy, is criticized at least 
from two viewpoints. First, such development relies on the 
assumption that the DC voltage provided by the AC/DC 
rectifier is perfectly regulated. The problem is that a 
perfect regulation of the rectifier output voltage can not be 
met ignoring the rectifier load which is nothing other than 
the set ‘DC/AC inverter - Motor’. The second drawback 
of the previous control strategy lies in the entire 
negligence of the PFC requirement. It is not judicious, 
from a control viewpoint, to consider separately the 
association ‘inverter - Motor’, on one hand, and the 
rectifier, on the other hand. 

In the present work, we are developing a new multiloop 
control strategy that deals simultaneously with both 
controlled subsystems: the AC/DC converter and the 
combination ‘DC/AC inverter - Motor’. The main feature 
of our control design is threefold: 
i.  A input current loop is first designed so that the 
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coupling between the power supply net and the 
AC/DC rectifier operates with a unitary power factor; 

ii.  A second loop is designed to regulate the output 
voltage of AC/DC rectifier so that the DC link between 
the rectifier and inverter operates with a constant 
voltage; 

iii. A bi-variable loop is designed to enforce the motor 
velocity to track its varying reference value and to 
regulate the d-component of stator current to zero in 
order to optimize the absorbed stator current. 

All loops are designed using the backstepping technique 
and Lyapunov design, [5]. A theoretical analysis will 
prove that the four-loop controller thus described actually 
stabilizes (globally and asymptotically) the controlled 
system and does achieve its tracking objectives with a 
good accuracy. More precisely, it is shown that the steady-
state tracking errors corresponding to rectifier input 
current and rectifier output voltage, motor speed and stator 
current d-component are harmonic signals and their 
amplitudes depend on the supply net frequency: the larger 
the net frequency the smaller the error amplitudes. It 
follows in particular that the motor regulation objective 
and the PFC requirement are actually ensured, up to 
harmonic errors of insignificant amplitude, provided the 
net frequency is large enough. This formally establishes 
the existence of the so-called ripples, which are usually 
observed in similar practical applications, and proves why 
this phenomenon is generally insignificant. These 
theoretical results are obtained making a suitable use of 
different automatic control tools e.g. averaging theory and 
Lyapunov stability [2]. The paper also includes a 
simulation study confirming the above theoretical results 
and, besides, shows that the controller compensates well 
to disturbing effects due load changes. 

The paper is organized as follows: the controlled system 
(including the AC/DC/AC converter and the synchronous 
motor) is modeled and given a state space representation; 
the control objectives in Section 2; the controller design 
and the closed-loop system analysis are presented in 
Section 3; the controller performances and robustness are 
illustrated Section 4 through numerical simulations; a 
conclusion and a reference list end the paper. To alleviate 
the paper presentation, a list of notations is given 
hereafter. 

Notation list 
L   stator winding inductance  
R   resistance of the stator windings 
id , iq   d- and q- axis currents  

qd vv ,    d- and q- axis voltages  
ω  angular velocity of the rotor  
p  number of pole pairs  
TL  load torque 
J  combined inertia of rotor and load  
f  combined viscous friction of rotor and load  
KM  flux motor constant 

 

 

II. MODELING THE ASSOCIATION AC/DC/AC CONVERTER-
SYNCHRONOUS MOTOR  

The controlled system is illustrated by Fig 2. It includes 
an AC/DC boost rectifier, on one hand, and a combination 
‘DC/AC converter-synchronous’ motor on the other hand. 
The circuit operates according to the well known Pulse 
Width Modulation (PWM) principle.  

 
A. Modeling the PMW AC/DC Rectifier  

The transformer secondary is connected to a H-bridge 
converter which consists of four IGBT’s with anti-parallel 
diodes for bidirectional power flow arrangement. This 
subsystem is described by the following set of differential 
equations: 

dc
ee vs
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dt
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Cdt
dv 11

−=  (1.b) 

where ei  is the current in inductor L1, dcv  denotes the 
voltage in capacitor C, si  designates the input current 
inverter, ev  is the supply net sinusoidal voltage 

( )cos(..2 tEv ee ω= ) and s is the switch position function 
taking values in the discrete set { 1,1− }. Specifically: 
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It is not suitable for control design due to the switched 
nature of the control input s. As a matter of fact, existing 
nonlinear control approaches apply to systems with 
continuous control inputs. Therefore, control design for 
the above inverter will be based upon the following 
average version of (1.a-b): 
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11

1 1 xu
LL

v
dt
dx e −=  (2.a) 
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xu
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dx 11

11
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where eix =1 , dcvx =2  and 1u = s  denote, respectively, 
the average values of ei , dcv  and s  over cutting periods. 
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Fig.2. AC/DC/AC drive circuit with three-level inverter 

 
Fig.1. Schematic representation of single phase AC supply powering 

3-phase AC motor 
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B. Modeling the combination PMW DC/AC converter-
synchronous motor 

Such modeling is generally performed in the d-q 
rotating reference frame because the components di  and 

qi  then turn out to be DC currents. According to [5], the 
model of the synchronous motor, expressed in the d-q 
coordinates, is given by: 

J
Ti
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J
F

dt
d L

q
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2
3ωω  (3.a) 

q
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dq
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The inverter d- and q-voltage can be controlled 
independently. To this end, these voltages are expressed in 
function of the corresponding control action (see e.g. [4]): 

2uvv dcq =  (4.a) 

3uvv dcd =  (4.b) 
2/)(3 32 dqs iuiui +=  (4.c) 

where dq uuuu == 32 ,  are the average modulation 

indexes in the d- and q-axis, respectively. Similarly, let us 
introduce the state variables ω=3x , qix =4 , dix =5 . 

Then, substituting (4a-b) in (3a-c) yields the following 
state space representation of the combination ‘inverter-
synchronous motor’:  
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The state space equations obtained up to now constitute a 
state-space model of the whole system including the 
AC/DC/AC converters combined with the synchronous 
motor: 
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III. CONTROLLER DESIGN 

A. Control objectives 
The first control objective is to force the speed ω  to 

track a reference signal refω . The second objective is to 
constrain the input current rectifier to be sinusoidal and in 
phase with the AC supply voltage (PFC).  But, there are 
three control inputs at hand, namely 1u , 2u  and 3u . Then, 

we will further seek two additional control objectives. 
Specifically: 

-  controlling the continuous voltage dcv so as it tracks a 
given reference signal dcrefv (generally constant, equal 
to the nominal voltage entering the inverter) 

-  regulating the current di  to a reference value drefi , 
equal to zero in order to guarantee the absence of d-
axis stator current 

 The last requirement is explained by the fact that the 
developed torque is given by the relation  

2/))((.3 qdqdqM iiLLiKpT −+=  (see e.g. [6]). 
Accordingly, torque control should be performed acting 
on both di  and qi . But, for the surface-magnet 
synchronous motor, the large effective airgap means that 

LLL qd =≈  i.e. di  does not really influence T and so it is 
sufficient to regulate it to zero. 

B. Control loop design for current ei   

The PFC objective means that the input current rectifier 
should be sinusoidal and in phase with the AC supply 
voltage. We therefore seek a regulator that enforces the 
current 1x  to tack a reference signal *

1x of the form: 

evkx =*
1  (7) 

At This point k  is any positive (time-varying) parameter. 
Introduce the current tracking error:   

*
111 xxz −=   (8) 

In view of (6.a), the above error undergoes the following 
equation: 

*
121

11
1 ..1 xxu

LL
v

z e && −−=  (9) 

To get a stabilizing control law for this first-order system, 
consider the quadratic Lyapunov function 2

11 5.0 zV = . It 

can be easily checked that the time-derivative 1V&  is a 
negative definite function of 1z if control input is chosen 
to be: 

( ) 2
*
111111 /)/(. xxLvzcLu e &−+=  with 01 >c  (10) 

 
Proposition 1. Consider the control subsystem (6.a) and 
the control law (10). The reference *

1x  is assumed 
available and derivative. The inner closed-loop system 
undergoes the following equation: 111 .zcz −=&   with
 01 >c . It is clearly seen that the error 1z  converges 
exponentially fast to zero, whatever the initial conditions.   

C. Control loop design for the voltage dcv  

The aim of the outer loop is to generate a tuning law for 
the ratio k so that the output voltage vdc be regulated to a 
given reference value vdcref.  

1) Relation between  k  and 2x  

The first step in designing such a loop is to establish the 
relation between the ratio k (control input) and the output 
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voltage 2x . This is the object of the following proposition. 
Proposition 2.  Consider the power converter described 
by (6.a-b) and the ei  control loop defined by (10). One 
has the following properties: 
1) The output voltage 2x  varies, in response to the tuning 
ratio   k, according to the equation: 

 )(
2
3)(1

42531
2

2

2 xuxu
C

vzvk
xCdt

dx
ee +−+=  (11) 

2) The squared voltage ( 2
2xy = ) varies, in response to the 

tuning ratio   k, according to the equation: 

),(2 2 txfvk
Cdt

dy
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where  
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2
3(2),( 425321 xuxuxvz

C
txf e +−=  (13)  

Proof.  1) The input power in the AC/DC side is expressed 
by ee vxP 1= . The delivered power at the load (capacity 
and inverter) is given by 211 .. xxuPtrans = . Using the power 
conservation argument ( etrans PP = ), one has: 

2111 ... xxuvx e =  (14) 
Using (14) and the fact that the input current expression is 

11 . zvkx e += , yields : 21
2

11 )( xvzvkxu ee += , which 
together with (6.b) establishes (11)  
2) Lets introduce the variable change 2

2xy =  in (11). 
Deriving y with respect to time and using (11) yields the 
model (12) and completes the proof of proposition 1.     

2) Squared DC-link voltage regulation 
The ratio k stands up as a virtual control input in the 

system (12). The reference signal 2ˆ dcrefref vy =  of the 

squared output capacitor voltage ( dcvx =2 ) is chosen to 
be constant, equal to the nominal input voltage of the 
inverter. Then, it follows from (12) that the tracking error 

refyyz −=2  undergoes the following equation: 

refe ytxftkE
C

kE
C

z && −++= ),()2cos(22 22
2 ω  (15) 

To get a stabilizing control law for this system, consider 
the following quadratic Lyapunov function: 
  2

22 5.0 zV =  (16) 

It is easily checked that the time-derivative 2V&  can be 
made a negative definite function of the state 2z  by 
letting: 

( )refe ytxfzcCtEkEk &+−−=+ ),(
2

)2cos( 22
22 ω  (17) 

where  02 >c  is a design parameter. 
An approximate simple solution is: 

( ) 2
22 /),(

2
EytxfzcCk ref&+−−=  (18) 

In view of such choice, it follows from (18), (17) and (15) 
that 2z  undergoes the differential equation:  

)2cos(2 2
222 tEk

C
zcz eω+−=&  (19) 

Remark. The signal k is treated by a prefilter to obtain its 
derivative signal (then the time-derivative of *

1x  is 
available). 

D. Control loop design for motor speed ω   
A control law for the remaining (actual) control input, 

namely 2u , will now be determined based on equations 
(6c-d) in order to guarantee speed reference tracking. To 
this end, let 3z denote the speed tracking error: 

refxz ω−= 33  (20) 
In view of (6.c), the above error undergoes the 

following equation: 

ref
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In (21), the quantity 4).2/3( xJKM=α  stands up as a 

(virtual) control input for the 3z -dynamics. Let *α  denote 
the desired trajectory (yet to be determined) of α . It is 
easily seen from (21) that if  *αα =   with: 

ref
L

J
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J
Fzc ωα &+++−= 333

* .  (22) 

Then one would get 333 zcz −=&  with 03 >c  is a design 
parameter. This would clearly ensures asymptotic stability 
of (21) with respect the Lyapunov function: 
 2

33 5.0 zV =  (23) 
In effect, the time derivative of 3V would then be: 

02
33333 <−== zczzV &&  (24) 

As 4).2/3( xJKM=α , is a virtual control input, one can 

not set *αα = . Nevertheless, the above expression of the 
desired trajectory is retained and a new error is 
introduced: 

*
4 αα −=z  (25) 

Using (23)-(25), it follows from (21) that the 3z -
dynamics undergoes the following equation: 

4333 zzcz +−=&  (26) 
The next step consists in determining the control input 2u  
so that the errors ( 43 , zz ) vanish asymptotically. The 
trajectory of the error 4z is obtained by operating a time-
derivation on (25), that is: 

*
44 ).2/3( α&&& −= xJKz M  (27) 

Using (22) and (6c-d) in (27) yields: 
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Then, the error equation (26) and (28) can be rewritten in 
a more compact form: 
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4333 zzcz +−=&   

22334 2
3)( xu

JL
Kzcxz M+++= && γβ  (31) 

To determine a stabilizing control law for (31), let us 
consider the quadratic Lyapunov function candidate: 

2
434 5.0 zVV +=  (32) 

Using (26), the time derivative of 4V can be rewritten as:   

4443
2
334 zzzzzcV && ++−=  (33) 

This shows that, for the 43 , zz -system to be globally 
asymptotically stable, it is sufficient to choose the control 

2u  so that 2
44

2
334 zczcV −−=&  (with 04 >c ). In view of 

(33), this amounts to let: 

3444 zzcz −−=&  (34) 
Comparing (34) and (31) yields the following 
backstepping control law: 

( ) 23
2
34432 /)()1()()3/2( xxzczccKJLu M γβ ++−−+−=  (35) 

E. d-axis current loop design 

The d-axis current 5x  undergoes equation (6.e) in 
which the following quantity: 

Lxuxxpv /... 2343 +=  (36)  
acts as a virtual input. As the reference signal drefi  is zero, 

it follows that the tracking error 55 xz =  undergoes the 
equation: 

vzLRz +−= 55 )/(&  (37) 
To get a stabilizing control signal for this first-order 
system, consider the following quadratic Lyapunov 
function: 

2
55 5.0 zV =  (38) 

It can be easily checked that the time-derivative 
2
555 zcV −=&  is a negative definite function of 5z  if the 

(virtual) control input is let to be: 

55 ))/(( zcLRv +−−=  with 05 >c  (39) 
Now, it is readily observed that the actual control input 3u   
is obtained substituting (39) in (36) and solving the 
resulting equation. Doing so, one gets: 

2
435553 x

Lxxpz
L
Rzcu ⎟

⎠
⎞

⎜
⎝
⎛ −+−=  (40) 

Proposition 3. Consider the control system consisting of 
the subsystem (6c-e) and the control laws (35) and (40). 
The resulting closed-loop system undergoes, in the 
( 543 ,, zzz )-coordinates, the following equation: 
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It is readily seen that (41) is globally asymptotically stable 
with respect to the Lyapunov function 

)(5.0 2
5

2
4

2
3 zzzV ++= . As (41) is linear, then the error 

vector ( 543 ,, zzz ) converges exponentially fast to zero, 
whatever the initial conditions. 

Theorem. Consider the system including the AC/DC/AC 
power converters and the synchronous motor connected in 
tandem, as shown in Fig.2. For control design purpose, 
the system is represented by its average model (6a-e). Let 
the reference signals  dcrefv , refω  and drefi be selected 
such that 0>dcrefv , 0≥refω  and 0=drefi . Consider the 
controller defined by equations (10), (35) and (40) where 
all design parameters, namely 4321 ,,, cccc  and 5c  are 

positive. Introduce the notations: [ ]Tzzzzzz 54321= ; 

eωε 2/1=  

 Then, one has the following properties: 
1) The resulting closed-loop system undergoes the 
following equation: 
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 2) The tracking errors 431 ,, zzz  and 5z  vanish 
asymptotically 

3)  Let the reference signals  dcrefv  and refω  be 

nonnegative and periodic with period eN ωπ / , where 
N is any positive integer. Then exists a positive real 

*ε and ξ  such that for all *0 εε << : the tracking 
error 2z  is a harmonic signal that continuously 
depend on ε  and: 

ξεε <),(tz  Consequently: 0),(lim 20
=

→
ε

ε
tz  (43) 

Proof. In order to prove the theorem, consider the 
equation (42) and introduce the time-scale change 

teωτ 2=  and the state variable )()( tzw =τ  which implies 

etzw ωτ 2/)()( && = . Then, equation (42) gives: 
),,()()( 1 ετετετ wgwAw +=&  (44a) 

with: 
( )TEkCwg 000)cos()/2(0),,( 2

1 τετ =  (44b) 
The stability of system (44) will be now be analyzed  

with using tools from the averaging theory [2]. As dcrefv  

and refω  are periodic with period eN ωπ /1  and eN ωπ /2  

respectively, with 1N  and 2N  are any positive integer 
numbers. The average system is essentially obtained 
averaging the function ),,(1 ••τg  with respect to its first 
argument, over the interval [0, 2π]. From (44b) it is 
readily seen that the average value of ),,(1 ••τg  is 
precisely equal to zero. Hence, the average version of 
(44a) is: 

)()( τετ wAw =&  (46) 
In order to get stability results regarding the system of 
interest, i.e. (44a), it is sufficient to analyze the linear 
average system (45). It is clear that matrix A is Hurwitz 
(all its eigenvalues have negative real parts) because the 
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coefficients c1 to c5 are positive. Then, the origin 0=w  
is an equilibrium point of the average system (45). Now, 
invoking averaging theory (see e.g. Theorem 10.4 in [2]), 
we conclude that there exists a positive real constants 

*ε and ξ  such that, for all *0 εε << , (42) has a unique, 

exponentially stable, 2π-periodic solution ),( εzw  with 
the property  ξεεε ≤= ),(),( tzzw  . This proves the 
theorem. 

 
IV. SIMULATIONS  

The experimental setup, described by Fig. 3, has been 
simulated in Matlab/Simulink environment. The involved 
elements have the following characteristics: 

. Supply network: )cos(.2)( tEtv ee ω=  ; 
E=220v/50Hz 

. AC/DC/AC converters: L1=15mH; C=4.5mF; 

. Synchronous motor: L=9.4mH; R=0.6Ω; KM=0.29; 
J=0.000765Nm/rd/s², F=0.003819Nm/rd/s;  p=2.  

The reference values of the state variables are chosen 
as:  

vdcref = 500V; refω  steps from 0 to 100 rad/s at t=0.3s; a 
constant load torque of 15 Nm is applied to the drive at 
t=0.5s and then back to 10 Nm at t=0.7s. idref =0.  

The following values of the controller parameters 
turned out to be suitable: c1=1000, c2=50, c3=80, c4=900, 
c5=800.  

The controller performances are illustrated by Figs 4 to 
6. Fig 4 shows that a unitary power factor is achieved after 
a transient period following each change in reference 
values or load torque. Figs 5 and 6 show that the tracking 
quality is quite satisfactory for all controlled variables 
( ddc iv ,, ω ). The response time is less than 0.05 s.  The 
disturbing effect, due to load torque change, is also well 
compensated by the regulator.  

V. CONCLUSION 
In this paper we have considered the problem of 

controlling the power electronic AC/DC/AC converters 
with synchronous motor load. The system dynamics have 
been described by the averaged 5th order nonlinear state-
space model (6a-e). Based on such a model, the Lyaponuv 
stability and averaging theory are used to establish the 

multiloop nonlinear controller. Presented approach 
guarantees (Theorem) well line side power quality, 
controllable and stable (average) DC-link voltage (vdc) as 
well as, the power factor at AC input mains is close to 
unity (PFC) in the entire operating range of the drive. The 
convergence of the rotor speed and d-axis current, towards 
their references values, is guaranteed. These results have 
been confirmed by a simulation study which, further, 
showed the robustness of controller performances with 
respect to load changes. 
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Fig. 6. Speed ω(rad/s) and d-axis current id(A) 
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the DC-link voltage :vdc

0.65 0.7 0.75

-30

-20

-10

0

10

20

30

40

50

60

70

Time (s)

Ie (A)
0.1Ve (V)

Fig.4. Input current and  
         voltage waveform

Fig.3. Control system including AC/DC/AC converter and a PMSM 
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