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Abstract—A direct Lyapunov method is applied to tracking 
problems for underactuated mechanical systems.  The method 
involves reformulating the problem in terms of a sliding mode 
vector and then designing a control law that stabilizes the 
sliding mode vector to a lower bound.  The design of the 
tracking control law utilizes the authors’ previous work on 
stabilization of underactuated mechanical systems using a 
direct Lyapunov method.  One of the attractive features of the 
approach presented is that it requires no inverse dynamics.  
The efficacy of the method is demonstrated with applications to 
the ball and beam, where the unactuated axis is made to track a 
specified path, and to the inverted pendulum cart, where the 
actuated axis is made to track a specified path while 
maintaining stability of the pendulum. 

I. INTRODUCTION 

Underactuated mechanical systems have fewer actuators 
than degrees of freedom.  Examples of underactuated 
systems include underwater vehicles, active control of fuel 
slosh in rockets, overhead cranes and crane loads, rockets, 
and satellites.  Control applications of underactuated 
systems are divided into stabilization and tracking.  
Stabilization was once the primary focus of control 
researchers such as Bloch, Leonard, and Marsden (2000, 
2001) with controlled Lagrangians; Olfati-Saber (1998, 
2000, and 2001) with backstepping; Ortega, Spong, Gómez-
Estern, Blankenstein (2002) in addition to Acosta, Ortega, 
Astolfi and Mahindrakar (2005) with interconnection 
damping assignment – passivity based control (IDA-PBC); 
Auckly, Kapistanki, and White (2000) with the λ method; 
and White, Foss, Patenaude, Xin, and García (2008) with the 
direct Lyapunov approach (DLA).   

Tracking control of underactuated systems is quickly 
becoming an area of significant activity.  Applications for 
tracking of underactuated systems include free flying robots, 
robots in remote or hazardous locations that suffer actuator 
failure on one or more joints, trajectory following by 

 
Manuscript received September 22, 2008.  
W. N. White is with the Mechanical and Nuclear Engineering 

Department of Kansas State University, Manhattan, KS 66506-5205 USA 
phone: 785-532-2615; fax: 785-532-7057; (e-mail: wnw@ksu.edu). 

J. Patenaude is with Caterpillar Inc. in Peoria, IL (e-mail: 
jaspen.p@gmail.com ). 

M. Foss is with the Department of Mathematics at the University of 
Nebraska, Lincoln NE 68588-0130 USA (e-mail: mfoss@math.unl.edu). 

D. García is a Ph.D. student in Mechanical Engineering at Kansas State 
University (e-mail: deyka@ksu.edu). 

The support of this work, in part, by the National Science Foundation 
Grants No. CMS-0556019 and CMS-0600442 is gratefully acknowledged. 

rockets, and avoiding obstacles while moving a crane load.  
All cited examples are holonomic dynamic systems.  
Applications involving wheeled vehicles such as mobile 
robots and unicycles are examples of non-holonomic, 
underactuated systems.  The concentration here is 
holonomic systems. 

Recent developments of tracking control design for 
holonomic, underactuated systems can be categorized into 
two main areas: matching and non-matching based.  Other 
approaches to underactuated system tracking include the 
work of Driessen and Sadegh (2000) where optimal control 
techniques were used for minimum time path following of 
an underactuated manipulator.  Their computations were 
made possible by linearization about the trajectory.  Blajer 
and Kolodziejczyk (2007) developed a feed forward control 
scheme based on inverse dynamics for their gantry crane.  
Also, Jain and Rodríguez (1991) show how underactuated 
manipulators can be split into active and passive systems for 
the purposes of kinematics and dynamics. 

Tracking control applications for fully actuated systems 
have influenced the approaches taken for underactuated 
systems.  Several workers have considered inverse dynamics 
in developing a path for which the trajectory history of each 
axis is found in advance.  The inverse dynamics for 
underactuated systems is complicated by the reduction in the 
possible paths specifically dictated by the lack of actuation.  

Non-matching based techniques have proven popular in 
recent years. A notable contribution was made by Sandoz, 
Kokotović, and Hespanha (2008) with their trackablity filter 
scheme. This approach employs a filter which produces an 
augmented reference signal derived from a nominal input. 
This new signal is zero error trackable by the underactuated 
system provided that its zero dynamics are input to state 
stable (ISS). Alternatively, Ashrafiuon, and Erwin (2004) 
presented a sliding mode control approach which can drive 
an underactuated system onto a sliding surface.  Lyapunov 
theory was used to develop the controller used to reach the 
sliding surface, however asymptotic stability of the sliding 
surface was not established for the general case. The 
absence of an effective method of determining the 
asymptotically stable surfaces could prove to be a limitation 
of this technique. 

Research on extending matching equation based 
stabilization techniques to tracking has been increasing 
recently. An example of this is Singhal, Patayane, Banavar 
(2006) in which the authors derive and compare tracking 
controllers using the method of interconnection damping 
assignment-passivity based control (IDA-PBC) and a direct 
Lyapunov approach. These controllers were limited in 
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application due to the zero acceleration assumption for the 
desired trajectory. In Wang and Goldsmith (2008), an 
alternate IDA –PBC formulation was presented that was 
applied to underactuated system regulation and the tracking 
control of some non-passive systems.  In the tracking 
applications, all state variables had prescribed time histories 
and use was made of inverse dynamics. 

The approach taken in this work is to develop a 
controller that does not require inverse dynamics.  For a 
system having n degrees of freedom for which only m 
degrees are actuated, the controller design method assumes 
that m of the degrees of freedom have a specified smooth 
trajectory history.  These histories might be determined by a 
rudimentary path planner given the initial and ending system 
configurations.  The smoothness requirement stems from the 
necessity of determining the velocity and acceleration of 
each specified history.  The attractiveness of the approach to 
be presented is that given the m specified histories, the 
control law will determine, at each point of time, suitable 
history values for the n – m degrees of freedom not having 
specified trajectory histories.  This aspect of the control law 
removes the effort of having to generate these trajectories 
from inverse dynamics prior to the start of the motion.  

Part of the control law presented by Slotine and Li 
(1988) is the starting point for the controller design.  Given 
the form of the control law, the dynamics of the system are 
recast in terms of a sliding mode.  The control law for the 
new dynamic equation is developed from a direct Lyapunov 
approach very similar to that presented in White et al. 
(2008).  Because the tracking control law is to be applied to 
an underactuated system, n – m of the components of the 
control law vector must vanish.  These n – m zero control 
law equations allow the determination of the desired 
accelerations associated with the degrees of freedom having 
unspecified histories.  Integration of these accelerations 
determines the velocity and position of the unspecified axes.  
A  lower bound on the sliding mode variables is established. 

II. ANALYSIS 

A. Control Law 
The mechanical system is described by the nonlinear 

matrix equation 
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where q ∈ ℜn is a vector of generalized coordinates for the 
system’s n degrees of freedom while its time derivative, 
denoted by contains the n generalized velocities.  The 
right-hand side of (1) contains the vector τ ∈ ℜm.  It is 
assumed that the degrees of freedom are ordered so that the 
first m elements of the right side vector contain the nonzero 
inputs.  Also in (1) M(q) ∈ ℜn×n is the positive definite mass 
and/or inertia matrix, ∈ ℜn consists of centripetal 
and Coriolis forces and/or moments, CD ∈ ℜn×n is the 
symmetric viscous damping matrix, and G(q) ∈ ℜn consists 

of forces and/or moments stemming from potential 
gradients. 

,q&
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The requirement of the control law is both to stabilize 
and to drive the system along the specified trajectory.  The 
tracking controller presented by Slotine and Li (1988) was 
developed for fully actuated systems.  In order to apply this 
sliding mode approach to underactuated systems, 
modifications of the original controller must be made.  The 
control law for an underactuated system is 
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where and are the reference velocity and acceleration 
vectors, respectively,

rq& rq&&
DK ∈ ℜn×n is a positive definite 

Hermitian matrix, Φ(q) is a real scalar potential function of 
the generalized coordinates, P(q) ∈ ℜn×n is a positive 
definite matrix defined below, and the gradient is computed 
with respect to the generalized coordinates.  In comparing 
(2) to the control law presented by Slotine and Li (1988), it 
is seen that the gravitational term is not included and that 
there are additional terms which are necessitated by the 
underactuation.  The input vectors u1 and u2 together with F, 
dealing with stabilization and tracking, will be defined later 
in the analysis.  The gravitational vector G(q) of (1) will be 
seen at a later point to be related to part of the quantity F 
and the gradient of Φ.  The reference velocity is defined as 

( dddr qqΛqqΛqq −− )=−= &&& ~          (3) 
where qd is the vector of desired coordinate positions and Λ 
∈ ℜn×n is a constant, positive definite, symmetric matrix.  
The time derivative of (3) yields the reference acceleration 
vector.  The quantity q~ , consisting of the difference 
between the actual and desired coordinates, and its time 
derivative constitute the tracking errors.  The sliding mode 
vector s is 

qΛqqqs ~~ +=−= &&& r .              (4) 
If the control drives the sliding mode vector to the sliding 
surface where the vector s vanishes, we see that the tracking 
error then decays to zero. 

Combining equations (1) and (2) yields 
( ) ( ) ( ) ( ) ( )

( ) ( ) .1

2

1 qqP
u

Fu
sKqC

qqq,CqqMqGqCqqq,CqqM

D

D

Φ∇+⎥
⎦

⎤
⎢
⎣

⎡ +
+−+

+=+++

−
Dr

rr

&

&&&&&&&&&
   (5) 

Further manipulation and including  (3) and (4) produces 
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The goal of this effort is to use a direct Lyapunov method 
to complete the design of the control law for the system.  
The candidate Lyapunov function is 

1342



  

sKs D
TV

2
1

=                (7) 

where KD ∈ ℜn×n is a symmetric, positive definite matrix 
defined as the product 

( ) ( )qMqPK =D ,              (8) 
where P(q) is a positive definite matrix defined in White et 
al. (2008) so that KD has the previously specified properties. 
Computing the time derivative of (7) produces 
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where u refers to the vector [u1 u2]T on the right side of (6), 
Kv ∈ ℜn×n is symmetric and, at least, positive semi-definite, 
and Ψ will be defined later in the analysis.  Substituting the 
time derivative of s from (6) into (9), we obtain 
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A matching equation method will be used to solve (10).  
Following a strategy similar to that of White, Foss, 
Patenaude, Guo, and García (2008), we decompose (10) into 
three matching equations.  Before this is undertaken, we 
rewrite the quantity F as 

321 FFFF ++=             (11) 
where Fi will be used with the ith matching equation.  The 
first matching equation is 
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while the second matching equation is 
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and the third and final matching equation is 
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Following the procedure of White et al. (2008), the first 
two matching equations are rewritten as 
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where the same matrices are subtracted from the first 
equation and added to the second and where  ∈ ℜn×n and '

DC
DC ∈ ℜn×n are symmetric matrices defined in the following 

two sections.  Note the sum of (15) and (16) is the same as 
the sum of (12) and (13). 

a) The First Matching Equation 
The vectors F1 and F2 are factored as 

sFF imi = .                    (17) 

Using this factorization, the vector s can be eliminated from 
either side of (15); however, in order for (15) to be true in 
the most general case, we must require the symmetric part of 
the resulting matrix equation to vanish.  This leads to 
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The elements of F1m and DC are chosen so that the last two 
terms of (18) will equal 
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where β is a negative constant and KDf is the final form of 
the matrix KD, i.e. the form that KD attains when equilibrium 
is reached.  Using (19) the first matching equation becomes 
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which is evaluated numerically as part of the feedback 
process.  The matrix will be defined in the subsequent 
discussion of the second matching equation.  A convenience 
of (20) is that choosing β large makes the matrix KD 
essentially constant.  Note that the F1m from (19) times the 
vector s provides the control signal F1. 

'
DC

b) The Second Matching Equation 
Again, using the factorization of (17) and “stripping off” 

the vector s from both sides of (16) produces 
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The matrices DC and present complications in the 

solution of (21).  The matrix

'
DC

DC is already defined from the 
solution of the first matching equation, thus, will be used 
to eliminate these two terms from the second matching 
equation, i.e. 

'
DC

DC +C = 0.  Given these definitions, note 

that all of the matrices

'
D

DC and together with the matrix 
F1m all vanish as equilibrium is approached and the first 
matching equation shows the time derivative of KD vanishes. 

'
DC

A two step process is used to solve (21), the first being 
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where the αi are constants chosen so that Kv1 is positive 
semi-definite and Pi is the ith column of P(q).  Applying (22) 
and (23) to (21) shows that 

( )( ) 2vDD KKCqP −=−−              (24) 
where the sum of Kv1 and Kv2 is Kv.  The product of P(q) and 
the matrices in the parenthesis in (24) is not symmetric, 
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however, the pre and post multiplication by s extracts the 
symmetric portion of the product matrices.  Thus, we require 
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Note that the F2m from (22) times s provides the control 
signal F2.  Because the matrices on the left of (25) are 
positive definite, the resulting matrix Kv is positive definite. 

c) The Third Matching Equation 
Stripping off the vector s from (14), we arrive at 
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and the solution procedure was shown in White et al. 
(2008). 

The remarkable result of this tracking controller 
development is that we have arrived at three matching 
equations that are (with the exception of DK ) identical to 
matching equations developed for stabilization as shown 
in the authors’ previous work. 

d) Remaining Terms 
Removing the matching equations from (10), the 

remaining terms are 
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In order to satisfy Lyapunov, we desire that the right side of 
(27) is non-positive.  It will be seen that there are some 
circumstances that will render the right side of (27) positive, 
however, it will also be shown that bounds exist on the norm 
of the vector s.  More will be stated about the function Ψ in 
a later section of this paper. 

B. Tracking Control 
The quantities involved in the evaluation of (27) require 

further explanation.  The control law is given by (2) and the 
constraint that the lower n – m elements of the actuation 
vector vanish will be used to determine the vector u2.  That 
the function Ψ(s,u) is intended to be non-positive will be 
used to determine the vector u1. 

The tracking discussion will pertain to the case where the 
motion constitutes a trajectory that is contained in the 
solution space of the system.  In order to have the system 
track a prescribed trajectory, there are several possibilities.  
The first is to use the trajectory information to determine the 
time histories of the generalized coordinates.  By knowing 
the time histories of the coordinates (assumed to be 
sufficiently smooth) the generalized velocities and 
accelerations are also known.  There is a total of n degrees 
of freedom and the trajectory may specify either all or a 
subset of the generalized coordinates.  If all coordinate 
histories are specified and if the desired motion is possible 
given the underactuation, this represents one extreme in the 
classes of possible tracking problems.  At the other end, 
there is the situation where m coordinate histories are 
specified.  The m history constraints provide conditions to 

determine the m actuations.  Fewer than m constraints may 
lead to redundant solutions.  If m coordinate histories are 
specified, then one or more of the other coordinate histories 
could be determined through inverse dynamics.  In the 
general case, inverse dynamics is unattractive owing to the 
time and complexity involved in the solution process, thus, 
limiting the system’s ability to respond rapidly to a given 
task.  It should also be stated that in an underactuated system 
having m actuators, specifying m coordinate histories can in 
certain systems lead to redundant solutions for the other n – 
m axes.  This short discussion shows that there is a wealth of 
problem classes that can be considered. 

In the current work, attention is directed to those systems 
where the number of specified coordinate histories equals 
the number of actuated axes.  No inverse dynamics will be 
performed for those axes where the coordinate histories are 
not specified.  Given this class of problems, there are three 
subclasses that need to be considered.  The first subclass 
includes those problems where the coordinate histories are 
specified for the unactuated axes.  The second subclass 
involves those problems where the specified coordinate 
histories describe the motion of actuated axes.  The final 
subclass includes problems where some unactuated axes and 
some actuated axes have a total of m specified coordinate 
histories.  In this paper, the first two mentioned subclasses 
will be treated as examples. 

Attention will now return to (27) and its application.  It is 
assumed that m degrees of freedom have been specified, 
leaving n – m coordinates unspecified.   In (2), the lower n – 
m equations are solved for the reference accelerations of the 
unspecified coordinates.  This step is always possible should 
the mass/inertia matrix M(q) be full.  However, because the 
unactuated axes have inertial coupling to the actuated axes 
(off diagonal terms of M(q)), it would still be possible to 
perform this step.  If this were not true, the system would be 
uncontrollable.  That the lower n – m rows of (2) are equal 
to zero allows for the reference accelerations to be found.  In 
general, these n – m equations are nonlinear and possibly 
unstable.  The control u2 is used to stabilize these n – m 
equations.  In the examples to be presented, u2 is chosen to 
stabilize the equations through feedback linearization.  
Regardless of whether the solution of the lower n – m 
equations is performed for actuated or non-actuated 
reference accelerations, the steps of the process are the 
same.  Once the input vector u2 is determined, then u1 can be 
chosen to satisfy (27).  Additional discussion on how to 
satisfy (27) is included in the forthcoming section. 

C. Applying Equation (27) 
It is desired that the vector u1 in (27) be chosen so that Ψ 

is less than zero or at least the right hand side of (9) is non-
positive.  If Ψ is to be other than positive, we must have 
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we would then have 
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2211 uPsuPs TT −≤ .        (30) 
Depending upon the dimension of u1, the ability to satisfy 
(27) might be limited.  One possibility of satisfying (9) 
would be to determine u1 so that Ψ is zero.  Experience 
shows that computing u1 this way makes u1 noisy and the 
noise is present in actuated states.  It is proposed that a least 
squares approach be adopted in finding u1.  We desire that 
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1
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which can be rewritten as 

2211 uPsuP −−=             (32) 
for which there are n equations and m unknowns.  Solving 
(32) in the least squares sense yields 

( ) ( 221
1

111 uPsPPPu +−=
− TT ) .         (33) 

This last relation provides a continuous dependence of u1 on 
s and u2.  This last relation works well with the exception of 
when u1 is orthogonal to the columns of P1, in which case Ψ 
becomes sTP2u2 and Ψ takes on the sign of this product. 

The control vector u will become zero as the system 
comes to rest.  As time increases, the tracking error will tend 
toward zero.  In (9), we see that the first term on the right 
hand side is quadratic in s and the second term is linear in s.  
As s becomes small, it becomes increasingly difficult to 
ensure that the sum of the two terms is non-positive.   From 
this we see that there is a lower bound to in how small s can 
become. 

D. Bounds on s  

If the desired generalized coordinates are set to zero, the 
control problem becomes one of stabilization.  It has been 
shown in Patenaude (2008) that the resulting system in (6) is 
asymptotically stable.  The previous discussion 
demonstrated that the tracking errors and the control signals 
do not decay to zero.  Treating the controls u1 and u2 as non-
vanishing perturbations and invoking Lemma 9.3 of Khalil 
(2002), an ultimate bound exists on the magnitude of the 
sliding mode s. 

III. EXAMPLES 

A. The Ball and Beam 
The presented control law was applied to a ball and beam 

system.  The system geometry and dynamic equations are 
shown in Fig. 1 with definitions of the physical parameters.   

In this example, the radial position of the ball was chosen 
as ( ) ( )( ) 11 cos1 atatrd +−≡ ω . The initial angular velocity, 
angular position, and ball velocity were set to zero. The 
desired beam angle was found from the lower n-m rows of 
(2).  For this example DK was set to zero.  Figure 2 shows 
the desired and actual ball position as a function of time. 

The values for the physical parameters and the chosen 
constants are I =0.4 Kg m2

,  m = 1.5 Kg,  Ro = 0.02 m,  CD= 
0.16 N sec./m, g = 9.81 m/sec2, β = - 1000, a1 = .1 m,  ω=.3 

rad/sec, α1 = 1.0, KDf11 = 5,  KDf12 = -25,  KDf22 = 606,  Λ11= 
0.005,  Λ12=0,  Λ 22= 2, and DK = 0.  

The control u2 is chosen as  
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Figure 1: Ball and Beam System 
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Figure 2: Desired and Actual Ball Position 

B. The Inverted Pendulum Cart 
The inverted pendulum cart geometry and the dynamic 

equations of motion are shown in Figure 3 with definitions 
of the physical parameters.  The values for the physical 
parameters and the chosen constants are J = 0.4 Kg m2, m = 
1.5 Kg, m = 5.0 Kg,  l= 0.7 m, g = 9.81 m/sec2, β = -1000, 
a1 = .2 m,  ω=.35 rad/sec,  KDf11 = 200,  KDf12 = - 300, KDf22 = 
550, α1 = 1,  Λ11 = 0.05,  Λ12 = 0,  Λ 22= 1, and DK = M(q). 

In this example, the initial conditions of the system are 
zero. The x trajectory was chosen as ( )( )tω . 
The desired pendulum angle was determined from the lower 
n – m rows of (2).  Figure 4 shows the desired and actual 
cart position as a function of tim

axd cos11 −≡

e. 
  The control u2 for the inverted pendulum cart is  

( ) ( )( ) ( )

( ) ( )( ) ( ) .cos
2
1

sin
2
1cos

2
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2211

112
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θθ

&&&&&
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ddd
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Jxxxxml

mlxxxml
 (35) 

In both examples, it was observed that by adjusting the 
elements of Λ, it was possible to emphasize the tracking 
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performance of one variable over the other.  In both cases, 
the tracking of the desired axis received the higher priority. 

IV. CONCLUSION 
This work has presented a means of designing tracking 

controllers for underactuated systems.  The approach 
consists of a variation of a well-accepted tracking control 
law for fully actuated systems coupled with a stabilizing 
control law design technique presented by the authors in a 
previous investigation.  It was shown that the tracking error 
would continue to decay until Lyapunov was no longer 
satisfied.  Even though asymptotic tracking cannot be 
proved, the examples presented show that the performance 
is excellent.  Another benefit of the approach is that inverse 
dynamics was not necessary at any point of the controller 
development or implementation. 
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Figure 3: Inverted Pendulum Cart System 
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Figure 4: Desired and Actual Cart Position 

The examples consisted of one system where the actuated 
axis was made to closely track a specified trajectory and 
another system where the unactuated axis was made to 
closely track a specified trajectory.  Both examples showed 
the same level of fine performance. 

Future goals in this investigation include quantification of 
the tracking error limits and developing asymptotic tracking. 
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