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Abstract— This paper considers an “homotopy method” for
solving the exact tracking problem for nonlinear affine non-
minimum phase systems. The method is presented in a general
setting and is applied to the special case of the spherical
pendulum. This approach allows finding sufficient conditions
for exact tracking for T -periodic curves and bounds on the
internal dynamics.

INTRODUCTION

It is well known that the exact dynamic inversion problem

is particularly challenging for nonlinear, nonminimum phase

systems. In this case the internal dynamics are unstable and

grow unbounded for generic initial conditions. This problem

has been considered extensively in literature in the last few

years, leading to different approaches. For instance, it can

be solved through the a stable inversion based feedforward

approach ([1]), which is based on a Picard iteration of a

suitable nonlinear operator. This method has led also to

a preview-based approach ([2]), that requires only a finite

preview time of the output trajectory. A different perspective

for stable inversion is presented in [3], based on a sta-

ble/unstable decomposition and the sequential integration of

the stable and unstable subsystems in forward and backward

time. Another possible approach consists in considering a

path-following setting ([4]) which allows an extra degree of

freedom for controlling internal dynamics.

In this paper we present another approach to stable in-

version. Differently from the methods above, it is not based

on Picard iterations but on homotopy. Essentially, a bounded

solution for the internal dynamics equation associated to a

generic reference T -periodic trajectory is obtained through

continuous deformation of a known bounded solution asso-

ciated to a particularly simple trajectory.

We have already used this method to face the exact

tracking problem for some well-known nonminimum phase

systems with two dimensional internal dynamics such as the

VTOL (see [5]), the planar inverted pendulum (see [6]), the

motorcycle and the CTOL aircraft (see[7]). This approach

has allowed us finding a precise characterization of the class

of trajectories for which the exact tracking problem has a

solution and precise bounds on the internal dynamics norm.

This paper extends this method to nonminimum phase sys-

tems with general n-dimensional internal dynamics, finding

results analogous to the 2-dimensional case.

In this paper the method has been developed for systems

with T -periodic internal dynamics. The main result (The-

orem 1) has in common with Theorem 3 of [3] the idea

of decomposing system dynamics in stable and unstable

components. The main difference is that we do not need

a global “small gain” hypothesis on the product of the stable

and unstable subsystems gains. Instead, we require a similar

hypothesis only in a bounded subset that grows with respect

to the parameter s. This subset, for s = 1, represents a region

that contains the trajectories of the internal dynamics.

As motivating example we consider the exact tracking

problem for the spherical inverted pendulum. Remark that its

internal dynamics do not satisfy the hypotheses of Theorem 3

of [3]. This same problem has been considered in detail

in [8], where we have proposed a method based on an

analytical condition that is related to the solution of a

differential equation associated to a given reference trajectory

(see equation (5) of Theorem 1 of [8]). In this paper, through

the use of Theorem 1, we complete that analysis, obtaining

sufficient conditions for exact tracking and finding bounds on

the norm of the internal dynamics. More precisely, we show

that it is possible to determine a constant k (that depends

on the pendulum length) such that if ‖γ̈‖∞ ≤ k then it is

possible to find initial conditions on the internal dynamics

such that the pendulum follows exactly the assigned curve

without overturning, finding a precise bound on pendulum

maximum oscillations.

The following notations will be used: R
+ = {x|x ≥ 0};

∀a, b ∈ R, a ∧ b = min{a, b}, a ∨ b = max{a, b} and

[a, b] = {x ∈ R|a ≤ x ≤ b}, ]a, b[= {x ∈ R|a < x < b};

∀θ ∈ [0, 2π[, τ(θ) = (cos θ, sin θ)T ; ∀x ∈ R
2, argx = θ,

where θ ∈ [0, 2π[ is such that x = ‖x‖τ(θ); ∀x, y ∈ R
3,

x×y denotes the vector cross product; ∀x = (x1, . . . , xn)T ,

y = (y1, . . . , yn)T ∈ R
n, 〈x , y〉 =

∑n
i=1 xiyi, ‖x‖ =

√

〈x , x〉 if I is a real interval, ∀f : I → R
n, ‖f‖∞ =

supx∈I{‖f(x)‖}; for any matrix A = (aij)i=1,...,n, j=1,...,m,

‖A‖ =
{

∑n
i=1

∑m
j=1 a

2
ij

}
1
2 is the Frobenius norm, and, if

n = m, AS = 1/2(A+ AT ) denotes the symmetric part of

A, while λ(AS) and λ(AS) denote the associated maximum

and minimum eigenvalues.
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I. THE HOMOTOPY METHOD FOR THE FEEDFORWARD

EXACT TRACKING PROBLEM

Consider a nonlinear affine system of form

ẋ = F (x) +G(x)u(t)
y(t) = H(x) ,

(1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p and F , G, H are

vector function of appropriate dimensions and F (0) = 0.

Given a sufficiently regular curve γ : [0, T ] → R
n, the

feedforward exact tracking problem consists in finding an

initial state x(0) and a control function u(t) such that

y(t) = γ(t), ∀t ∈ [0, T ] .

If the system has a well-defined relative degree and

functions F (x) and G(x) are sufficiently regular, then, after

a change of coordinates, it is possible to rewrite (1) in the

following normal form (for the derivation and the details the

reader may refer to Isidori’s book ([9]),

ξ̇1,i = ξ2,i

...

ξ̇ri,i = αi(ξ, η) + βi(ξ, η)u(t)

(2)

for i = 1, . . . ,m, where ξ = (ξj,i) = y
(i)
j , j = 1, . . . ,m,

i = 1, . . . , rj and

η̇ = γ(η, ξ) + δ(η, ξ)u(t) , (3)

when exact tracking is desired we set y(t) = γ(t), which

implies

ξj,i = γ
(i)
j , j = 1, . . . ,m, i = 1, . . . , rj . (4)

Because of the hypothesis of well defined relative degree,

the control u(t) can be expressed as a function of γ(t) and

its derivatives, therefore (3) takes the form:

η̇ = f(η,Γ(t)), ∀t ∈ [0, T ] , (5)

where Γ(t) = (γ
(i)
j (t)), j = 1, . . . ,m, i = 1, . . . , rj , this

last equation is called the internal dynamics equation.

As usual, the problem to be faced is to find an initial

condition η(0) such that the solution of system (5) is suffi-

ciently small. This is particularly challenging when the origin

is an unstable equilibrium, especially of hyperbolic type, as

in the case of the inverted spherical pendulum considered in

section V). First of all, it is not restrictive to suppose that γ is

T -periodic. The homotopy approach consists in introducing

the following family of differential systems

η̇ = f(η, sΓ(t)) , (6)

depending on the parameter s ∈ [0, δ[, (δ > 1) and in

regarding (5) as the form that family (6) assumes for s =
1. Applied in this context, Theorem 1 provides sufficient

conditions on f that guarantee the existence of δ > 0 and

a curve φ (defined on [0, δ[) of initial data of T -periodic

solutions for family (6). It provides also, by means of (13),

an L∞ norm estimate of the solution. Therefore, if δ > 1,

the desired T -periodic solution of (5) is obtained taking the

solution of (6) for s = 1, in correspondence to the initial

data η(0) = φ(1).
The solution of (5) is obtained trough a continuous defor-

mation until s = 1 of a known periodic solution for s = 0.

In the case of affine non linear systems, since f(0, 0) = 0,

this solution is the constant null solution. In fact, when

s = 0, function sΓ(t) collapses to the origin, which is an

equilibrium point.

II. MAIN THEOREM

Definition 1: Let Ω be an open subset of R
n, δ > 0 and

F : R × [0, δ[×Ω → R
n

(t, s, x) F (t, s, x) ,

be a C1 map. For every (τ, s, y) ∈ R × [0, δ[×Ω, let

x(t, τ, s, y) be the solution defined on its maximal interval

of existence of system
{

ẋ = F (t, s, x)
x(τ) = y .

(7)

Definition 2: If x : [0, T ] → R
n is a map and ρ ≥ 0, set

x([0, T ])ρ = {y ∈ R
n|∃t ∈ [0, T ] : ‖y − x(t)‖ < ρ} .

Theorem 1 (Main theorem): Let Ω be an open subset of

R
n and

F : R × [0, δ[×Ω → R
n

(t, s, x)  F (t, s, x) ,

be a C1 map such that the following hypotheses are verified:

a) ∀(s, x) ∈ [0, δ[×Ω the map t  F (t, s, x) is T -

periodic .

b) there exists a T -periodic map x̃ ∈ C1(R,Ω), such that:

˙̃x(t) = F (t, 0, x̃(t)), ∀t ∈ R , (8)

c) Set A(t, s, x) = ∂xF (t, s, x), B(t, s, x) = ∂sF (t, s, x)
and suppose that there exists k : 1 ≤ k < n such that, taking

into account the following block decomposition of A(t, s, x)

A(t, s, x) =

(

A11(t, s, x) A21(t, s, x)
A21(t, s, x) A22(t, s, x)

)

,

where A11(t, s, x) ∈ R
k×k, A12(t, s, x) ∈ R

k×(n−k),

A21(t, s, x) ∈ R
(n−k)×k, A22(t, s, x) ∈ R

(n−k)×(n−k), there

exist smooth functions −λ1(s, ρ), λ2(s, ρ), a1(s, ρ), a2(s, ρ),
b(s, ρ) defined on R

+×R
+, non decreasing in the ρ variable,

such that























λ(AS
11(t, s, x)) ≥ λ1(s, ρ), λ(A

S
11(t, s, x)) ≤ λ2(s, ρ),

‖A12(t, s, x)‖ ≤ a1(s, ρ), ‖A21(t, s, x)‖ ≤ a2(s, ρ),
‖B(t, s, x)‖ ≤ b(s, ρ),

∀s ≥ 0, ∀ρ ≥ 0 : x̃([0, T ])ρ ⊂ Ω,

∀t ∈ R, ∀x ∈ R
n : ‖x− x̃(t)‖ ≤ ρ ,

(9)

where the bar denotes the closure of the set.

d) Set

D =
{

(s, ρ) ∈ R
+ × R

+|λ2(s, ρ) < λ1(s, ρ),

a1(s, ρ)a2(s, ρ) < (λ1(s, ρ) − λ2(s, ρ))
2,

σ(s, ρ) < 1, α2(s, ρ) < 0 < α1(s, ρ)
}
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and let ψ : D → R
+ be the function defined by

ψ(s, ρ) =
1 + σ(s, ρ)

1 − σ(s, ρ)

b(s, ρ)

α1(s, ρ) ∧ (−α2(s, ρ))
, (10)

where σ(s, ρ) = 2(a1(s, ρ) ∨ a2(s, ρ))
{

(λ1(s, ρ) −
λ2(s, ρ))+

√

(λ1(s, ρ) − λ2(s, ρ))2 − 4a1(s, ρ)a2(s, ρ)
}−1

,

α1(s, ρ) = λ1(s, ρ) − σ(s, ρ)a1(s, ρ), α2(s, ρ) = λ2(s, ρ) −
σ(s, ρ)a2(s, ρ).

Suppose that (0, 0) ∈ D and let [0, δ[ be the right-maximal

interval of existence such that
{

ρ̇(s) = ψ(s, ρ(s)), ∀s ∈ [0, δ[
ρ(0) = 0

(11)

and

x̃([0, T ])ρ(s) ⊂ Ω, ∀s ∈ [0, δ[ . (12)

Then there exists a unique φ ∈ C1([0, δ[,Rn) such that

φ(0) = x̃(0)

and

x(T, 0, s, φ(s)) = φ(s), ∀s ∈ [0, δ[ ,

‖x(t, 0, s, φ(s)) − x̃(t)‖ ≤ ρ(s), ∀s ∈ [0, δ[, (13)

in other words φ is the curve of initial values of T -periodic

solutions of the family of systems {ẋ = F (t, s, x)}s∈[0,δ[

such that φ(0) = x̃(0).
Proof: We want to apply Theorem 2 . It remains only

to show that its hypothesis c) is satisfied. By hypothesis d),

let ρ(s) be the solution of system (11) defined on its right-

maximal interval of existence [0, δ[ such that (12) holds. Let

ρ0 = supρ∈[0,δ[{ρ(s)}. Then x̃([0, T ])ρ0 ⊂ Ω and (17) holds

if we take as ψ in c) the function given by (10). We want to

show that (18) holds too. Set s̄ ∈ [0, δ[, since {(s, ρ(s))|s ∈
[0, s̄]} is a compact subset of D, we can find an ǫ > 0 such

that (s, ρ(s) + ǫ) ∈ D, ∀s ∈ [0, s̄] which implies that

(s, ρ) ∈ D, ∀s ∈ [0, s̄], ∀ρ : 0 ≤ ρ ≤ ρ(s) + ǫ , (14)

since D has the property that if (s, ρ̄) ∈ D, then (s, ρ) ∈ D,

∀0 ≤ ρ ≤ s̄, being −λ1(s, ρ), λ2(s, ρ), a1(s, ρ), a2(s, ρ),
b(s, ρ) non decreasing functions of ρ.

Let τ ∈ [0, T ], s ∈ [0, s̄], y ∈ R
n be such that (s, y) ∈ Ω,

t  x(t, τ, s, y) is T -periodic and ‖x(t, τ, s, y) − x̃(t)‖ ≤
ρ(s) + ǫ, ∀t ∈ [0, T ]. Let us call, ∀t ∈ [0, T ]

A(t) = ∂xF (t+ τ, s, x(t+ τ, τ, s, y)),
B(t) = ∂sF (t+ τ, s, x(t+ τ, τ, s, y)) .

Since (s,max0≤t≤T ‖x(t, τ, s, y) − x̃‖) ∈ D by (14),

by hypotheses (9), we deduce immediately that hypothe-

ses (20), (21) of Theorem 3 are verified for matrix A(t).
Then det(I − Φy

s(T + τ, τ)) 6= 0 and (22) implies that

‖(I − Φy
s(T + τ, τ))−1

∫ T+τ

τ

Φy
s(T + τ, p)B(p)dp‖

≤ ψ(s, max
0≤t≤T

‖x(t, τ, s, y) − x̃(t)‖) .

Therefore (18) holds and Theorem 2 can be applied.

III. AN HOMOTOPY THEOREM

Definition 3 (Variation equations): Set Φy
s(t, τ) the solu-

tion of the homogeneous linear system

{

Φ̇ = ∂xF (t, s, x(t, τ, s, y))Φ
Φ(τ) = I ,

(15)

where I is the n-dimensional identity matrix.

In the previous notation, the following theorem is a

result of existence of periodic solutions for the family of

systems (7) depending on parameter s.

The following Theorem holds.

Theorem 2: Let Ω be an open subset of R
n and

F : R × [0, δ[×Ω → R
n

(t, s, x)  F (t, s, x) ,

be a C1 map such that the following hypotheses are verified:

a) ∀(s, x) ∈ [0, δ[×Ω the map t  F (t, s, x) is T -

periodic ,

b) there exists a T -periodic map x̃ ∈ C1(R,Ω), such that:

˙̃x(t) = F (t, 0, x̃(t)), ∀t ∈ R , (16)

c) there exist δ, ρ0 > 0 such that x̃([0, T ])ρ0 ⊂ Ω and

a locally lipschitz function ψ : [0, δ[×[0, ρ0[→ R
+, non

decreasing as function of ρ, such that the following system

can be solved on [0, δ[

{

ρ̇(s) = ψ(s, ρ(s)), ∀s ∈ [0, δ[
ρ(0) = 0 ,

(17)

and the following property holds:















































∀s̄ ∈ [0, δ[, ∃ǫ > 0 with the property that

if τ ∈ [0, T ], s ∈ [0, s̄], y ∈ R
n are such that

(s, y) ∈ Ω, t x(t+ τ, τ, s, y) is T -periodic and

‖x(t, τ, s, y) − x̃(t)‖ ≤ ρ(s) + ǫ, ∀t ∈ [0, T ]
then det(I − Φy

s(T + τ, τ)) 6= 0 and

‖(I − Φy
s(T + τ, τ))−1

∫ T+τ

τ
Φy

s(T + τ, p)
·∂sF (p, s, (p, τ, s, y))dp‖
≤ ψ(s,max0≤t≤T ‖x(t, τ, s, y) − x̃(t)‖) .

(18)

Then there exists and is unique the map φ ∈ C1([0, δ[,Rn)
such that

φ(0) = x̃(0)

(which implies that x(t, 0, 0, φ(0)) = x̃(t)),

x(T, 0, s, φ(s)) = φ(s) , (19)

‖x(t, 0, s, φ(s)) − x̃(t)‖ ≤ ρ(s), ∀(t, s) ∈ [0, T ]× [0, δ[ ,

in particular x(t, 0, s, φ(s)), 0 ≤ s < δ is the only T -periodic

solution of system (7) contained in x̃([0, T ])ρ0 such that

φ(0) = x̃(0).
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x

e3ζ

l

Fig. 1. Spherical pendulum constrained to follow a given periodic γ in
the space.

IV. SOME PROPERTIES OF HYPERBOLIC LINEAR SYSTEMS

The following theorem holds, it gives a characterization

for solutions of linear hyperbolic systems with T -periodicity

conditions.

Theorem 3: Let k be an integer: 1 ≤ k < n and

A ∈ C([0, T ],Rn×n), A11 ∈ C([0, T ],Rk×k), A12 ∈
C([0, T ],Rk×(n−k)), A21 ∈ C([0, T ],R(n−k)×k), A22 ∈
C([0, T ],R(n−k)×(n−k)) be such that

A(t) =

(

A11(t) A12(t)
A21(t) A22(t)

)

, ∀t ∈ [0, T ] ,

and set

a1 = sup0≤t≤T {‖A12(t)‖}, a2 = sup0≤t≤T {‖A21(t)‖}
λ1 = inf0≤t≤T {λ(AS

11(t)}, λ2 = sup0≤t≤T {λ(AS
22(t)} .

Suppose that

λ2 < λ1, a1a2 < (λ1 − λ2)
2 (20)

0 ≤ σ < 1, α2 < 0 < α1 (21)

where σ = 2(a1∧a2)

(λ1−λ2)+
√

(λ1−λ2)2−4a1a2

, and

α1 = λ1 − σa1, α2 = λ2 + σa2 .

Then (I − Φ(T, 0)) is invertible and if B ∈ C([0, T ],Rn),
the solution x of the following boundary problem:

{

ẋ(t) = A(t)x(t) +B(t), ∀t ∈ [0, T ]
x(0) = x(T ) ,

is the unique solution of the following initial value problem
{

ẋ(t) = A(t)x(t) +B(t), ∀t ∈ [0, T ]

x(0) = (I − Φ(T, 0))−1
∫ T

0 Φ(T, τ)B(τ)dτ ,

and

‖x(0)‖ ≤ 1 + σ

1 − σ

‖B‖∞
α1 ∧ |α2|

. (22)

V. AN APPLICATION: EXACT TRACKING PROBLEM FOR

THE SPHERICAL PENDULUM

Consider a spherical inverted pendulum of mass m linked

to a moving base of mass M through a massless rod of length

l, in Figure 1 the pendulum is represented as the smaller

sphere and the base as the bigger one. It is supposed that

during the motion the force f ∈ R
3 is applied on the center

of mass x of M .

The problem we want to solve is the following one: given

an arbitrary (not necessarily plane) T -periodic curve γ ∈
C3(R,R3), we want to find a control force f ∈ C(R,R3),
applied to the point x, such that if x(0) = γ(0), then

x(t) = γ(t), ∀t ≥ 0 and ‖ζ − e3‖ is sufficiently small,

where e3 = (0, 0, 1)T . In other words, if at the initial time

x(0) = γ(0), then x follows all the curve γ and the rod

remains close to the vertical without overturning. Moreover

we want to find bounds on ‖ζ − e3‖ that reduce with γ
maximum acceleration.

As shown in Section 3 of [8], through the homotopy

approach, this problem can be restated in the following form.

Problem 1: Find initial conditions z0, w0, ż0, ẇ0 such that

the following family of differential systems has a T -periodic

solution for s = 1










































(

z̈
ẅ

)

=

(

z
w

)

g
l
−

(

z
w

)

·

·
[

(ż2 + ẇ2 + (żz+ẇw)2

1−z2−w2 ) + l−1g(1 −
√

1 − z2 − w2+

+sl−1(zγ̈1 + wγ̈2 + γ̈3

√

1 − (z2 + w2))
]

− sl−1

(

γ̈1

γ̈2

)

z(0) = z0, w(0) = w0

ż(0) = ż0, ẇ(0) = ẇ0 .
(23)

Moreover, find a non decreasing function k (with k(0) = 0)

such that

‖(z, w)‖∞ ≤ k(‖γ̈‖∞) . (24)

Equation (23) can be written in the form:

{

ẏ = F̃ (t, s, y)
y(0) = y0 ,

(25)

where y = (z, w, ż, ẇ), y0 = (z0, w0, ż0, ẇ0) and F : R ×
R × Ω → R

4, (t, s, y) F̃ (t, s, y) , is given by

F̃ (t, s, y) =









y3

y4

d2y1 − y1h(t, s, y) − s d

g
γ̈1

d2y2 − y2h(t, s, y) − s d

g
γ̈2









moreover

h(t, s, y) = y2
3 + y2

4 +
(y1y3 + y2y4)

2

1 − (y2
1 + y2

2)
+

−d2
(

1 −
√

1 − (y2
1 + y2

2)
)

+

+
s

g

(

y1γ̈1 + y2γ̈2 + γ̈3

√

1 − (y2
1 + y2

2)
)

,

where d2 = gl−1, Ω = (B × R
2), with B = {(z, w) ∈

R
2|‖(z, w)‖ < 1}.
Remark that for any (t, s, y) ∈ R × R × Ω

∂sF̃ (t, s, y) =













0
0

y1d2 1
g

(

y1 γ̈1 + y2 γ̈2 + γ̈3

√

1 − (y2
1 + y2

2)
)

−

d
g

γ̈1

y2d2 1
g

(

y1 γ̈1 + y2 γ̈2 + γ̈3

√

1 − (y2
1 + y2

2)
)

−

d
g

γ̈2













∂yF̃ (t, s, y) =











0 0 1 0
0 0 0 1

d2 + h + y1∂y1 h y1∂y2 h y1∂y3 h y1∂y4 h

y2∂y1h d2 + h + y2∂y2 h y2∂y3 h y2∂y4 h











,
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therefore ∂yF̃ (t, 0, 0, 0) =









0 0 1 0
0 0 0 1

d2 0 0 0

0 d2 0 0









, which has the

following eigenvalues (d, d,−d,−d) and eigenvectors

v1 =









1
0
d

0









, v2 =









0
1
0
d









, v3 =









1
0

−d

0









, v4 =









0
1
0

−d









,

set V = (v1, v2, v3, v4), then

∂yF̃ (t, s, y) =









0 0 1 0
0 0 0 1

d2 + e1 e2 e3 e4
f1 d2 + f2 f3 f4









= (∂yF̃ )0 + (∂yF̃ )1

where ei, fi are defined consequently. Setting ξ = (y1, y2)
and η = (y3, y4), the following bounds hold

|h| ≤ ‖η‖2 +
‖ξ‖2‖η‖2

1 − ‖ξ‖2
+ d

2(1 −
√

1 − ‖ξ‖2) +
d2

g
s‖γ̈‖ =

≤ ‖η‖2

1 − ‖ξ‖2
+ d

2 ‖ξ‖2

1 +
√

1 − ‖ξ‖2
+

d2

g
s‖γ̈‖ .

|∂y1h| =

|2y3(1 − (y2
1 + y2

2))(y1y3 + y2y4) + y1(y1y3 + y2y4)
2

(1 − (y2
1 + y2

2))
2

+

−d
2 y1
√

1 − (y2
1 + y2

2)
+ s

d2

g
〈





1
0
y1√

1−(y2
1+y2

2)



 , γ̈〉| ≤

2
‖η‖(1 − ‖ξ‖2)(‖ξ‖‖η‖) + ‖ξ‖‖ξ‖2‖η‖2

(1 − ‖ξ‖2)2
+ d

2 ‖ξ‖
√

1 − ‖ξ‖2

+s
d2

g
‖γ̈‖ 1

√

1 − ‖ξ‖2
,

and the same bound holds for |∂y2h|. Moreover it is

|∂y3h| = |2(y3 +
y1(y1y3 + y2y4)

1 − (y2
1 + y2

2)
| ≤ 2‖η‖(1 + ‖ξ‖2)

1 − ‖ξ‖2
,

and the same bound holds for |∂y4h|.
Summarizing the previous computations it follows that

∀t ∈ R, ∀s ∈ R, ∀ξ = (y1, y2), ∀η = (y3, y4) : (ξ, η) ∈ Ω
that

|e1|, |f2| ≤ |h| + (|y1∂y1h| ∨ |y1∂y2h|) ≤
≤ dφ1(‖ξ‖, ‖η‖, s, ‖γ̈‖∞, d) ,

|e2|, |f1| ≤ |y1∂y2h| ∨ |y2∂y1h| ≤ dφ2(‖ξ‖, ‖η‖, ‖γ̈‖∞, d) ,

|e3|, |e4|, |f3|, |f4| ≤ φ3(‖ξ‖, ‖η‖) ,

where φ1, φ2, φ3 are strictly increasing functions in their

arguments, consequently defined.

Now if we express the matrix ∂xF with respect to the

basis {v1, v2, v3, v4}, then

A(t, s, x) = V −1∂xFV = A0(t, s, x) +A1(t, s, x) , (26)

where A0 =









d 0 0 0
0 d 0 0
0 0 −d 0
0 0 0 −d









, A1 =

1
2











d−1e1 + e3 d−1e2 + e4 d−1e1 − e3 d−1e2 − e4
d−1f1 + f3 d−1f2 + f4 d−1f1 − f3 d−1f2 − f4

−(d−1e1 + e3) −(d−1e2 + e4) −(d−1e1 − e3) −(d−1e2 − e4)

−(d−1f1 + f3) −(d−1f2 + f4) −(d−1f1 − f3) −(d−1f2 − f4)











.

Set

φ4(s, ‖ξ‖, ‖η‖, ‖γ̈‖∞, d) =
√

2
√

(φ1 + φ2)2 + 2(φ1 + φ3)2 ,

then by the previous computations, the following bounds

hold

λ(A11) ≥ d− φ4, λ(A22) ≤ −d+ φ4, ‖A12‖, ‖A21‖ ≤ φ4 .
(27)

If we make the change of coordinates y = V x then

system (25) becomes ẋ = V −1F̃ (t, s, V x) = F (t, s, x) .
We want to show that this system verifies the hypotheses of

Theorem 1. Clearly a) and b) of Theorem 1 are satisfied since

γ is T -periodic and it is sufficient to take x̃(t) = 0, ∀t ∈ R,

since F (t, 0, 0) = 0. Moreover remark that ∂xF = A(t, s, x)
given by (26) and (9) is verified by (27) if we set

λ1(s, ρ) = d− χ(s, ρ, ‖γ̈‖∞),
λ2(s, ρ) = −d+ χ(s, ρ, ‖γ̈‖∞),

a1(s, ρ) = a2(s, ρ) = χ(s, ρ, ‖γ̈‖∞), b(s, ρ) =
√

2
g
‖γ̈‖∞ ,

where χ(s, ρ, ‖γ̈‖∞) = φ4(s,
√

2ρ,
√

2dρ, ‖γ̈‖∞) .

Remark that (0, 0) ∈ D an let [0, δ(‖γ̈‖∞)[ be such

that system (11) is satisfied and (12) holds. It is possible

to see that there exists k̄ > 0 such that δ(‖γ̈‖∞) ≥ 1,

∀γ : ‖γ̈‖∞ ≤ k̄. Then by Theorem 1 there exists a unique

φ ∈ C1([0, δ[,Rn) such that the solution x(t, 0, s, φ(s)) of

system
{

ẋ = F (t, s, x)
x(0) = φ(s) ,

are T -periodic and

‖x(t, 0, s, φ(s))‖ ≤ ρ(s, ‖γ̈‖∞) .

It is possible to see that there exists k̄, such that

∃k̄ > 0 : δ(‖γ̈‖∞) ≥ 1, ∀γ with ‖γ̈‖∞ ≤ k̄ .

Then problem 1) for the inverted pendulum is solvable ∀γ :
‖γ̈‖ ≤ k̄ and ∀t ∈ R

‖(z, w)‖√
2

,
‖(ż, ẇ)‖
d
√

2
≤ ‖x(t, 0, 1, φ(1))‖ ≤ ρ(1, ‖γ̈‖∞) ,

therefore function k in (24) is given by ρ(1, ‖γ̈‖∞).
Figure 2 shows the value of the bound on internal dynam-

ics ‖x‖∞ as functions of ‖γ̈‖∞ for different values of d = g
l
,

with g = 9.8. Each line corresponds to a different value of

d, which varies from 1 to 100. Each line ends at a value of

‖γ̈‖∞ which represents the maximum curve acceleration for

which Theorem 1 guarantees the existence of a T -periodic

solution for s = 1 for the pendulum internal dynamics (z, w).
For example, if d = 10, then the method proposed here

guarantees the tracking of all curves γ with ‖γ̈‖∞ ≤ 5.6.

Moreover for all curves with ‖γ̈‖∞ ≤ 5.6, the method

guarantees that ‖(z, w)‖∞ ≤
√

2ρ(1, 5.6) ≃ 0.177 and

‖(ż, ẇ)‖∞ ≤ d
√

2ρ(1, 5.6) ≃ 1.77.

VI. CONCLUSIONS

In this paper we have presented sufficient conditions for

the application of the homotopy method to the exact track-

ing problem for nonminimum phase nonlinear systems. It

extends to nonminimum-phase systems with n-dimensional

internal dynamics the results already presented in [5], [6]

and [7] for the two dimensional case. This method allows
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Fig. 2. Bounds on the spherical pendulum internal dynamics with respect
to ‖γ̈‖ and d.

finding precise bounds on internal dynamics that depends on

the curve γ that has to be exactly tracked.

We have applied these result to the exact tracking problem

for the inverted spherical pendulum, showing that it is

possible to determine a constant k (that depends on the

pendulum length) such that if ‖γ̈‖∞ ≤ k then it is possible

to determine initial conditions on the internal dynamics such

that the pendulum follows exactly the assigned curve without

overturning, finding a precise bound on pendulum maximum

oscillations.
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