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Abstract— Recently the adaptive mixing control (AMC) ap-
proach has been applied to an airbreathing hypersonic flight
vehicle (AHFV) model, and simulation results demonstrate that
this adaptive scheme may be capable of improving performance
when compared to a non-adaptive mixed-µ design with similar
objectives. In this note, the analysis of this AMC scheme’s
stability and robustness properties is presented, establishing
that if the unmodeled dynamics satisfy a norm bound condition,
then the closed-loop states are bounded and the mean-square
regulation error is of the order of the modeling error.

I. INTRODUCTION

The purpose of this paper is to present the stability and
robustness analysis of an adaptive mixing control (AMC)
scheme that was recently proposed in [1] for the control of
an airbreathing hypersonic flight vehicle (AHFV) model that
possesses significant complex and real uncertainties. AMC,
as shown in Fig. 1, is a multiple model adaptive control
(MMAC) approach that allows the designer to combine
powerful modern multivariable tools (e.g., H∞ and mixed-
µ synthesis) with online parameter estimation techniques of
conventional robust adaptive control [2], [3]. As the simu-
lation results of [1] demonstrate, the AMC scheme achieves
a high-level of performance by adaptively utilizing a set of
candidate controllers K1, . . . ,K8 that were constructed off
line and each tuned to a small set of parameter uncertainty.
The robust supervisor mixes these candidate controllers
into the loop based on an online estimate of the unknown
parameters. Because of space limitation, the interested reader
is referred to [1] for a detailed presentation of the AMC
design.

Notation: If y : R+ → Rn, then the Lp norm of y is
denoted as ‖y‖p and the truncated L2δ norm is defined as

‖yt‖2δ
4
=

(∫ t

0

e−δ(t−τ)yT (τ)y(τ)dτ

) 1
2

(1)

where δ ≥ 0 is a constant, provided that the integral in (1)
exists. By ‖yt‖2 we mean that ‖yt‖2δ with δ = 0, and we
say that y ∈ L2e if ‖yt‖2 exists. Let y ∈ L2e, and consider
the set

S(µ) =

{
y :

∫ t+T

t

|y(τ)|2dτ ≤ c0µT + c1, ∀t, T ≥ 0

}
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Fig. 1. Conceptual AMC architecture.

for a given constant µ, where c0, c1 ≥ 0 are some finite
constants, and c0 and c1 are independent of µ. We say that
y is µ-small in the mean square sense (m.s.s.) if y ∈ S(µ).
Furthermore, consider the signal w : [0,∞) → R+ and the
set

S(w) =

{
y :

∫ t+T

t

|y(τ)|2dτ

≤ c0

∫ t+T

t

w(τ)dτ + c1, ∀t, T ≥ 0

}
where c0, c1 ≥ 0 are some finite constants. We say that y
is w-small in the m.s.s. if y ∈ S(w). Let H(s) and h(t) be
the transfer function and impulse response, respectively, of
some linear time-invariant (LTI) system. If H(s) is a proper
transfer function and analytic in Re[s] ≥ −δ/2 for some
δ > 0, where Re[s] denotes the real part of s, then the
H∞ system norm is given by ‖H‖∞

4
= supjω |H(jω)|.

The ‖ · ‖2δ system norm of H(s) is defined as ‖H‖2δ
4
=

1√
2π

{∫∞
−∞

∣∣H (
jω − δ

2

)∣∣2 dω
} 1

2
. The induced L∞ system

norm of H is given by ‖H‖i,∞ = ‖h‖1. If y = H(s)u and
‖u‖∞ = u0 then |y(t)| ≤ ‖H‖i,∞u0 for all t ≥ 0.

II. CLOSED-LOOP SYSTEM

We present the key equations used for analysis.

A. Hypersonic Aircraft Model

The AHFV considered in this paper is the computational
fluid dynamics (CFD) based model developed in [4]. The
linearized model is generated from the nonlinear equations
of motion, which assumes a round non-rotating earth. The
CFD approach captures the strong aero-propulsion interac-
tions. Furthermore, the work [1] details the inclusion of
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complex uncertainty, manifesting from difficulties in mod-
eling the non-stationary structural dynamics, and parametric
uncertainty in the stability derivative CMα and the control
derivatives CTδT and CMδe. The linearized AHFV dynamics
are given by

ẋP = AP(p∗)xP + BP(p∗)u + Bwdw + BsdT
∗
sd(s)δe︸ ︷︷ ︸

η̃

u = Gact(s)uc

(2)

where xP = [ V γ h α q ]T is the AHFV state vector; u =
[δT δe ]T is the control vector comprising throttle setting
δT and elevon deflection δe; uc is the commanded control
vector; Gact is a stable transfer matrix representing actuator
dynamics; p∗ is a vector of the unknown system parameters;
dw = [dw,1 dw,1]T is a bounded atmospheric disturbance,
i.e., |dw,1(t)| ≤ d1 for some d1 ≥ 0 and |dw,2(t)| ≤ d2 for
some d2 ≥ 0; T ∗sd is a stable rational transfer function that
represents the structural dynamics. We introduce the notation
η̃ to denote the modeling error term. The structural dynamics
T ∗sd are highly uncertain and, therefore, will be considered
as unmodeled dynamics. We assume that T ∗sd is analytic in
Re[s] ≥ −δ0/2 for some known δ0 > 0. Uncertainty in
the parameters a∗54, b∗52, and b∗11, where a∗ij and b∗ij denote
the i, jth component of AP and BP, respectively, arise from
the uncertainties in CMα, and CMδe, and CTδT . Thus, the
parameter vector is given by p∗ = [ a∗54 b∗52 b∗11]

T and each
component is nonnegative. We consider 50% multiplicative
uncertainty, i.e.,

p∗ ∈ Ω
4
=

{
p = [p1 p2 p3]T ∈ R3

: 0.5p0i ≤ pi ≤ 1.5p0i, i = 1, 2, 3} (3)

where p0 = [p01 p02 p03]T is the nominal value of p∗.
The pair (AP(p∗), BP(p∗)) is controllable for all p∗ ∈ Ω.
Including the unmolded dynamics T ∗sd, the minimal state
space realization of aircraft model of (2) has the form

˙̄xPA = ĀPA(p∗)x̄PA + B̄PA(p∗)uc + B̄wdw

y = C̄PAxPA, CPA = [I5×5 05×4]
(4)

where

x̄PA(t) = [xT
P (t) uT (t) xT

sd(t)]
T ∈ Rn̄ (5)

comprises the modeled state xP, the actuator state u, and the
generalized elastic state xsd, i.e., the state corresponding to
T ∗sd. Neglecting T ∗sd, the transfer matrix G(s; p∗) denotes the
modeled plant G(s; p∗) = (sI −AP(p∗))−1

BP(p∗)Gact(s),
and its realization

ẋPA = APA(p∗)xPA + BPA(p∗)uc, xPA
4
= [ xT

P uT ]T

y = CPAxPA, CPA = [I5×5 05×2] .
(6)

B. Adaptive Mixing Control Scheme

The paper [1] presents the design of the AMC controller.
Below we summarize the key equations and results relevant
to its stability and robustness analysis.

Table I summarizes partition {Ω1, . . . ,Ω8} of Ω used for
the design of the candidate controller set

{
K1, . . . ,K8

}
.

TABLE I
SUMMARY OF PARAMETER PARTITIONING FOR CANDIDATE

CONTROLLER DESIGN

a∗54 b∗52 b∗11
LB UB LB UB LB UB

Ω1 3.15 6.78 2.55 5.49 47.07 101.27
Ω2 3.15 6.78 2.55 5.49 91.63 141.22
Ω3 3.15 6.78 4.97 7.66 47.07 101.27
Ω4 3.15 6.78 4.97 7.66 91.63 141.22
Ω5 6.13 9.45 2.55 5.49 47.07 101.27
Ω6 6.13 9.45 2.55 5.49 91.63 141.22
Ω7 6.13 9.45 4.97 7.66 47.07 101.27
Ω8 6.13 9.45 4.97 7.66 91.63 141.22

Each candidate controller Ki is designed to stabilize the
plant if p∗ ∈ Ωi. Moreover, the partition is such that Ω ⊂
∪8

i=1Ω
i, ensuring that for any p∗ ∈ Ω there exists a candidate

controller that stabilizes the plant, and was designed to
satisfy an overlapping property: for any parameter subset Ωi,
each point belonging simultaneously to the boundary of Ωi

and to the interior of Ω also belongs to the interior of some
parameter subset Ωj , where i 6= j. These overlapping regions
provide a domain for control mixing.

The robust supervisor processes (u, y) and outputs the
mixing signal β = [β1 . . . β8]T , which determines the
participation level of each controller. Thus, we define the set
of all admissible mixing values at p as

Bp
4
= {β ∈ [0, 1]8 :

8∑
i=1

βi = 1; βi = 0, p /∈ Ωi}. (7)

Because p∗ is not known nor measurable, we cannot use
Bp∗ to define the mixing signal. The approach of AMC is to
generate an online, recursive estimate p̂(t) of p∗, and, based
based on certainty equivalence, generate a mixing signal
β(t) ∈ Bp̂(t) at every t. In [1], the mixer was constructed
such that that the following properties hold:
M1 ∀p̂ ∈ Ω, β(p̂) ∈ Bp̂

M2 β(p̂) is Lipschitz with respect to p̂.
We now describe the robust online estimator. Let p̂12(t)

denote a vector comprising the estimates of a∗54 and b∗52; and
p̂3(t) denotes the estimate of b∗11. Following the approach of
[2], the gradient-method-based robust adaptive law is given
by

˙̂p12 = Pr
Ω̄12

{Γ12εp12φ12} , Γ12 = diag(109, 1011) (8)

˙̂p3 = Pr
Ω̄3

{Γ3εp3φ3} , Γ3 = 109 (9)

where

εp12 =
z12 − p̂T

12φ12

m2
, εp3 =

z3 − p̂T
3 φ3

m2
(10)

m2 = 1 + nd, ṅd = −δ0nd + δ2
e , δ0 = 0.4 (11)

Ω̄12 = {(a54, b52) ∈ R2 (12)
: 3.15 ≤ a54 ≤ 9.45, 2.55 ≤ b52 ≤ 7.66} (13)

Ω̄3 = {b11 ∈ R : 47.07 ≤ b11 ≤ 141.22} (14)
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Pr{·} denotes the projection operator (cf. [3, Appendix
A.10.3]), which is used to restrict the estimate to Ω; and the
auxiliary signals z12(t), z3(t), φ12(t), φ3(t) are generated by
the filters

z12 =
s

Λ(s)
q − 1

Λ(s)
(

∑
j∈{1,2,3,5}

a5jxj + b51δT ) (15)

z3 =
s

Λ(s)
V − 1

Λ(s)
(

5∑
j=1

a1jxj + b12δe) (16)

φ12 =
1

Λ(s)

[
α
δe

]
, φ3 =

1
Λ(s)

δT , Λ(s) = (s + 100)2

(17)

where xi denotes the ith component of xP, or equivalently
y. The design constant δ0 > 0 was chosen such that T ∗sd is
analytic in Re[s] ≥ −δ0/2. Let the filters of (15)-(17) be
given a minimal realization of the form

ẋE = AExE + BE [ y u ]T (18)
z12 = Cz1xE, φ12 = Cφ1xE (19)
z3 = Cz2xE, φ3 = Cφ2xE. (20)

The adaptive law (8)-(9) guarantees the following properties

εp12, εp12m, ˙̂p12 ∈ S(η12/m2) ∩ L∞ (21)

εp3, εp3m, ˙̂p3 ∈ S(η3/m2) ∩ L∞ (22)
p̂12(t) ∈ Ω̄12, p̂3(t) ∈ Ω̄3, ∀t ≥ 0 (23)

where

η12 =
1

Λ(s)
([ bw,51 bw,52 ] dw + bsd,5T

∗
sdδe) (24)

η3 =
1

Λ(s)
([ bw,11 bw,12 ] dw + bsd,1T

∗
sdδe) . (25)

where bw,ij denotes the ijth component of Bw.
We now describe the multicontroller and how the candi-

date controllers are mixed stably. Let K0 be a stabilizing
controller for any p∗ ∈ Ω. Consider the co-prime factoriza-
tions of G(s; p0) and K0

G = NM−1 = M̃−1Ñ , N, M, Ñ , M̃ ∈ RH∞ (26)
K0 = U0V

−1
0 = Ṽ −1

0 Ũ0, U0, V0, Ũ0, Ṽ0 ∈ RH∞(27)

where p0 ∈ ∩8
i=1Ω

i; RH∞ denotes the set of rational stable
transfer functions; and the eight transfer matrices in (26)-(27)
satisfy the double Bezout equation. Similarly, we consider
the coprime factorizations of the candidate controllers

Ki = U i(V i)−1 = (Ṽ i)−1Ũ i

U i, V i, Ũ i, Ṽ i ∈ RH∞, i = 1, . . . , 8

where the coprime factorizations of Ki and G satisfy the
double Bezout equation.

The multicontroller K(β) is given by

K(β) = Fl(JK0 , Q(β)) (28)

y uc

-

+

+

+

s

s1 s2

s4s3
r

Fig. 2. Multicontroller implemented by Q-mixing

where

JK0 =
[

U0V
−1
0 Ṽ −1

0

V −1
0 −V −1

0 N

]
=

[
Ṽ0Ũ

−1
0 Ṽ −1

0

V −1
0 −V −1

0 N

]
(29)

Q(β) =
8∑

i=1

βiQi, Qi = Ṽ i
(
Ki −K0

)
V0 (30)

The reader is referred to [5] for details on deriving the stable
filters Q1, . . . , Q8 of (30) and the following result.

Theorem 1: Consider the plant y = G(s; p∗)u and the
candidate controllers K1, . . . ,K8, of which at least one is
stabilizing for any p∗ ∈ Ω. If K(β) is given by (28), then
K(ei) = Ki, where ei is the i-th standard vector in R8.
Additionally, if the control law is given by u = K(β∗)y,
where β∗ ∈ Bp∗ , then K(β∗) the closed-loop system is
output stabilizing. �
The proof of this result follows from a straightforward
interpretation of [5].

For internal stability, we must show that the multicon-
troller is detectable. The multicontroller K(β) is imple-
mented with the internal structure [6] shown in Fig. 2.
Consider the minimal state-space realizations for Ũ0, Ṽ −1

0 ,
M̃ , and Ñ given by

ẋŨ = AŨxŨ + BŨy, s1 = CŨxŨ (31)
ẋṼ = AṼ xṼ + BṼ s2, uc = CṼ xṼ + DṼ s2 (32)
ẋM̃ = AM̃xM̃ + BM̃y, s3 = CM̃xM̃ + DM̃y (33)
ẋÑ = AÑxÑ + BÑuc, s4 = CÑxÑ (34)

respectively. Similarly, the eight filters Q1, . . . , Q8 are given
by the minimal realizations

ẋQi = AQixQi + BQir, s = CQixQi, i = 1, . . . , 8
(35)

and, from (30), we realize Q(β) as

ẋQ = AQxQ + BQr, s = CQxQ (36)

where AQ = diag(AQ1, . . . , AQ8), BQ =[
BT

Q1 . . . BT
Q8

]T
, and CQ =

[
β1CQ1 . . . β8CQ8

]
. The

overall state-space realization for the multicontroller K(β)
is given by

ẋC = AC(β)xC + BCy, uc = CC(β)xC (37)
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where the composite controller state is given by xC =[
xT

M̃
xT

Ũ
xT

Ṽ
xT

Ñ
xT

Q

]T

and the system matrices are de-
fined obviously. By implementing the multicontroller as in
Fig. 2, the pair (CC(β), AC(β)) is detectable for all β ∈ R8.
A sketch of the proof is as follows: It can be shown that
all unstable modes are detectable by establishing that if
y, uc → 0 as t → ∞, then limt→∞ xC(t) = 0 for any
initial condition xC(0). So, suppose y, uc → 0. Then, from
the stability of the filters Ũ0, M̃ , and Ñ , it follows that
s1, s3, s4 → 0. In turn, we have that r → 0 and, because Q is
a stable filter, s → 0. Thus, it follows from s1, s3, s4, uc → 0
and the detectability of the realizations (31) – (36) that
xŨ , xṼ , xM̃ , xÑ → 0 and, in turn, xC → 0. Therefore, the
realization (37) is detectable.

It follows from Theorem 1 and the definition of Bp∗ , if
mixing signal β(t) takes on the constant value β∗ ∈ Bp∗

for all t, then the LTI controller K(β∗) stabilizes the plant
G(s; p∗), i.e., the closed-loop system satisfies[

ẋPA
ẋC

]
=

[
APA(p∗) BPA(p∗)CC(β∗)

BC AC(β∗)

] [
xPA
xC

]
(38)

and, because K(β∗) is stabilizing, xPA, xC → 0 as t →
∞. It is important to note that this result is not sufficient
for establishing stability of the closed-loop adaptive system.
The stability and robustness analysis of the AMC scheme is
presented in the sequel.

Combining the multicontroller K(β), mixer M , and adap-
tive law yields the adaptive control law uc = K(β(p̂))y.
The closed-loop states of the AMC scheme are x

4
=[

x̄T
PA xT

C xT
E

]T
, p̂

4
=

[
p̂T
12 p̂3

]T
, and nd.

III. STABILITY AND ROBUSTNESS ANALYSIS

The following key results are used in the stability and
robustness analysis of AMC schemes. The results are well
known, and, unless stated otherwise, their proofs can be
found in [2] and the references within.

Theorem 2: Let Ω ⊂ R2n be compact and θ be any con-
stant in Ω. Let the parameterized detectible pair (C(θ), A(θ))
be Lipschitz with respect to θ ∈ Ω, where A(θ) ∈ Rn×n and
C(θ) ∈ Rl×n.

1) Then there exists a Lipschitz function L : Ω → Rn×l,
such that AI(θ)

4
= A(θ) − L(θ)C(θ) is a stability

matrix uniformly in θ ∈ Ω, i.e., AI(θ) satisfies

max
i
Re{λi[AI(θ)]} < −σ (39)

for some σ > 0 independent of θ, where λi(AI(θ)) is
the ith eigenvalue of the matrix AI(θ).

2) If θ(t) ∈ Ω for all t ≥ 0 and θ̇ ∈ L2 is satisfied in
addition to the conditions in 1), then the equilibrium
xe = 0 of ẋ = AI(θ(t))x is e.s.

3) If θ(t) ∈ Ω for all t ≥ 0 and θ̇ ∈ S(µ2) is satisfied
in addition to the conditions in 1), then there exists a
µ∗ > 0 such that if µ ∈ [0, µ∗) the equilibrium xe = 0
of ẋ = AI(θ(t))x is e.s. �

The proof of Theorem 2 is a combination of the well-known
results of [7] and the linear time varying (LTV) stability
results found in [2].

The following result concerns the LTV system given by

ẋ = A(t)x + B(t)u, x(0) = x0 (40)
y = C(t)x + D(t)u (41)

where x(t) ∈ Rn, y(t) ∈ Rl, u(t) ∈ Rm, and the elements
of the matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rl×n,
and D(t) ∈ Rl×m are bounded continuous functions of time.

Lemma 1: If the LTV system (40),(41) is e.s. and u ∈ L2e

then
1) for any δ ∈ [0, δ1) where 0 < δ1 < 2α0 is arbitrary,

we have

‖xt‖2δ ≤
cλ0√

(δ1 − δ)(2α0 − δ)
‖ut‖2δ + εt

where c = supt ‖B‖ and εt is an exponentially
decaying to zero term because x0 6= 0.

2) u ∈ L2 ⇒ x ∈ L2∩L∞, ẋ ∈ L2, and limt→∞ |x(t)| =
0

3) u ∈ S(µ) ⇒ x ∈ S(µ) ∩ L∞ �
Lemma 2: Consider the LTI system given by y = H(s)u

where H(s) is a strictly proper rational function of s. If H(s)
is analytic in Re[s] ≥ −δ/2 for some δ ≥ 0 and u ∈ L2e

then we have |y(t)| ≤ ‖H(s)‖2δ‖ut‖2δ . �
The following Bellman-Gronwall (B-G) lemma is useful for
establishing boundedness.

Lemma 3 (B-G Lemma): Let c1, c2 be positive constants
and g(t) be a piece-wise continuous function of t. If for all
t ≥ t0 ≥ 0, the function y(t) satisfies the inequality

y(t) ≤ c1 + c2

∫ t

t0

e−δ(t−τ)g2(τ)y(τ)dτ

then for all t ≥ t0 ≥ 0

y(t) ≤ c1e
−δ(t−t0)e

c2
R t

t0
g2(τ)dτ

+c1δ
∫ t

t0
e−δ(t−s)ec2

R t
s

g2(τ)dτds.

�
Theorem 3: Consider the unknown plant given by (4),

with dw bounded. The AMC scheme comprising the mul-
ticontroller (37), a mixer that satisfies M1 and M2, and the
robust online parameter estimators (8) and (9) guarantees that

1) there exists a constant δ∗ > 0 such that if

c(∆2
11 + ∆2

21) < δ∗ (42)

∆11
4
= |bsd,5|

∥∥∥∥ 1
Λ(s)

T ∗sd

∥∥∥∥
2δ0

(43)

∆21
4
= |bsd,1|

∥∥∥∥ 1
Λ(s)

T ∗sd

∥∥∥∥
2δ0

(44)

where c is a finite constant, then x, p̂, nd ∈ L∞ and∫ t

0
|y(τ)|2dτ ≤ c(∆2

11 + ∆2
21 + ‖dw‖2∞)t + c.

2) if T ∗sd, dw = 0, then x → 0 as t →∞ .
�
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Proof: Let us rewrite (4), (37), and (18) as

ẋ = A(p̂)x + Bdw, x
4
= [ x̄T

P uT xT
C xT

E ]T (45)

ε1 = C(p̂)x, ε1
4
= [ z12 − p̂T

12φ12 z3 − p̂3φ3 ]T (46)

where the matrices A(p̂), B, and C(p̂) are defined obviously,
and the unnormalized estimation error ε1 drives the adaptive
laws (8) and (9), which tune p̂(t). The closed-loop system
written in the form of (45)-(46) is suitable for the application
of Morse’s tunability analysis [8] approach. Consider the
arbitrary initializations x(0) = x0 and p̂(0) = p0 ∈ Ω. It
has been establish in [9] that there exists a unique global
solution [xT (t) p̂T (t) nd(t)]T along the trajectories of (8),
(9), (11), and (45), ∀t ∈ [0,∞).

Step 1: Establish that ∀p̂ ∈ Ω, {C(p̂), A(p̂)} is a detectible
pair.

If we let ε1 ≡ 0 then there is no adaptation, i.e., p̂ ≡
p0 = [ pT

12,0 p3,0 ]T = [ a54,0 b52,0 b11,0 ]T , where a54,0,
b52,0, and b11,0 are the initial estimates of a54, b52, and
b11, respectively. Therefore, the closed-loop system is an LTI
system.

Because ε1 ≡ 0, we have that z12 = pT
12,0φ12 and z3 =

p3,0φ3. For the case of z12 = pT
12,0φ12, it follows from (15)

and (17) that xP and u satisfy

s

Λ(s)
q =

1
Λ(s)

( a51V + a52γ + a53h + a54,0α

+a55q + b51δT + b52,0δe ) (47)

or, equivalently,

q̇ = a51V + a52γ + a53h + a54,0α

+ a55q + b51δT + b52,0δe. (48)

Furthermore, from z3 = p3,0φ3, (16), and (17), xP and u
also satisfy

s

Λ(s)
V =

1
Λ(s)

( a11V + a12γ + a13h + a14α

+a15q + b11,0δT + b12δe ) (49)

or, equivalently,

V̇ = a11V + a12γ + a13h + a14α

+ a15q + b11,0δT + b12δe. (50)

Therefore by combining (48) and (50) with the state equa-
tions for h, γ, and α, as well as the actuator model, we have
that

ẋPA = APA(p0)xPA + BPA(p0)uc, xPA
4
= [ xT

P uT ]T

(51)

where APA and BPA are defined obviously. Since p̂ ≡ p0,
the multicontroller is the LTI system

ẋC = AC(β(p0))xC + BCy
uc = CC(β(p0))xC.

(52)

By combining (51) and (52), we obtain the requirement that
xP and u satisfies[

ẋPA
ẋC

]
=

[
APA(p0) BPA(p0)CC(β(p0))

BC AC(β(p0))

] [
xPA
xC

]
.

(53)

It then follows from the design of the multicontroller and
mixer as discussed in Section II that xPA, xC → 0, and in turn
x̄P, xE → 0. Therefore, the pair (C(p0), A(p0)) is detectable.

Step 2: Establish that along the solutions of (8), (11), (9),
and (45) there exists a function L : Ω → Rn̄×n̄ such that
AI(t)

4
= A(p̂(t))− L(p̂(t))C(p̂(t)) is exponentially stable.

We define the normalized estimation error as ε
4
=

[εp12 εp3]T = ε1/m2 and the modeling error term as
ηa

4
= [η12 η3]T . From the properties (21)-(22), the robust

adaptive law (8),(9) guarantees

ε, εm, ˙̂p ∈ S(ηT
a ηa/m2). (54)

Applying Lemma 2 to (24), together with dw,1 ≤ d1 and
dw,2 ≤ d2, yields

|η12(t)| ≤ ∆11‖(δe)t‖2δ0 + ∆12 (55)

where ∆11 is defined in (43) and ∆12 is some finite constant.
Similarly, from (25) and the boundedness of dw(t), we obtain
the bound

|η3(t)| ≤ ∆21‖(δe)t‖2δ0 + ∆22 (56)

where ∆21 is defined in (43) and ∆22 is some finite constant.
Since m2 = 1 + ‖(δe)t‖22δ0

and m ≥ 0 it follows that

|ηa(t)|2

m2
≤ µ2 4= c(∆2

11 + ∆2
12 + ∆2

21 + ∆2
22) (57)

for some constant c > 0. Therefore, we have

ε, εm, ˙̂p ∈ S(µ2). (58)

The matrix A(p̂) depends on p̂ as AC(β(p̂)) and CC(β(p̂))
depend on p̂. AC(β(p̂)) and CC(β(p̂)) are linear in β, and β
is Lipschitz in p̂. Therefore, A is Lipschitz in p̂. C is affine
in p̂, and, therefore, also Lipschitz. Furthermore, because
the adaptive law guarantees that p̂(t) ∈ Ω and ˙̂p ∈ S(µ2),
it follows from the detectability result of Step 1 and result
3) of Theorem 2 that there exists a continuous function L :
Ω → Rn̄×n̄ such that that AI(t)

4
= A(p̂(t))−L(p̂(t))C(p̂(t))

is e.s., i.e., the transition matrix Φ(t, τ) of AI(t) satisfies
‖Φ(t, τ)‖ ≤ λ0e

−α0(t−τ) for some positive constants λ0, α0

and t ≥ τ ≥ 0, provided that

µ2 < µ∗ (59)

for some µ∗ > 0. Assume the filter 1/Λ(s) is chosen so
that c(∆2

12 +∆2
22) is sufficiently small, say c(∆2

12 +∆2
22) <

µ∗/2 so that for c(∆2
11 + ∆2

21) < µ∗/2, condition (59) is
always satisfied1. Note that if T ∗sd, dw = 0, the adaptive law

1Boundedness of the closed-loop signals can be proven independent of
the size of c(∆2

12 + ∆2
22) by using the analysis approach of [2, Section

9.9.1], which involves a complicated, lengthy contradiction argument. The
analysis presented, however, has been chosen for simplicity.
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guarantees that θ̇ ∈ L2, and from result 2) of Theorem 1,
we have that AI(t) is e.s. Also observe that in either case,
‖L‖ ∈ L∞ since L is continuous and Ω is compact.

Step 3: Establish boundedness and convergence of x.
Let δ ∈ [0, δ1), where δ1 < min{2α0, δ0}, and c > 0

denotes any finite constant.
By applying output injection, we rewrite (45),(46) as

ẋ = AI(t)x + Bdw + L(p̂(t))ε1 (60)

where in Step 2 we established e.s. of the homogeneous part
of (60).

We establish that m ∈ L∞: By result 1) of Lemma 1 and
the e.s. property of AI , we have that

‖xt‖2δ ≤ c‖ (ε1)t ‖2δ + c. (61)

Applying the L2δ norm to uc = CC(t)xC, where ‖CC(t)‖ is
bounded (because CC is Lipschitz in p̂ and Ω is compact,)
yields

‖(δe)t‖2δ ≤ ‖(uc)t‖2δ ≤ c‖(xC)t‖2δ ≤ c‖(ε1)t‖2δ + c (62)

where the third inequality is obtained by first recognizing
that xC is a subvector of x and then applying inequality
(61). Consider the fictitious normalization signal

m2
f
4
= 1 + ‖(δe)t‖22δ. (63)

Note that because δ < δ0, it follows from the definitions of
m,mf that m ≤ mf . Substituting (62), and ε1 = εm2 into
(63) yields

m2
f ≤ c‖(εm2)t‖22δ + c ≤ c‖(εmmf )t‖22δ + c (64)

where the second inequality is obtained by using m ≤ mf .
From the definition of ‖(·)t‖2δ it follows that

m2
f ≤ c

∫ t

0

e−δ(t−τ)(ε(τ)m(τ))2m2
f (τ)dτ + c. (65)

Applying the B-G Lemma to (65) with g(τ) = ε(τ)m(τ)
yields

m2
f ≤ ce−δtec

R t
0 g2(τ)dτ + cδ

∫ t

0

e−δ(t−s)ec
R t

s
g2(τ)dτds.

(66)
Let us assume2 that 1/Λ(s) is chosen such that
c(∆2

12 + ∆2
12) ≤ δ/2. Because εm ∈ S(µ2) implies

c
∫ t

s
(ε(τ)m(τ))2dτ ≤ cµ2(t−s), it follows that for c(∆2

11 +
∆2

21) ≤ δ/2, we have mf ∈ L∞. Since m ≤ mf , we have
that m ∈ L∞, and together with εm ∈ L2∩L∞ implies that
ε1 = εmm ∈ L2 ∩ L∞.

We now turn our attention to the injected system (60). If
we have that T ∗sd, dw = 0, the term L(t)ε1 can be viewed
as an input into the exponentially stable linear system ẋ =
AI(t)x + ū. Because ‖L(t)‖ ∈ L∞ and ε1 ∈ L2 ∩ L∞, the
input ū = Lεm2 belongs to L2 ∩ L∞. Since AI(t) is e.s.
and Lε1 ∈ L2 ∩ L∞, it follows from result 2) of Lemma 1
and (60) that x ∈ L2 ∩ L∞, ẋ ∈ L2 ∩ L∞, and x → 0 as

2As in footnote 1, this assumption can be relaxed by using the analysis
approach of [2, Section 9.9.1].

t →∞. From the convergence of x, and consequently Lε1,
it follows from (60) that ẋ → 0 as t → 0.

Similarly, consider that ∆m 6= 0 or dw 6= 0. The dynamics
of x are then governed by

ẋ = AI(t)x + ū + Bdw (67)

where ū = Lε1 has been shown to belong to S(µ2) ∩ L∞
and dw is bounded. Therefore, x ∈ L∞, and, in turn, ẋ ∈
L∞. Moreover, from result 3) of Lemma 2, it follows that∫ t

0
|y(τ)|2dτ ≤ c(∆2

11 + ∆2
21 + ‖dw‖2∞)t + c.

IV. CONCLUSION

The stability and robustness properties of an AMC scheme
applied to an uncertain AHFV model were analyzed, pro-
viding answers to some important theoretical questions con-
cerning the practicality of the AMC scheme. The analysis
establishes that all closed-loop states remain bounded and of
the order of the modeling error provided that the complex
uncertainty satisfies some bound condition. Consistent with
this result, if the true aircraft dynamics matches the nominal
model (i.e., in this case T ∗sd = 0) the closed-loop adaptive
system is asymptotically stable.
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