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Abstract— The PI controller for plants with unbounded
control and observation operators is discussed. This is a
generalization of pervious work considering bounded control
operators. Our approach is mainly based on regular linear
systems in the Salamon–Weiss sense.

Index Terms— PI-Controller, unbounded control operators,
semigroup, infinite–dimension.

I. INTRODUCTION

The PI-controllers attracted the attention of many re-
searchers in systems theory and engineers for many years.
This is a natural way to stabilize and regulate models
in engineering. The theory has been started for finite di-
mensional systems, e.g. [3]. Pohjolainen [12] extended the
finite dimensional theory of PI-controllers to the infinite
dimensional linear systems. He considered a linear system
governed by an analytic semigroup on Banach space, a
bounded control operator and an admissible unbounded
observation operator; see also [10]. The techniques used in
the aforementioned works are mainly based on the state-
space approach. By using a frequency domain approach, the
authors of [11] have solved the PI-controller problem for an
infinite dimensional linear system with a general semigroup
and bounded control and observation operators. In the paper
[24] the authors generalize the results of [12] by considering
general semigroups instead of analytic semigroups, but the
state space is Hilbert. Recently a generalization of the paper
[24] to the Banach state spaces is established in [2]. There,
the authors have used the restriction that the control operator
is bounded. The case of unbounded control operator with
bounded observation operator was considered by Pohjolainen
[13]. The recent paper [14], the authors investigated the PI-
control problem for well-posed linear systems in Hilbert
spaces with an appropriate class of disturbance terms and
obtained a result on tracking and disturbance rejection.

By analyzing the existing literature, one notes that the PI-
controller problem seems to be not well investigated for well-
posed linear systems in Banach space due to the difficulty in
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using spectral theory to prove stabilty. The object of this
paper is to study the PI–controller for well-posed linear
systems in Banach spaces. Here, the semigroup generator
of the system is not necessarily analytic semigroup and the
control and observation operators are possibly unbounded.
We are interested in the class of infinite dimensional regular
linear systems in the Salamon–Weiss sense, [15], [16], [20].
As examples of such systems one includes boundary control
problems and input-output delay systems. In fact, as shown
in [6] a linear system with state, input and output delays can
be reformulated as infinite dimensional regular linear system
in product state Banach spaces. Our aim is to introduce an
unified approach to PI-Controller for the general class of
regular linear systems in state Banach spaces. The approach
is mainly based on infinite-dimensional closed–loop systems,
their spectral theory and the spectral mapping theorem for
semigroups [4, Chap.VI]. Some robustness results are also
investigated in this paper.

The organization of the paper is as follows: As we deal
with infinite dimensional regular linear systems, Section 11 is
devoted to a background on such systems. In Section IV we
study the I–controller for regular linear systems. In Section
IV we investigate the PI-controller for regular linear systems.
In the last section we summarize the results obtained in this
paper.

Notation. Let A be the generator of a C0–semigroup T :=
(T (t))t≥0 on a Banach space (X, ‖ · ‖). We denote by
ρ(A) the resolvent set of A, i.e., the set of all λ ∈ C
such that λ − A is invertible. The spectrum of A is by
definition σ(A) = C\ρ(A). The domain D(A) endowed
with the graph norm ‖x‖1 = ‖(λ − A)x‖, for λ ∈ ρ(A),
is a Banach space. We define the resolvent operator of A as
R(λ,A) := (λ−A)−1, λ ∈ ρ(A). We also define the norm
‖x‖−1 = ‖R(λ,A)x‖ for some λ ∈ ρ(A). The completion of
X with respect to the norm ‖·‖−1 is a Banach space denoted
by X−1, which is called the extrapolation space associated
with X and A. Moreover, the continuous injection

X1 ↪→ X ↪→ X−1

holds. The semigroup T can be naturally extended to a
strongly continuous semigroup T−1 = (T−1(t))t≥0 on X−1,
of which the generator A−1 : X → X−1 is the extension of
A to X . The type of the semigroup T is defined as

ω0(A) = inf
t>0

1
t

log(‖T (t)‖).
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The spectral bound of the generator A is given by

s(A) = sup{Reλ : λ ∈ σ(A)}.

II. An overview of Salamon–Weiss systems

For the reader’s convenience, we briefly recall the concept
of infinite dimensional well-posed and regular linear systems
in the Salamon–Weiss sense. See [15], [16], [19], [20] for
more details.

In this section A is the generator of a C0–semigroup T :=
(T (t))t≥0 on a Banach space X .

Let U be a Banach space. We say that B ∈ L(U,X−1) is
an admissible control operator for A if∫ t

0

T−1(t− s)Bu(s) ds ∈ X

for some t ≥ 0 and u ∈ Lp([0, t], U). This means that if z
is the solution of

ẋ(t) = Ax(t) +Bu(t)

which is an equation in X−1 then x(t) ∈ X for all t ≥ 0,
initial condition x(0) = z ∈ X and control function u ∈
Lp([0,∞), U). On the other hand, if ω > ω0(A), then there
exists a positive constant β such that

‖R(s,A−1)B‖L(U,X) ≤
β√
Re s

for Res > ω, (1)

Let Y be another Banach space. An operator C ∈
L(D(A), Y ) is called an admissible observation operator for
A (or T ) if the estimate∫ τ

0

‖CT (t)x‖p dt ≤ γpτ ‖x‖p (2)

holds for any x ∈ D(A) and for some constants τ > 0
and γτ > 0. This means that there exists a linear bounded
operator Ψ : X → Lploc([0,∞), Y ) such that

(Ψx)(t) = CT (t)x, ∀ ∈ D(A). (3)

As D(A) is dense in X , the operator Ψ is completely
determined by (3). On the other hand, for every ω > ω0(A),
there exists a positive constant c > 0 such that

‖CR(s,A)‖L(X,Y ) ≤
c√
Re s

for Res > ω, (4)

Let Σ be a time-invariant linear system with state space
X , control space U , observation space Y , state trajectory
z : [0,∞) → X, input u and output y. Then Σ is called
well-posed linear system in X,U, Y if for every t > 0 there
is γt > 0 (independent of u and the initial state) such that

‖z(t)‖p +
∫ t

0

‖y(τ)‖pY dτ ≤ c
p
t

[
‖z(0)‖p +

∫ t

0

‖u(τ)‖pUdτ
]
.

The reader is refereed to the standard references [15], [16],
[19], [20] for more details.

To any well-posed linear system Σ on X,U, Y we can
associate operators A,B,C satisfying the assumptions earlier

in this section. In this case, (T (t))t≥0 is called the semigroup
of Σ, A is called its semigroup generator, B is called the
control operator of Σ, and C is called the observation
operator of Σ. The relationship between the input and the
output of Σ is given by

y = Ψz0 + Fu,

where z0 is the initial condition of Σ, Ψ is the operator
defined by (3) (called the extended output map of Σ), and
F : Lploc([0,∞), U)→ Lploc([0,∞), Y ) is a linear continuous
operator (called the extended input–output map of Σ). The
operator F is determined as follows: if y = Fu, then y has
a Laplace transform ŷ, and for Reλ > max{ω0(A), 0} we
have

ŷ(λ) = G(λ)û(λ),

where G is an L(U, Y )-valued analytic function satisfying,
for any ω > ω0(A),

sup
Reλ>ω

‖G(λ)‖ < +∞. (5)

The function G is called transfer function of Σ. This function
satisfies

G(λ)−G(µ) = C(R(λ,A)−R(µ,A))B (6)

for Reλ,Reµ > ω0(A).
Let Σ be a well-posed linear system with extended input–

output operator F. We say that Σ is regular (with zero
feedthrough) if the limit

lim
t→0

1
t

∫ t

0

(Fu0)(τ) dτ = 0

exists in Y for the constant input u0(t) = z, z ∈ U, t ≥ 0.
The class of regular linear systems is very useful for the

feedback theory of control systems. To recall this, we need
some notation. The Yosida extension of an operator C ∈
L(D(A), Y ) is defined as

CΛz := lim
λ→+∞

CλR(λ,A)z

D(CΛ) := {z ∈ X : the above limit exists in Y }.
(7)

By using the graph norm associated with A and Lemma 3.4
in [4, p.73] one can see that D(A) ⊂ D(CΛ) and that CΛz =
Cz for any z ∈ D(A).

Now, if Σ is a regular linear system with control the we
have

R(s,A−1)B ⊂ D(CΛ) for some (hence all) s ∈ ρ(A).
(8)

Moreover, the transfer function of G satisfies

G(s) = CΛR(s,A−1)B for s ∈ ρ(A). (9)

In the rest of this section we recall the feedback the-
ory of regular systems. Let Σ be a regular system with
extended input–output operator F. For any τ > 0 we
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define an operator F(τ) : Lp([0, τ ], U) → Lp([0, τ ], Y )
by setting (F(τ)u)(t) = (Fu)(t) for any t ∈ [0, τ ] and
u ∈ Lploc([0,∞), U).
An operator K ∈ L(Y,U) is called an admissible feedback
for the system Σ if I−F(·)K has uniformly bounded inverse.
Note that in the case of Hilbert spaces and p = 2 one can use
transfer functions instead of input-output operators for the
definition of admissible feedback (see [19] for more details).

We now state a very general perturbation theorem due
to Weiss in Hilbert spaces [20] and to Staffans in general
Banach spaces [16, Chap.7].

Theorem 2.1: Let Σ be a regular linear system on X,U, Y
with semigroup (T (t))t≥0, semigroup generator A, control
operator B, observation operator C and admissible feedback
K. Then the operator defined by

R = A−1 +BKCΛ

D(R) :=
{
z ∈ D(CΛ) : (A−1 +BKCΛ)z ∈ X

}
with the sum defined in X−1 generates a C0–semigroup TK
on X satisfying TK(σ)z ∈ D(CΛ) for a. e. σ ≥ 0 and

TK(t)η = T (t)η +
∫ t

0

T−1(t− σ)BKCΛTK(σ)η dσ (10)

for η ∈ X, t ≥ 0.

III. Design of the I-controller
Consider the system{
ẋ(t) = Ax(t) +Bu(t) + w, t > 0, x(0) = x
y(t) = Cx(t), t > 0, , (11)

where A : D(A) is the generator of a C0–semigroup
(T (t))t≥0 on a Banach space X, the control operator B ∈
L(U,X−1) and the observation operator C ∈ L(D(A), Y ).
We are looking for parameters kI ∈ R for which the feedback
law

u(t) = kIKI

∫ t

0

(y(τ)− yr) dτ := kIKIz(t)

stabilizes, where yr is suitable reference output and KI is
an appropriate feedback operator. As our setting is general,
extra conditions on the plant (A,B,C) is needed.

We assume that A,B,C are the semigroup generator, the
control operator and the observation operator of a regular
linear system Σ, respectively. Moreover, we assume that KI

is an admissible feedback for Σ. By invoking the feedback
law u(t) = kIKIz(t) and introducing the new state

ξ : [0,∞)→ X := X × Y, ξ = ( xz ), (12)

the system (11) can be reformulated as{
ξ̇(t) = AIξ(t) + ( w

−yr ), t > 0,
y(t) =Mξ(t), t > 0,

, (13)

with

AI :=
(
A−1 kIBKI

CΛ 0

)
,

D(AI) =
{

( xz ) ∈ D(CΛ)× Y : AI( xz ) ∈ X
} (14)

and
M := D(CΛ)× Y → Y, M = (CΛ 0).

We are interested in showing the following three items
(a) The solution of the system (11) approaches zero expo-

nentially.
(b) The regulation of the output. This means that y ap-

proaches yr asymptotically
(c) The aforementioned stabilization and regulation are

independent of the initial condition x(0) and the per-
turbation term w.

To that purpose we need some preparations.
Proposition 3.1: Assume that A,B,C are the semigroup

generator, the control operator and the observation operator
of a regular linear system Σ, respectively. Moreover, we
assume that KI is an admissible feedback for Σ. Then the
operator AI coincides with the generator of an appropriate
closed–loop system, so it is a generator.

Proof: Define

A =
(
A 0
0 0

)
, D(A) = D(A)× Y.

Then A generates the following diagonal semigroup

T (t) =
(
T (t) 0

0 IY

)
, t ≥ 0.

On the other hand, define

B =
(
B 0
0 IY

)
, C =

(
0 IY
C 0

)
and K =

(
kIKI 0

0 IY

)
.

A straightforward arguments shows that (A,B, C) generates
a regular linear system on X , U × Y, Y × Y with K as
admissible feedback operator. Then by Theorem 2.1 the
following operator

R = A−1 + BKCΛ,
D(R) =

{
( xζ ) ∈ D(CΛ) : (A−1 + BKCΛ)( xζ ) ∈ X

} (15)

generates a C0–semigroup on X , where CΛ is the Yosida
extension of C with respect to A. Now we will prove that
R = AI . Let λ ∈ ρ(A) = ρ(A)\{0}. Then

CλR(λ,A) =
(

0 I
CλR(λ,A) 0

)
.

Then D(CΛ) = D(CΛ)× Y and

CΛ =
(

0 I
CΛ 0

)
.

The proof follows then from the fact that

A−1 =
(
A−1 0

0 0

)
.

Then AL is a generator of a C0–semigroup on X .
Proposition 3.2: Assume that A,B,C are the semigroup

generator, the control operator and the observation operator
of a regular linear system Σ, respectively. Moreover, we
assume that KI is an admissible feedback for Σ. Then, for
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λ ∈ ρ(A)\{0} we have λ ∈ σ(AI) if and only if 1 ∈
σ(kI

λ CΛR(λ,A−1)BKI). On the other hand, if A is invert-
ible, then AI is invertible if and only if CΛ(−A−1)−1BKI

is so.
Proof: Let R be the generator of the closed loop system

constructed in the proof of Proposition 3.1 (see (15)). As
AI = R then by [23, Theorem 1.2], for λ ∈ ρ(A) =
ρ(A)\{0} we have λ ∈ σ(AI) if and only if I − G(λ)K
is not invertible. Now for Reλ > w0(A) we have

G(λ) = CΛR(λ,A−1)B =
(

0 1
λ

CΛR(λ,A−1)B 0

)
.

Then

I − G(λ)K =
(

I − 1
λ

−kICΛR(λ,A−1)BK I

)
Hence I − G(λ)K is not invertible if and only if 1 ∈
σ(kI

λ CΛR(λ,A−1)BKI).
We show the last assertion. Assume that A is invertible.

We have (−A−1)−1BK ∈ L(Y,X), so we can decompose
AI as follows

AI =
(
A−1 0

0 I

)(
I kI(A−1)−1BKI

CΛ 0

)
.

Thus the result follows by Schur complement.
Proposition 3.3: Assume that A,B,C are the semigroup

generator, the control operator and the observation operator
of a regular linear system Σ, respectively. Moreover, we
assume that KI is an admissible feedback for Σ. Then
(i) If ω0(A) ≥ 0, then for all ω > ω0(A) there exists

κω > 0 such that s(AI) ≤ ω for all kI ∈ (0, κω).
(ii) If ω0(A) < 0 and σ(CΛR(0, A−1)BKI) ⊂ C+, there

exists κω > 0 such that s(AI) < 0 for all kI ∈ (0, κω).
Proof: We show (i). Let ω > ω0(A). Then by [19] we

have

aω := sup
Reλ≥ω

‖CΛR(λ,A−1)B‖ < +∞. (16)

If we put κω := ω/(aω‖K‖) then for all kI ∈ (0, κω) we
have ∥∥kI

λ
CΛR(λ,A−1)BK

∥∥ ≤ kIaω‖K‖
ω

< 1.

The assertion then follows by Proposition 3.1.
We show (ii). This is much more difficult. This needs some
decomposition on the spectrum of A. Let ω ∈ (ω0, 0) and
define

Ωω :=
{
λ ∈ C : Re > ω, |λ| ≥ |ω|

}
.

In view of Proposition 3.1 one sees that for λ ∈ Ωω , λ−AI
is invertible if and only if I − kIλ−1CΛR(λ,A−1)BKI is
invertible. As we have seen before, there exists k0 > 0 such
that I − kIλ−1CΛR(λ,A−1)BKI is invertible for all kI ∈
(0, k0). Hence

Ωω ⊂ ρ(AI). (17)

For β > 0, define

D(0, β) :=
{
λ ∈ C : |λ| ≤ β

}
.

Using the exponential stability of the semigroup generated
by A and the equation (6) one can see that there exist β > 0
(independent of kI ) such that

D(0, β)+ := D(0, β) ∩ C+ for all kI > 0. (18)

According to (17) and (18) we have

D(0, β)+ ∪ Ωω ⊂ ρ(AI) for all kI ∈ (0, kω). (19)

Now if we set D(0, β)− := D(0, β) ∩ C− then we have

d(D(0, β)−, D(0, β)+) > 0,

where d(D(0, β)−, D(0, β)+) denotes the distance between
the sets D(0, β)− and D(0, β)+. This implies that s(AI) <
0.

In what follows we assume that U = Y = Cm. We will
prove the exponential stability of the semigroup generated
by AI . Before going into details, we recall some notions.
We denote by ωess(A) the essential growth bound of the
generator A (see [4]). From the Spectral Mapping Theorem
(see [4, Chap.IV]) we have

ω0(A) = max{ωess(A), s(A)}. (20)

Theorem 3.4: Assume that A,B,C are the semigroup
generator, the control operator and the observation operator
of a regular linear system Σ, respectively. Moreover, we
assume that KI is an admissible feedback for Σ. Assume
that ω0(A) < 0 and let KI a m × m matrix such that
σ(CA−1BKI) ⊂ C+. Then there exists κI > 0 such that
for all kI ∈ (0, κI) the operator AI is exponentially stable.
For all x0 ∈ D(A) and every constant perturbation w, the
output function of (13) satisfies

lim
t→+∞

‖y(t)− yr‖ = 0.
Proof: From the proof of proposition 3.1 the operator

AI coincide with the operator R, which is the generator
of a closed loop system. Since K is compact, then by [23,
Proposition 2.5], the operators AI and A have the same
essential spectrum. Hence ωess(AI) = ωess(A) = ωess(A).
Since ω0(A) < 0 then by (20) we have ωess(AI) < 0. Now
in view of Proposition 3.2 we have s(AI) < 0. Again by
(20) (with respect to AI ) we conclude that ω0(AI). We now
prove the last assertion. The solution of the nonhomogeneous
system (13) is given by

ξ(t) = TI(t)( x0
z0 ) +

∫ t

0

TI(τ)( w
−yr )dτ (21)

for all ( x0
z0 ) ∈ X . As y(t) = Mξ(t) and MA−1

I = [0 I]
then

y(t)− yr =MTI(t)[( x0
z0 ) +A−1

I ( w
−yr )].
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Since M is an admissible observation operator for the
exponentially stable C0–semigroup (TI(t))t≥0 then we have∫ ∞

0

‖y(t)− yr‖p dt < γp‖( x0
z0 ) +A−1

I ( w
−yr )‖p

with constant γ > 0. This complete the proof.

IV. PI-controller

In this section we use the following feedback law (with
is the feedback law used in the previous section plus a
proportional term)

u(t) = kPKP (y(t)− yr) + kIKI

∫ t

0

(y(τ)− yr) dτ. (22)

Throughout this section we assume that A,B,C are issued
from a regular linear system Σ such that KI and KP are
admissible feedback operators for Σ, and that U = Y = Cm.
Then from Theorem 2.1, the following operator

AP := A+ kPBKPCΛ,

D(AP ) = {x ∈ D(CΛ) : (A+ kPBKPCΛ)x ∈ X}

generates a C0–semigroup (Tp(t))t≥0 on X . Similarly to
Section III, we can reformulate the closed–loop system
associated to the system (11) and the feedback law (22) as{

ξ̇(t) = AP,Iξ(t) + (w−kpBKP yr

−yr
), t > 0,

y(t) =Mξ(t), t > 0,
, (23)

with

AP,I :=
(
AP kIBKI

CΛ 0

)
,

D(AP,I) =
{

( xz ) ∈ D(CΛ)× Y : AP,I( xz ) ∈ X
} (24)

and
M := D(CΛ)× Y → Y, M = (CΛ 0).

To follow the results obtained in Section III, we need to
show that the semigroup (TP (t))t≥0 is exponentially stable.
We have the following result.

Lemma 4.1: If ω0(A) < 0 then there exists κP > 0 such
that ω0(AP ) < 0 for all kP ∈ (0, κP ).

Proof: Let δ ∈ (ω0(A), 0) and λ ∈ C such that Reλ ≥ δ.
From (5) we have

α := sup
Reλ≥δ

‖CΛR(λ,A−1)B‖ < +∞.

we set κP := 1/(α‖KP ‖). Then for all kP ∈ (0, κP )
we have ‖kpKPCΛR(λ,A−1)B‖ < 1. Then by [23,
Theorem 1.2] we have λ ∈ ρ(AP ), which means that
s(Ap) < 0. On the other hand, by [23, Proposition 2.5],
we have ωess(AP ) = ωess(A) < 0. Now by the Spectral
Mapping Theorem for semigroups we have ω0(AP ) =
max{ωess(AP ), s(AP )} < 0.

Theorem 4.2: Assume that A generates an exponentially
stable C0–semigroup on X and that Rank(CΛA

−1
−1B) = m.

Then there exist κP > 0 such for all kp ∈ (0, κP ) there exists

κI > 0 such that for all kI ∈ (0, κI) we have ω0(AP,I) < 0
and y(t)−yr approaches zero in X as t approaches +∞ for
every disturbance w ∈ X and initial condition x0 ∈ X .

Proof: Set G(λ) = CΛR(λ,A−1)B the transfer func-
tion of the regular linear system Σ. Then the transfer
function of the closed loop system associated with Σ
and the admissible feedback KP is given by GP (λ) =
(I − KPG(λ))−1G(λ) for λ ∈ ρ(A) ∩ ρ(AP ). Then
Rank(GP (0)) = Rank(G(0)) = m. The rest of the proof
follows by Lemma 4.1 and a similar argument as in the proof
of Theorem 3.4.

V. Conclusion

In this paper, we have addressed the question of PI-
controller (proportional and integral output feedback) for reg-
ular linear systems with unbounded control and observation
operators in Banach state space and a constant disturbance
term. We have first solved the integral controller problem
using an approach mainly based on regular linear systems in
the Salamon–Weiss sense. In particular the spectral theory
of the closed loop system developed in [23] together with
Spectral Mapping Theorem for semigroups [4, Chap.IV]. In
the second part of the paper, the PI–controller problem is
regarded as the perturbation (in the closed loop sense [20])
of the I–controller. Thus we used the results of Section
III and a robustness result to solve the PI–controller. The
regulation is also obtained in this paper using properties of
admissible observation operators. The abstract results of this
paper will be applied in a forthcoming paper to both a large
class retarded and neutral linear systems with state [6], [7],
[8], [9].
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