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Abstract— In this paper, we propose a fairly general model
for hierarchical multi-agent dynamical systems (HMADSs) with
fractal structure and investigate their stability or convergence
condition for consensus. We first generalize a model introduced
by Smith et al. [1] to represent the weak cross-layer interconnec-
tion properly and explain the significance of focusing on the low-
rank property instead of sparseness or small gain property. We
then derive the analytical expression of eigenvalue distribution
of the system matrix with rank 1 interconnection for cyclic
pursuit. This provides us the stability or consensus condition for
the whole system where each agent has a certain dynamics. We
also clarify the relation between the property of interconnection
and stability degree of multi-agent systems, which is confirmed
by numerical examples. Further, we investigate the rank 2 case
of the interconnection structure.

I. INTRODUCTION

In recent years, systems to be handled in various fields

of engineering including control have become large and

complex due to the tremendous progress of computer, com-

munication and network technologies. In addition, more

high-level control such as an adaptation against changes of

environments for open systems is required, where a lot of

subsystems interact with each other via no centralized control

function. This motivates us to develop a new framework for

investigating such a large-scale system with decentralized

information structure. From the above viewpoint, it has been

paid much attention to analysis of multi-agent systems and

its decentralized control scheme. In this line of research,

one of the research topics that are nowadays receiving a lot

of interest is the consensus control problem, also known as

agreement or rendezvous problem, for multi-agent systems

(see [2], [3], [4] and the references therein).

Most of the current literatures have focused on the sim-

ple local control schemes using decentralized information

structures for achieving a desired global behavior; e.g.,

consensus behavior of a group of agents which means to

reach an agreement regarding a certain quantity of interest

that depends on the state of all agents. Nonetheless, there

is another essential feature in large-scale multi-agent sys-

tems. That is the hierarchical structure, because large-scale

systems normally include interactions of subsystems which

have different scales in various aspects such as space and
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time. The class of such systems is often called as multi-scale

systems, and one of the typical examples is bio-systems: they

have different space scales at least from 10−9 in gene level to

10−3 in tissue level. The situation with small size of multi-

agent systems (n1 = 4, n2 = 3, n3 = 2) is illustrated in

Fig. 1(a) to show the hierarchical structure, although we have

many practical applications with quite large number of ni.

For the above problem, Smith et al. [1] have recently

proposed a class of hierarchical multi-agent system struc-

tures, and then have investigated the stability properties in

consensus problem. However, the class of networks in multi-

agent systems treated in their paper is restricted, and hence

the distinctive features of hierarchical systems, which depend

on the cross-layer interconnection structures of a group of

agents, have not been thoroughly investigated. Further, no

discussion for the case where each agent has a certain

dynamics has been presented in their paper. Note that if

agent’s dynamics is not explicitly considered in developing

control strategies, it may suffer from the potential problem

that the global stability cannot be achieved (refer to [5], [6]).

In this paper, following the research direction initiated by

Smith et al. [1], we first propose a fairly general model for

hierarchical multi-agent dynamical systems (HMADSs) with

fractal structure, and then investigate its stability analysis

methods and global convergence properties. The key point

of this research is to study a low-rank property of the

interconnection structure beyond different layers. Although

small gain property and sparseness have been broadly treated

to handle the weak interactions between agents in the conven-

tional researches, the low rank property of interconnection

networks has not been studied yet. The low-rank property

captures a kind of information aggregation which may work

effectively for rapid convergence in the consensus, and hence

we have to pay attention to the low-rank property. To this

end, we first generalize a hierarchical model introduced in

[1] to represent the weak cross-layer interconnection network

properly, and explain the significance of focusing on the

low-rank property instead of sparseness or small gain prop-

erty. We then derive the analytical expression of eigenvalue

distributions of the system matrix for cyclic pursuit. This

provides us a simple stability criterion for the overall multi-

agent system where each agent has a certain dynamics.

Finally, we clarify the relation between the property of

interconnection networks and the stability degree of multi-

agent systems, which is confirmed by several numerical

examples. These show that a certain aggregation process in

information acquisition plays a key role for the consensus of
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Fig. 1. (a) Hierarchical multi-agent system, (b) The closed-loop hierarchical
multi-agent dynamical system

large-scale multi-agent dynamical systems.

Notation: In denotes the identity matrix with size n, and

⊗ represents the Kronecker product of two matrices. The

transpose of the matrix M is denoted by MT . The real and

imaginary parts of a complex variable z is represented by

Re[z] and Im[z], respectively.

II. HIERARCHICAL MULTI-AGENT DYNAMICAL SYSTEM

WITH FRACTAL STRUCTURE

A. A general model

We consider a class of HMADSs with L layers, where all

the agents have the identical dynamics represented by

H(s) = ch (sIk − Ah)
−1

bh + dh, (1)

or its state-space realization:

ż(t) = Ahz(t) + bhu(t), y(t) = chz(t) + dhu(t). (2)

The most typical situation is that H(s) is the closed-loop

transfer function represented by

H(s) = P (s)K(s)/(1 + P (s)K(s)), (3)

where K(s) is an identical feedback controller which locally

stabilizes the common plant P (s) of each agent.

Let the interconnection among all the agents be expressed as

u̇ = ALy , (4)

where u and y, respectively, denote all the collections of

input and output signals of each agent. See Fig. 1(b) for the

block diagram of the whole system, where Ĥ(s) := H(s)/s
and it has the following state-space realization:

Âh =

(

Ah bh

0 0

)

, b̂h =

(

0
1

)

, ĉh =

(

ch

dh

)T

, d̂h = 0.

It is clear that the feedback system combined with (2) and

(4) belongs to a class of LTI systems with a generalized

frequency variable proposed by Hara et al. [7]. Hence, the

system matrix of the feedback system is given by

AL = In⊗Âh+AL⊗(b̂hĉh) = Âh⊗In+(b̂hĉh)⊗AL, (5)

of which the set of eigenvalues determines the stability of the

whole feedback system. The dynamic part of our feedback

system interested in is uniformly expressed as Ĥ(s)I , while

we have a fractal structure in the interconnection represented

by AL as investigated in [1]. In other words, we here suppose

that the system has a fractal structure and the system matrix

AL is recursively defined as follows:

(i) For the lowest layer with the gain g1 > 0,

A1 = g1(P n1
− In1

). (6)

(ii) For the higher layers with gains gℓ > 0 (ℓ = 2, · · · , L),

Aℓ = Inℓ
⊗ Aℓ−1 + gℓ(P nℓ

⊗ ∆Nℓ−1
− Iℓ)

= Inℓ
⊗ (Aℓ−1−gℓINℓ−1

)+P nℓ
⊗ (gℓ∆Nℓ−1

),
(7)

where Nℓ is the total number of agents in the ℓ-th layer

system, Nℓ :=
∏ℓ

i=1 ni, and

∆Nℓ−1
:=

ℓ−1
∏

i=1

gi · ∆nℓ−1
⊗ ∆nℓ−2

⊗ · · · ⊗ ∆n1
(8)

with
∑nℓ

j=1 ∆nℓ
(i, j) = 1.

Here, the diagonal elements of P are assumed to be all zero,

and the suffix represents the dimension of a square matrix.

Eq. (7) implies the i-th subsystem can obtain the information

of the j-th subsystem when P (i, j) is nonzero, where ∆

is referred as the incidence matrix since it represents the

property of information acquisition. We set the dynamics of

the system so that Aℓ becomes a Laplacian matrix, thus on

the ℓ-th layer each agent is subjected to the force which

is obtained by multiplying each relative coordinate by gain

gℓ. Hence, −I in (7) involves that each agent can obtain a

relative coordinate for each layer, and the overall system is

constructed by feedback of these relative coordinates.

Remark 1. In the previous paper [8], we studied a model

for a class of HMADSs with L layers. However, only the

case that the gain gℓ in Aℓ is assumed to be as gℓ = 1
for ℓ = 1, 2, · · · , L is considered in that paper. Further, no

general agent dynamics such as H(s) in (1) was considered;

i.e., H(s) was tacitly assumed as H(s) = 1/s.

B. Low-rank interconnection

We here assume that P in (7) is a circulant matrix of the form

P = circ(0, 1, 0, · · · , 0) for investigating a cyclic pursuit

strategy [5], [9], [10]. The fractal structure means that the

agents in the i-th subsystem can use information on the (i+
1)-th subsystem only.

In this paper, we focus on the low-rank property of incidence

matrix ∆, which has not been investigated yet. However, it

clearly captures the situation where weak couplings between

subsystems are expressed by rank-deficiency or aggregation

via information-sharing. In particular, we propose the fol-

lowing rank one incidence matrix:

∆ = 1 · ζT , (9)

where 1 := (1, 1, · · · , 1)T , and ζT := (ζ1, ζ2, · · · , ζn) is a

row probability vector which satisfies ζi ≥ 0 and
∑n

i=1 ζi =
1. For example, if we set ∆ as

∆ = 1 · ζT , ζT = (1, 0, · · · , 0), (10)
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TABLE I

PROPERTY OF INCIDENCE MATRIX

Low-rank High-rank∆

Sparse

Dense

∆ = 1  ζ. T
∆ = I

the only the first state is available, and hence ∆ is sparse.

On the other hand, if we set ∆ as

∆ =
1

n
1 · 1T , 1

T = (1, 1, · · · , 1), (11)

any agent can obtain no information about individual agents

of the super group, but the rough information or the center

of gravity coordinate is available. Note that the incidence

matrix ∆ in this case is dense but rank one.

In general, the row vector ζT implies that only a weighted

average or a certain aggregated information of the super

group is available, and the column vector 1 means that all

the agents in a subgroup share the information and use it

for control in the same manner. This situation happens when

each agent can see the approximate position of one of the

other groups rather than one of individual agents in the

group. The following implementation is fairly reasonable for

the case where the costs for local communication are quite

low in comparison with those for inter groups. Then, each

subgroup has one special agent which can only communicate

with other group, and any other agents can communicate only

inside the subgroup and get the information about outside

subgroups from the special agent. There are physical models

which adopt the situation: Consider a heat system, where a

bunch of molecules exist in the microscopic level. If we want

to see the macro behavior, we have to investigate the heat

behavior, which is reflected by a certain average motion of

independent molecules.

The model proposed in this paper is a generalization of

the model in [1]. Contrary to our setting, Smith et al. [1]

proposed a class of HMADSs and investigated its rate of

convergence and number of links for the case of ∆ = I ,

which is sparse but has a maximal rank. Those three situa-

tions are summarized in Table 1. In the following sections,

comparing these incidence matrices, we study the relation

between the property of interconnection structure and the

stability degree of multi-agent system.

III. ANALYSIS FOR EIGENVALUE AND EIGENSTRUCTURE

A. Eigenvalue distribution

We can derive the eigenvalue distribution of system matrix

Aℓ for the rank one incidence matrix similarly to the case

of ∆ = I in [1]. Here the results in [11] on the eigenvalue

distribution of circulant matrices play an important role.

Theorem 1. If the incidence matrix ∆ in (9) of the L-layer

system is rank one, then the set of eigenvalues of AL is

recursively given by

eig(AL) =

{

eig(AL−1)\ {0} − gL

gL(ωkL

L − 1)
(12)

CL−1

CL−2

CL

Im

Re

g
L

g
L−1

g
L−2

Fig. 2. Centers of circles corresponding to the each layer
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(b) Non-unit gain case

Fig. 3. Eigenvalue distributions for unit and non-unit gain cases.

where ωℓ (ℓ = 1, 2, · · · , L) is defined as ωℓ := exp
(

2π
nℓ

j
)

.

Moreover, the explicit representation of a set of eigenvalues

of AL is given by the union of

λ =











































−
∑L

i=1 gi + g1ω
k1

1 (k1 = 1, 2, · · · , n1)

−
∑L

i=2 gi + g2ω
k2

2 (k2 = 1, 2, · · · , n2)
...

−
∑L

i=ℓ gi + gℓω
kℓ

ℓ (kℓ = 1, 2, · · · , nℓ)
...

−gL + gLωkL

L (kL = 0, 1, · · · , nL)

(13)

Although we omit the proof due to the space limitation,

it should be emphasized that there are two features on the

eigenvalue distribution:

• There is a simple eigenvalue at the origin in the complex

plane and other eigenvalues are all in the open left-half

complex plane. This is due to the property of graph

Laplacian and guarantees the stability of whole system

provided that each agent has no dynamics.

• A set of eigenvalues is irrelevant to the choice of ζ, and

hence it is valid even for the sparse case of (10) which

has the same number of links with the case of ∆ = I .

Fig. 2 show that L set of circle eigenvalues of AL should

lie on Cℓ in the complex plane, where Cℓ denotes the circle

with center at −
∑L

t=ℓ gt and radius gℓ. Figs. 3(a) and 3(b),

respectively, show the eigenvalue distributions for HMADS

with n1 = 7, n2 = 6, n3 = 5 for the unit gains (g1 = g2 =
g3 = 1) and the non-unit gain cases.

B. Convergence properties

We here investigate the convergence properties based on

the eigenvalue distribution for the rank one case derived

in the previous sub-section. It is completely different from

one for the full rank case, ∆ = I , investigated in [1]. The

eigenvalues in the latter case are scattered to whole directions
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in the left-half complex plane, while the eigenvalues in the

former case just shift to the left without scattering to above or

below. These can be confirmed by comparing the eigenvalue

distributions for the case of n1 = 8 and n2 = 5 illustrated

in Fig. 4 .

Since all the eigenvalues except one at the origin lie in the

left-half complex plane, the system is stable if each agent has

no dynamics. However, the transient behaviors may depend

on the locations of eigenvalues, especially nearest one to the

imaginary axis. In order to investigate this fact, we introduce

the following two indices for evaluating the stability degree:

• Rate of convergence: eigenvalue λγ with minimum

absolute value of real part γ (except for zero eigenvalue)

• Rate of damping: eigenvalue λθ with maximum argu-

ment θ from negative direction of real-axis

For notational simplicity, we only show the results for the

unit gain case.

Proposition 1. If the incidence matrix ∆ in (9) of the L-

layer system is rank one, then we have

λγ = −1 + ω2 for







n2 ≥ 4
n2 = 3, n1 ≤ 6
n2 = 2, n1 ≤ 4

(14)

λγ = −2 + ω1 for

{

n2 = 3, n1 ≥ 6
n2 = 2, n1 ≥ 4

(15)

Proposition 2. If the incidence matrix ∆ in (9) of the

L-layer system is rank one, then we have1

λθ = −1 + ω2, θ = (π/2) − (π/n2). (16)

We can readily see that the values of λγ and θ shown above

are greater than or equal to those for the case ∆ = I derived

in [1], which can also be confirmed in Fig. 4 . It should be

noted that this difference affects more seriously when each

agent has a certain dynamics (see Section IV).

C. Averaged model

We here investigate the (weighted) average behavior in the

subgroup to make the hierarchical structure more clear.

Consider the simplest case where we have only two layers

and all the gains are unit (L = 2 and g1 = g2 = 1) to

1Here, we consider only the eigenvalues with positive imaginary part
because of the symmetric distribution of eigenvalues about real axis.

avoid the notational complexity. Let T be defined as T :=
1 · ζT + e1 · eT

1 − I , which transforms the original state x

to x̂ = Tx = (ζT x, ζT x − x2, · · · , ζT x − xn)T where

the first component of x̂ is the weighted average and the

remainders are the differences between the average and the

values. We can show that T−1 can be written as T−1 =
1 · eT

1 + e1 · ζ
T /(eT

1 ζ) − I and then verify that

P̂ := TPT−1 = P + e1 · (e1 − e2)
T − e1 · ζ

T /(eT
1 ζ)

+ {(eT
nζ)1 · ζT −(eT

1 ζ)1 · ζT P }/(eT
1 ζ)

where ∆̂ := T∆T−1 = e1 · eT
1 . It is clear that ∆̂ is

block diagonal. Also, we see that P̂ has the following

upper triangular form: P̂ =
(

1 ∗

0 ∗

)

. This upper triangular

structure implies that the average behaviors of the subgroups

can be governed by A2 ∼
(

P ∗

0 ∗

)

. In other words, the

collection of the weighted average of each subgroup is a

nice way for aggregating the system to get a good reduced

order model. Note that the eigenvalues of the matrix in the

top/left corner, P , correspond those lie on the most right

circle or the closest one to the imaginary-axis. Hence, they

are dominant to represent the slow response after quicker

convergence inside subgroups. This phenomena actually can

be seen in Fig. 6(a) in the next section.

IV. STABILITY ANALYSIS: GENERAL CASE

In order to guarantee that a group of dynamic agents achieves

convergence to a common point through the hierarchical

control scheme introduced in Sections II and III, gains gℓ

in (6)-(7) should be set carefully. Hence, in the following

sub-sections, we will present a simple diagrammatic stability

analysis method which clearly shows how to determine gℓ

in relation to agent’s dynamics H(s) given in (1).

A. Necessary and sufficient condition for consensus

In this subsection, we will present a necessary and suffi-

cient condition for stability or consensus achievement for

hierarchical multi-agent dynamical systems where each agent

has a general dynamics rather than just a point mass. The

investigation is mainly based on recent researches in [5]-[7].

The closed-loop transfer function G(s) of hierarchical multi-

agent dynamical systems, which is derived from H(s) in

(1) and interconnection topology AL in (4), is written as

follows:

G(s) =
(

(1/Ĥ(s))In − AL

)

−1

, (17)

where Ĥ(s) is defined as Ĥ(s) := H(s)/s (see Fig. 1(b)).

Then, by considering the transfer function

L(s) = (sIn − AL)−1 , (18)

it follows from (17) that

G(s) = L(φ(s)), φ(s) := 1/Ĥ(s) , (19)

where φ(s) is defined as a generalized frequency variable

[5]-[7]. Next, we introduce the following notations which

will be used throughout this paper:

Ω+ := φ(C+), Ωc
+ := C\Ω+ , (20)
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where C+ = {s ∈ C : Re[s] ≥ 0}. Since Ω+ = {λ ∈
C : ∃s ∈ C+ such that φ(s) = λ}, it follows that Ωc

+

can be alternatively expressed as Ωc
+ = {λ ∈ C : ∀s ∈

C+, φ(s) 6= λ}. Note that the domain Ωc
+ includes the origin

of the complex plane.

Then, the key theorem providing the global stability criterion

for hierarchical multi-agent dynamical systems is as follows:

Theorem 2. Consider the linear systems G(s) in (17) and

L(s) in (18). Also, assume that Ĥ(s) is strictly proper and

stable. Then, all nonzero poles of G(s) depending on gℓ (ℓ =
1, 2, · · · , L) are located in the left-half complex plane, if and

only if all nonzero poles of L(s) (i.e., all nonzero eigenvalues

of AL) belong to the domain Ωc
+ defined in (20).

It means that the stability of hierarchical multi-agent dy-

namical systems G(s) can be judged by just looking at the

locations of eigenvalues of interconnection topology AL in

relation to a domain Ωc
+ determined by a given Ĥ(s).

B. Stability test

The consensus condition in the above sub-section provides

us a stability test method when the agent dynamics, P (s)
and K(s), and the interconnection structure, L, ni and gi

(i = 1, 2, · · · , L), are specified. The procedure will be shown

via a numerical example to avoid the notational complexity.

Consider a two-layer hierarchical control scheme where a

group of N2 = 40 agents is divided into n2 = 5 subgroups,

or each subgroup contains n1 = 8 agents. The gains g1

and g2 are set as g1 = g2 = 1. Suppose that all agents

have common dynamics P (s) = α
s(s+β) (α > 0) and it

is locally stabilized by an identical PD controller such as

-4
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Im
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φ(jω)
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c
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Fig. 7. Eigenvalues of A2 and the closed-loop poles of G(s): (i) ∆ = 1·ζT

case, g1 = g2 = 1, (ii) ∆ = I case, g1 = 1 and g2 = 0.3
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Fig. 8. Time behaviors of all agents when ∆ = I, and g1 = 1, g2 = 0.3

KPD(s) = kp(1 + tds) (kp > 0, td > 0). Then, without

loss of generality, the closed-loop transfer function of each

agent can be written as H(s) = s+1
as2+bs+1 , a := 1

αkpt2
d

,

and b := β
αkptd

+ 1. Here, we set α = 1, β = −1,

kp = 0.4 and td = 5. Thus, a = 0.1 and b = 0.5. In

this case, the domain Ωc
+ is completely determined by the

frequency property φ(jω) of φ(s) = s
H(s) = 0.1s3+0.5s2+s

s+1
as illustrated in Fig. 5(a). It also plots all the eigenvalues of

A2 with ∆ = I ∈ R
8×8 (full rank) and ∆ = 1 ·ζT (rank 1)

where ζT = (1, 0, · · · , 0) ∈ R
8. Note that all eigenvalues of

both cases are belong to the domain Ωc
+, and hence a group

of dynamic agents can achieve convergence to a common

point as shown in Theorem 2. We can, however, confirm

in Figs. 6(a) and 6(b) that agents’ behaviors when ∆ is

rank 1 are more desirable than those when ∆ = I from

the viewpoint of convergence and damping rates. All the

poles of closed-loop transfer function G(s) are depicted in

Fig. 5(b), which verifies why the case ∆ = I has low rates

of convergence and damping.

On the other hand, if we set g2 = 0.3 for ∆ = I case to

improve the oscillating behaviors of agents, the eigenvalues

of A2 and the closed-loop poles of G(s) are, respectively,

illustrated in Figs. 7(a) and 7(b). In this case, the damping

rate is clearly improved as shown in Fig. 8. However, its

convergence rate is inferior to that achievable by ∆ = 1·ζT ,

which is easily confirmed from Fig. 8. The above facts verify

the superiority of the proposed hierarchical control scheme

where ∆ is rank one.

5196



Im

Re
-3 -2 -1 0

-1.0

-0.5

0.5

1.0

simple roots

repeated roots

(a) Rank 1 case

Im

Re
0-4 -3 -2 -1

-1.0

-0.5

0.5

1.0

1.5simple roots
repeated roots

(b) Rank 2 case

Fig. 9. Eigenvalue distributions: n1 = 8, n2 = 5
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Fig. 10. Eigenvalue distribution for rank 2 general case: n1 = 8, n2 = 5

C. Further investigations: Rank two case

We here briefly sketch the main investigation results for the

eignevalue distribution of a class of two-layer hierarchical

multi-agent dynamical systems with rank m connection,

which includes two special cases, ∆ = I and the rank 1
case treated in the previous sections. Note that the details

can be found in Shimizu and Hara [12].

The form of ∆ is expressed as follows: ∆=(1 ⊗ In1/m) ·
Γ ∈ Rn1×n1 where n1 is assumed to be an integer which

is a multiple of m, and any row vector of Γ∈Rm×n1 is a

probability vector; i.e., all the entries are non-negative and

the sum of them is equal to 1. For example, the form of ∆
for m = 2, or rank 2 case, is given as follows: for ai ≥ 0
and bi ≥ 0,

∆ =





I2

.

.

.
I2



 ·
(

aT

bT

)

,

n1
∑

i=1

ai =

n1
∑

i=1

bi = 1. (21)

It is clear that the form is completely the same with one

treated in the previous sections when m = 1, and that m =
n1 with Γ = I provides the case of ∆ = I .

Theorem 3. Consider a two-layer HMADSs with unit gain,

i.e., g1 = g2 = 1. For ∆ with rank 2 represented by (21),

the eigenvalue distribution of A2 is given as follows:

λ =







−2 + ωm
1 , m = 1, 2, · · · , n1−2

2 , n1+2
2 , · · · , n1 − 1

−1 + ωk
2 , k = 1, · · · , n2

−3 + ωk
2 , 1

2

∑n1

i=1(ai − bi)(−1)i+1, k = 1, · · · , n2

We have a couple of remarks on the result for the above rank

2 case:

• The eigenvalue distribution is slightly different from that

for the rank 1 case. The difference only appears at the

most left repeated eigenvalue at −3 as in Figs. 9(a)-9(b).

• The eigenvalue distribution depends on the choice of

Γ, or two probability vectors a and b. These determine

the radius of the circle centered at −3 on which the

eigenvalues spread. The largest radius is 1 as illustrated

in Fig. 9(b), and the eigenvalue distribution in general

is as seen in Fig. 10.

V. CONCLUSION

In this paper, we have proposed a fairly general model for

hierarchical multi-agent dynamical systems (HMADSs) with

fractal structure and investigated their stability or conver-

gence condition. We have especially focused on the low-

rank property instead of sparseness or small gain property,

which clearly captures the aggregation process for large

scale systems. We have derived the analytical expression of

eigenvalue distribution of the system matrix for cyclic pursuit

and shown a stability condition for the whole system where

each agent has a certain dynamics. We then have clarified the

relation between the property of cross-layer interconnection

structure and the stability degree of hierarchical multi-agent

system, which are confirmed by numerical examples. The

results shows that a certain aggregation process in infor-

mation acquisition plays a key role for the consensus of

large scale multi-agent systems. This point is very essential

in hierarchical dynamical systems, and our proposed model

focusing on the low-rank property is a right way for the

further investigations.

REFERENCES

[1] S. L. Smith et al., “A Hierarchical Cyclic Pursuit Scheme for Vehicle
Networks,” Automatica, vol. 41, pp. 1045-1053, 2005.

[2] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Contr., vol. 49, no. 9, pp.
1465–1476, 2004.

[3] R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and coopera-
tion in networked multi-agent systems,” Proceedings of the IEEE, vol.
95, no. 1, pp. 215–233, 2007.

[4] R. M. Murray, “Recent research in cooperative control of multivehi-
cle systems,” ASME Journal of Dynamic Systems, Measurement, and

Control, vol. 129, no. 5, pp. 571–583, 2007.
[5] S. Hara, T.-H. Kim and Y. Hori, “Distributed formation control

for target-enclosing operation by multiple dynamic agents based
on a cyclic pursuit strategy,” Technical Reports METR2007-63,
The University of Tokyo, 2007. (available at http://www.keisu.t.u-
tokyo.ac.jp/research/techrep/index.html)

[6] S. Hara, T.-H. Kim and Y. Hori, “Distributed formation control for
target-enclosing operation by multiple dynamic agents based on a cyclic
pursuit strategy,” Proc. The 17th IFAC World Congress, Seoul, Korea,
2008.

[7] S. Hara, T. Hayakawa and H. Sugata, “Stability analysis of linear
systems with generalized frequency variables and its application to
formation control,” In Proc. of the 46th IEEE Conference on Decision

and Control, pp. 1459–1466, 2007.
[8] H. Shimizu and S. Hara, “Cyclic pursuit behavior for hierarchical multi-

agent systems with low-rank interconnection,” SICE Annual Confer-

ence, Chofu, Tokyo, Japan, 2008.
[9] T.-H. Kim and T. Sugie, “Cooperative control for target-capturing task

based on a cyclic pursuit strategy,” Automatica, vol. 43, no. 8, pp.
1426–1431. 2007.

[10] J. A. Marshall et al., “Formations of Vehicles in Cyclic Pursuit,” IEEE

Trans. on Automatic Control,vol. 49, no. 11, 2004.
[11] G. J. Tee., “Eigenvectors of block circulant and alternating circulant

matrices,” Information and Mathematical Science, vol. 8, pp. 123-142,
2005.

[12] H. Shimizu and S. Hara, “Hierarchical consensus with low-rank
innterconnection (in Japanese),” SICE 9th Annual Conf. on Control

Systems, Japan, 2009.

5197


