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Abstract— We consider the problem of estimating a state x

from noisy and corrupted linear measurements y = Ax +

z + e, where z is a dense vector of small-magnitude noise
and e is a relatively sparse vector whose entries can be
arbitrarily large. We study the behavior of the ℓ

1 estimator
x̂ = arg minx ‖y − Ax‖

1
, and analyze its breakdown point

with respect to the number of corrupted measurements ‖e‖
0
.

We show that the breakdown point is independent of the noise.
We introduce a novel algorithm for computing the breakdown
point for any given A, and provide a simple bound on the
estimation error when the number of corrupted measurements
is less than the breakdown point. As a motivational example we
apply our algorithm to design a robust state estimator for an
autonomous vehicle, and show how it can significantly improve
performance over the Kalman filter.

I. INTRODUCTION

The problem of estimating a state x0 ∈ Rn from m >
n noisy linear measurements y ≈ Ax0 ∈ Rm, arises in a

vast number of applications. In some applications one can

assume that the difference between y and Ax0 is a small

i.i.d. Gaussian noise z ∈ Rm:

y = Ax0 + z. (1)

In this case, the optimal estimate of x0 is the least-squares

estimate: x̂2 =
(
AT A

)−1
AT

y = arg minx ‖y −Ax‖2. The

least-square estimate is known as stable in the sense that

the estimation error ‖x̂2−x0‖2 is bounded by a continuous

function of z. Thus, small noise causes only small estimation

error. Often, however, some of the measurements in y can be

corrupted by arbitrarily large errors. In this case, we instead

must solve x0 from the equation

y = Ax0 + z + e, (2)

where e ∈ Rm has some arbitrarily large nonzero entries.

One typical example is a GPS system, whose estimated

position output can occasionally be considerably corrupted

when the signals from the satellites are reflected off the

surrounding terrain (i.e. multipath). Even one such corrupted

measurement can cause arbitrarily large estimation error in

the least-squares estimate.

When the state being estimated is a scalar (n = 1), the

least-squares estimate x̂2 is equivalent to taking a weighted

average of the measurements. A known robust alternative to
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the average is the median. With the median, up to almost 50%

of the measurements can be arbitrarily corrupted before the

estimation error becomes unbounded. That is, the breakdown

point of the median is 50%.

Taking the median, one essentially looks for the point

which minimizes the sum of distances to all the measure-

ments whereas taking the average minimizes the sum of the

squares of these distances. One natural generalization of this

concept to multivariate (n > 1) estimation1 is to view the m
measurements y

.
= [y1, . . . , ym]

T
as defining m hyperplanes:

Hi
.
=

{
x ∈ Rn

∣∣yi = a
T
i x

}
,

where a
T
i ∈ Rn is the corresponding row of the matrix A

.
=

[a1, . . . ,am]
T

. Then the “median” estimate for x can be

defined to be the point that minimizes the sum of distances

to these hyperplanes:

x̂ = arg min
x

m∑

i=1

∣∣yi − a
T
i x

∣∣ = arg min
x

‖y −Ax‖1 . (3)

To understand why this estimate can be robust to errors,

let us assume the noise is zero for now: z = 0. That is, we

try to solve x0 from the equation y = Ax0 +e. If we could

somehow compute e, then x0 could be easily recovered from

the clean system of equations Ax0 = y − e. One approach

to recovering e is to choose a matrix B ∈ Rp×m, p = m−n,

with BA = 0, and define w = By. Multiplying both sides of

the measurement equation by B yields an underdetermined

system of equations w = Be in e alone. In the context of

compressed sensing [2], it has recently been discovered that

whenever e is sparse enough, it can be correctly recovered

by solving the following ℓ1-minimization problem:

ê = arg min
e

‖e‖1 subject to w = Be. (4)

So, in the noise free case, the two problems (3) and (4) are

equivalent.

There is also a large literature analyzing the performance

of (4) and related estimates in the presence of noise. The

strongest available results ([3], [4], amongst others) have the

following flavor: for some constants C and ρ, and almost all

random matrices B, if one applies an ℓ2-penalized version of

(4) (i.e., the Lasso [5], [6]) and the number of errors ‖e‖0
is less than ρ · n, then the estimation error is bounded by

1Another multivariate generalization of the median occurs in robust
center-point estimation, where the observations are themselves points (rather
than inner products). There, the estimator that minimizes the sum of
distances to the observations, known as the Fermat-Weber point, achieves a
breakdown point of 50% [1, Theorem 2.2]. Although the estimator studied
here also generalizes the median, it addresses the more general problem of
robust linear regression.
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C · ‖z‖ for some C > 0. However, specific forms of the

constants C and ρ are difficult to derive. A similar bound

can be derived when B is known to be a restricted isometry

[3]. However, it requires prior knowledge of the noise level,

and the estimation error depends on the number of corrupted

measurements, with the bound C diverging to infinity when

the error fraction ρ approaches the breakdown point. Similar

results have also been obtained for greedy alternatives to

ℓ1-minimization [7]. In this setting, one does not require a

bound on the noise term. However, it does require that the

number of corrupted measurements be considerably lower

than the breakdown point for ℓ1-minimization.

Whereas most of the existing stability results and bounds

are derived for the underdetermined case (4), in this paper,

we directly study the stability of the ℓ1 estimator for the

overdetermined problem (3). Our bounds are weaker than

those obtained in the asymptotic setting of large random

matrices and small error fractions [4]. However, they hold

for all matrices A, including the structured matrices arising

in state estimation problems, and all error fractions ρ, up to

the intrinsic breakdown point of the ℓ1 estimator. Moreover,

our bound has a very simple expression, whose derivation

naturally suggests an algorithm for computing the intrinsic

breakdown point of the ℓ1 estimator. The complexity of our

algorithm is exponentially lower than the existing alternative,

and it is especially suitable for the kind of problems of

interest for the system and control community – moderate-

sized robust state estimation problems.

II. PRELIMINARIES

Throughout, the 0-norm will denote the number of nonzero

elements in a vector v ∈ Rm:

‖v‖0
.
= #

{
i
∣∣vi 6= 0

}
.

We will use [m] to denote the set of indices [m]
.
=

{1, 2, . . . ,m}. We will use the following notation for “posi-

tive” directional derivative of an arbitrary multivariate func-

tion f : Rm → R:

D+
v

f (x) = lim
εց0

f (x + εv)− f (x)

ε
.

Consider a general estimation problem, y = f (x0,z, e),
where x0 is the unknown state to be estimated, z is a

noise term, e is a corruption term and y is the available

measurements. Let x̂ = g (y) be some estimate. We say that

for given x0 and z, the estimate is robust up to T corrupted

measurements (or T -robust) if there exists a smooth function

β (x0,z) ∈ R such that:

∀e : if ‖e‖0 < T then ‖x̂− x0‖2 ≤ β(x0,z). (5)

The breakdown point of this scheme, T ∗ (x0,z), is the

minimum T ∈ N for which the estimation scheme is not

T -robust. In other words,

T ∗ (x0,z)
.
= min

{
T ∈ N

∣∣∣ sup
e,‖e‖

0
≤T

‖x̂− x0‖2 =∞
}

.

We say T ∗ is a stable breakdown point if it does not depend

on x0 and z, i.e. T ∗ (x0,z) ≡ T ∗.

Throughout this paper we consider the problem of esti-

mating x0 from y:

y = Ax0 + z + e,

where x0 ∈ Rn, A ∈ Rm×n, z ∈ Rm and e ∈ Rm. For

this problem we consider the Minimum Sum of Distances

(MSoD) estimation scheme

x̂ = arg min
x

Cy (x) , (6)

with the cost function

Cy (x)
.
= ‖y −Ax‖1 . (7)

Our goal is to study whether the breakdown point of this

estimate is stable and if so, how to compute it.

We start by giving results pertaining to the noiseless case,

z = 0. We assume T of the measurements can be corrupted.

Geometrically, this means that the remaining m−T measure-

ment hyperplanes Hi
.
=

{
x ∈ Rn | yi = a

T
i x

}
pass through

x0. We will let I denote the indices of these uncorrupted hy-

perplanes. The corrupted ones will be conveniently denoted

by Ic. We ask whether these T hyperplanes can be positioned

so that x0 no longer minimizes the cost function (7). Since

Cy is convex, this will be true if and only if there exists

a direction v, from x0, along which the cost function does

not increase, i.e. D+
v

Cy (x0) ≤ 0. Since the uncorrupted

hyperplanes pass through x0, moving in the direction of v

from x0 will increase the distance to each of the uncorrupted

hyperplanes at a rate of
∣∣aT

i v

∣∣, i ∈ I . We have freedom in

placing the corrupted hyperplanes, and so for each v we

can position them so that moving in the direction of v will

decrease the distance to each of the corrupted hyperplanes by

a rate of
∣∣aT

i v

∣∣, i ∈ Ic. In this case, which can be referred

to as worst positioning of the corrupted hyperplanes given

v, the condition D+
v

Cy (x0) ≤ 0 becomes

∑

i∈I

∣∣aT
i v

∣∣−
∑

i∈Ic

∣∣aT
i v

∣∣ ≤ 0. (8)

Because (8) represents the worst case for a given v, x0 fails

to minimize the cost function if and only if (8) holds for some

v. Thus we arrive at a lemma following the next definition:

Definition 2.1: T̃ (A) is defined as the minimal integer T
for which there exists I ⊂ [m], |I| = m − T and v ∈ Rn

such that (8) holds.

Lemma 2.1: Under the condition z = 0, the breakdown

point of the estimation scheme (6) is equal to T̃ as defined

in Definition 2.1, i.e. T ∗ (x0,0) = T̃ (A), ∀x0 ∈ Rn.

In the next section we will consider the noisy case and

show that this breakdown point is stable and the estimation

error is bounded by a linear function of the noise magnitude

‖z‖2 that does not depend on x0.

III. PROOF OF ROBUSTNESS

We start with the following definition:

Definition 3.1: Given an arbitrary T ∈ N we call a set J ′

a possibly extreme set if there exists I , I ⊇ J ′, |I| = m−T
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such that the following holds:
∑

i∈J′∪Ic

∣∣aT
i νJ′

∣∣ ≥
∑

i∈I\J′

∣∣aT
i νJ′

∣∣ (9)

where νJ′ is any of the singular vectors corresponding to

the smallest singular value of the |J ′| × n submatrix AJ′

of A containing those rows indexed by J ′: ‖AJ′νJ′‖2 =
σmin (AJ′) ‖νJ′‖2 with σmin (·) being the smallest singular

value. We define QT to be the set of all possibly extreme

sets for a given T .

The following is our main result:

Theorem 3.1: For any T ∈ {0, 1, . . . ,m}, if the number

of corrupted measurements is not larger than T , then the

estimation error is bounded as follows:

‖x̂− x0‖2 ≤

(
max

J′∈QT

1

σmin (AJ′)

)
‖z‖2 . (10)

Before proving Theorem 3.1 we emphasize a few ob-

servations. First note that if T < T̃ (A) then ∀I ⊂ [m],
|I| = m− T the following holds:

∀v ∈ Rn :
∑

i∈I

∣∣aT
i v

∣∣ >
∑

i∈Ic

∣∣aT
i v

∣∣ . (11)

Now, assume for some J ′ we have σmin (AJ′) = 0. This

implies that a
T
i νJ′ = 0 ∀i ∈ J ′. From (11) we see that

in this case (9) can not hold and thus J ′ 6∈ QT . From this

we conclude that σmin (AJ′) > 0 ∀J ′ ∈ QT and thus the

expression inside the brackets in (10) must be finite. The

fact that we have established a finite bound (when ‖z‖2 is

finite) for all T < T̃ (A), and T̃ (A) is independent of x0

and z, proves that the breakdown point T ∗ (x0,z) ≡ T̃ (A)
is stable.

The second observation is that for T ′ < T we have

QT ′ ⊆ QT and possibly even QT ′ ⊂ QT where some of the

smaller sets in QT may not be in QT ′ . Since J ′ ⊆ J implies

σmin (AJ′) ≤ σmin (AJ), losing the smaller sets from QT

(as we reduce the number of corrupted measurements) can

produce a smaller bound in Theorem 3.1

Definition 3.2: We define the following sets:

J+ (x,y)
.
=

{
i ∈ [m] | aT

i x > yi

}

J0 (x,y)
.
=

{
i ∈ [m] | aT

i x = yi

}

J− (x,y)
.
=

{
i ∈ [m] | aT

i x < yi

}

Also, for a point x ∈ Rn, Ix (y) = J0 (x,y) ∩ I is defined

to be the set of uncorrupted hyperplanes passing through x.

Proposition 3.2: For any x̂ ∈ Rn:

‖x̂− x0‖2 ≤
1

σmin

(
AIx̂(y)

) ‖z‖2
Proof: Trivial since zIx̂(y) = AIx̂(y) (x̂− x0).

Our proof of Theorem 3.1 will go as follow. Assume x0,

I , z, e are given and let x̂ be the point minimizing the

cost function. We will show that we can change only the

noise and the corruption to z
′, e

′ such that ‖z′‖2 = ‖z‖2,

e
′
I = 0, and the new corresponding minimizing point x̂

′

achieves a larger estimation error,
∥∥x̂

′ − x0

∥∥
2
≥ ‖x̂− x0‖2.

Furthermore, with the new y
′ = Ax0 +z

′ +e
′ we will have

Ix̂
′ (y′) ∈ Q. Applying then Proposition 3.2 on the new

x̂
′

and y
′, together with the fact that we did not decrease

the estimation error, gives us (10). We will do this through

several steps.

Proposition 3.3: Let y and the corresponding point x̂

which minimizes the cost function be given. For a different

y
′, if there exists a point x

′ such that

J+ (x′,y′) ⊆ J+ (x̂,y)

J− (x′,y′) ⊆ J− (x̂,y)

J0 (x̂,y) ⊆ J0 (x′,y′) , (12)

then x
′ will minimize the cost function for y

′.

Proof: The rate of change of the cost function moving

from x
′ in an arbitrary direction v is:

D+
v

Cy′ (x′) =
∑

i∈J+(x′,y′)

a
T
i v +

∑

i∈J0(x′,y′)

∣∣aT
i v

∣∣−
∑

i∈J−(x′,y′)

a
T
i v ≥

∑

i∈J+(x̂,y)

a
T
i v +

∑

i∈J0(x̂,y)

∣∣aT
i v

∣∣−
∑

i∈J−(x̂,y)

a
T
i v =

D+
v

Cy (x̂) > 0

Lemma 3.4: Assume x0, I , z, e are given and let x̂

be the point minimizing the cost function. There exists z
′,

e
′ such that ‖z′‖ = ‖z‖, e

′
I = 0, and the new corre-

sponding minimizing point x̂
′

achieves a larger estimation

error,
∥∥x̂

′ − x0

∥∥
2
≥ ‖x̂− x0‖2. Furthermore, either v

′ .
=

x̂
′ − x0 ∝ νI

x̂
′ (y′) or Ix̂ (y) ( Ix̂

′ (y′).
Proof: Define v

.
= x̂ − x0. If v ∝ νIx̂

then we are

done. Otherwise set v̄ ∝ νIx̂
, 〈v̄,v〉 ≥ 0, ‖v̄‖2 = 1. Also,

set v̄
⊥ to be the normalized vector perpendicular to v̄, in the

span of v and v̄, and such that
〈
v̄
⊥,v

〉
≥ 0. Consider the

vector function

f (α) =
cos (α) v̄

⊥ + sin (α) v̄∥∥AIx̂(y)

(
cos (α) v̄

⊥ + sin (α) v̄
)∥∥

2

∥∥zIx̂(y)

∥∥
2
.

Define α0 = sin−1 (〈v̄,v〉) ∈ [0, π/2]. Note that if we set

z̄Ix̂(y) (α) = AIx̂(y)f (α)

z̄[m]\Ix̂(y) (α) = z[m]\Ix̂(y)

ēIc (α) = eIc + AIcf (α)−AIcf (α0)

ēI (α) = 0

then z̄ (α0) = z and for α ∈ [α0, π/2] we have ‖z̄‖2 =
‖z‖2.

We will set z
′ = z̄ (α∗), e

′ = ē (α∗) where

α∗ = max {π/2, α̃}

α̃ = sup



α

∣∣∣∣∣∣

aif (α) > zi ∀i ∈ I ∩ J+ (x̂,y)
and

aif (α) < zi ∀i ∈ I ∩ J− (x̂,y)



 .

With this choice of z
′ and e

′ we guarantee that (12) holds

with x
′ = x0 +f (α∗), and therefore v

′ = f (α∗) is the new

estimation error. If α∗ = π/2 then v
′ ∝ νI

x̂
′
. Otherwise one

of the strict inequalities in (13) must become an inequality
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with α∗, which implies Ix̂ (y) ( Ix̂
′ (y′). To complete the

proof we are left to show that

‖f (α)‖2 =

∥∥cos (α) v̄
⊥ + sin (α) v̄

∥∥
2∥∥AIx̂(y)

(
cos (α) v̄

⊥ + sin (α) v̄
)∥∥

2

∥∥zIx̂(y)

∥∥
2

(13)

is monotonically non-decreasing.

The numerator in (13) as well as the
∥∥zIx̂(y)

∥∥
2

term are

constants. Because the singular vector v̄ is an eigenvector of

AT
Ix̂(y)AIx̂(y) we have that

〈
AIx̂(y)v̄

⊥, AIx̂(y)v̄
〉

= 0, thus

the derivative of the denominator with respect to α is
(
−

∥∥AIx̂(y)v̄
⊥

∥∥2

2
+

∥∥AIx̂(y)v̄
∥∥2

2

)
sin (α) cos (α)

∥∥AIx̂(y)

(
cos (α) v̄

⊥ + sin (α) v̄
)∥∥

2

.

This is always non-positive because α ∈ [0, π/2] and v̄ is the

singular vector corresponding to the smallest singular value.

By iterating the procedure described in the last lemma,

each time adding at least one more element to Ix̂′ (y′), we

arrive at the following Corollary:

Corollary 3.5: Assume x0, I , z, e are given and let x̂ be

the point minimizing the cost function. There exists z
′, e

′

such that ‖z′‖2 = ‖z‖2, e
′
I = 0, the new corresponding

minimizing point x̂
′

achieves a larger estimation error,∥∥x̂
′ − x0

∥∥
2
≥ ‖x̂− x0‖2, and v

′ .
= x̂

′ − x0 ∝ νI
x̂
′
.

Remark 3.1: Without loss of generality, for a given y ∈
Rm and an arbitrary direction v ∈ Rn, we can assume that

a
T
i v ≥ 0 ∀ i ∈ [m]. This is because we can arbitrarily

negate some of the ai’s and their corresponding yi’s without

affecting the cost function (7).

Lemma 3.6: Assume x0, I , z, e are given. Let x̂ be the

point minimizing the cost function and assume v
.
= x̂ −

x0 ∝ νIx̂(y). If Ix̂ (y) 6∈ Q then there exists z
′, e

′ such that

‖z′‖2 = ‖z‖2, e
′
I = 0, the new corresponding minimizing

point x̂
′

achieves a larger estimation error,
∥∥x̂

′ − x0

∥∥
2
≥

‖x̂− x0‖2, and Ix̂ (y) ( Ix̂
′ (y′).

Proof: WLOG (see Remark 3.1) assume a
T
i v ≥ 0 ∀i ∈

[m]. The rate of change going in direction −v from x̂ is:

−
∑

i∈J+(x̂,y)

∣∣aT
i v

∣∣ +
∑

i∈J0(x̂,y)

∣∣aT
i v

∣∣ +
∑

i∈J−(x̂,y)

∣∣aT
i v

∣∣ . (14)

Because x̂ minimizes the cost function, (14) must be non-

negative. If indeed Ix̂ (y) 6∈ Q then from the fact that (9) is

not satisfied for J ′ = Ix̂ (y) we have
∑

i∈I∩J−(x̂,y)

∣∣aT
i v

∣∣ >
∑

i∈Ix̂(y)

∣∣aT
i v

∣∣ +
∑

i∈Ic

∣∣aT
i v

∣∣−
∑

i∈I∩J+(x̂,y)

∣∣aT
i v

∣∣ .

Now given that (14) is nonnegative we can write
∑

i∈Ix̂(y)

∣∣aT
i v

∣∣−
∑

i∈I∩J+(x̂,y)

∣∣aT
i v

∣∣ ≥

∑

i∈Ic∩J+(x̂,y)

∣∣aT
i v

∣∣−
∑

i∈Ic∩J0(x̂,y)

∣∣aT
i v

∣∣−
∑

i∈Ic∩J−(x̂,y)

∣∣aT
i v

∣∣−
∑

i∈I∩J−(x̂,y)

∣∣aT
i v

∣∣ .

Combining these last two inequalities we get

2
∑

i∈I∩J−(x̂,y)

∣∣aT
i v

∣∣ > 2
∑

i∈Ic∩J+(x̂,y)

∣∣aT
i v

∣∣ ≥ 0

which implies that I ∩ J− (x̂,y) cannot be empty. Now, for

every zi, i ∈ I ∩ J− (x̂,y), we have

zi = yi − a
T
i x0 = yi + a

T
i v − a

T
i x̂ > 0.

Arbitrarily choose i′ ∈ I ∩ J− (x̂,y) and consider the

following:

z̄Ix̂(y) (α) = AIx̂(y) (1 + α) v

z̄i′ (α) =

√
z2
i′ +

(
1− (1 + α)

2
) ∥∥zIx̂(y)

∥∥2

2

z̄[m]\(Ix̂(y)∪{i′}) (α) = z̄[m]\(Ix̂(y)∪{i′})

ēIc (α) = ēIc (α) + αAIcv

ēI = 0.

with α ≥ 0. Note that ‖z̄ (α)‖2 is constant, and z̄ (0) = z.

We will set z
′ = z (α∗) and e

′ = ē (α∗) where

α∗ = sup
{
α

∣∣aT
i (1 + α) v < z̄i (α) ∀i ∈ I ∩ J− (x̂,y)

}
.

For every α ∈ [0, α∗) we have that (12) holds with x
′ = x0+

(1 + α) v and therefore (1 + α) v is the new estimation error.

With α = α∗ we also have a
T
i (1 + α) v = z′i ⇔ a

T
i x

′ = y′
i

for some i ∈ I ∩ J− (x̂,y). This implies Ix̂ (y) ( Ix̂
′ (y′).

By iterating the procedures described in (3.4) and (3.6)

several times as necessary we arrive at the final corollary:

Corollary 3.7: Assume x0, I , z, e are given and let x̂ be

the point minimizing the cost function. There exists z
′, e

′

such that ‖z′‖2 = ‖z‖2, e
′
I = 0, and the new corresponding

minimizing point x̂
′

achieves a larger estimation error,∥∥x̂
′ − x0

∥∥
2
≥ ‖x̂− x0‖2. Furthermore, Ix̂

′ (y′) ∈ Q.

The last Corollary, together with Proposition 3.2, proves

Theorem 3.1.

IV. COMPUTING THE BREAKDOWN POINT

Definition 2.1 does not immediately suggest an algorithm

for computing T̃ = T ∗, because it requires checking condi-

tion (8) for all v ∈ Rn, ‖v‖2 = 1, and there are infinitely

many such v. The following Lemma 4.1, however, states that

it is sufficient to check only a finite subset of Rn:

Lemma 4.1: Condition (8) holds for some I ⊂ [m] and

v ∈ Rn \ {0} if and only if there exist J ⊂ [m] and v
′ ∈

Rn\{0} with the following properties: |J | = n−1; {ai}i∈J

is a set of n − 1 linearly independent vectors; a
T
i v

′ = 0
∀i ∈ J ; and (8) holds for v

′.

The if direction in 4.1 is trivial. In the degenerate case

where dim span {ai}i∈I ≤ n − 1 the only if is also trivial

since (8) will hold for any nonzero vector which is not in the

span of {ai}i∈I . The only if direction in the non-degenerate

case is an immediate corollary of the following proposition:

Proposition 4.2: Assume I and v are given, and

dim span {ai}i∈I = n. Define J (v)
.
= {i ∈ I |aiv = 0}

and d (J)
.
= dim span {ai}i∈J . If Condition (8) holds for

v ∈ Rn \ {0} and d (J (v)) < n − 1 then there exists

v
′ ∈ Rn \ {0} for which (8) also holds but in addition

d (J (v′)) > d (J (v)).
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Proof: WLOG we can assume a
T
i v ≥ 0 ∀i ∈ [m].

Consider the following set of equations in z ∈ Rn:
∑

i∈Ic

a
T
i z = 0 (15)

a
T
i z = 0 ∀i ∈ J (v) . (16)

In the case that d (J (v)) = dim span {ai}i∈J(v) < n − 1,

there is a nontrivial solution z̃ 6= 0 to (15) and (16). By

changing the sign of z̃ if necessary, we can assume
∑

i∈I

a
T
i z̃ ≤ 0. (17)

Define the set P
.
=

{
i ∈ I

∣∣aT
i z̃ < 0

}
and α

.
=

mini∈P
a

T

i
v

−a
T

i
z̃

. Note that from (17) and the assumption that

d (I) = n, P cannot be empty and thus α is well defined

and positive. Also note that P contains only the indices of

vectors from I which are linearly independent of {ai}i∈J(v).

Set v
′ = v + αz̃. By our choice of α we have for some

i′ ∈ P ⊂ I \ J that a
T
i′v

′ = 0. Since z̃ satisfies (16) this

gives us J (v′) ) J (v) and d (J (v′)) > d (J (v)). From

(15) we have
∑

i∈Ic

∣∣aT
i v

′
∣∣ ≥

∑

i∈Ic

a
T
i (v + αz̃) =

∑

i∈Ic

a
T
i v =

∑

i∈Ic

∣∣aT
i v

∣∣ .

(18)

By our choice of α we also have a
T
i v

′ ≥ 0 ∀i ∈ I . Together

with (17) this gives us
∑

i∈I

∣∣aT
i v

′
∣∣ =

∑

i∈I

a
T
i v

′ =
∑

i∈I

a
T
i v + α

∑

i∈I

a
T
i z̃

≤
∑

i∈I

∣∣aT
i v

∣∣ . (19)

Combining (18), (19) and the fact that (8) holds for v implies

that (8) also holds for v
′.

Given J ⊂ I , |J | = n − 1, d (J) = n − 1, the condition

AJv
′ = 0 determines v

′ uniquely up to scale. The validity

of condition (8) is unchanged by scaling v
′. Thus, we could

equivalently define T ∗ (A) to be the minimal integer T such

that there exists J ⊂ [m] of size |J | = n−1, d (J) = n−1,

and I ⊂ [m] of size |I| = m − T for which condition (8)

holds for v
′ satisfying AJv

′ = 0. Fix J (and a corresponding

v), and sort the |aT
i v| such that

∣∣aT
r1

v

∣∣ ≥
∣∣aT

r2
v

∣∣ ≥ . . . ≥∣∣aT
rm

v

∣∣. Then, condition (8) holds for some I of size m−T if

and only if it holds for I
.
= {rT+1 . . . rm}. We can therefore

compute T ∗ (A) by checking this condition for every subset

J of size n− 1. This idea is formalized as Algorithm 1.

The computation time of Algorithm 1 is
(

m

n

)
(tsle (n− 1) + tmv (m) + tsort (m)) , (20)

where tsle (n) = O
(
n3

)
, tmv (n) = O

(
n2

)
and tsort (n) =

O (n log n) are the times it takes to solve a system of

linear equations, to compute a matrix-vector multiplication,

and to sort, respectively. When both m and n grow,
(
m

n

)
,

and thus the computation time of our algorithm, grows

exponentially. In many control applications, however, the

number of variables describing the state of the system, n,

Algorithm 1 Computing T ∗ (A)

Input: A ∈ Rm×n.

1: Set T ← m and let J1, . . . , JN , N =
(

m

n−1

)
, be all the

subsets of [m]
.
= {1 . . .m} containing n− 1 indices.

2: for k = 1 : N do

3: if dim span {ai}i∈Jk
= n− 1 then

4: Find a nontrivial solution v ∈ Rn such that

a
T
i v = 0 ∀i ∈ Jk.

5: Find the order r1 . . . rm such that∣∣aT
r1

v

∣∣ ≥
∣∣aT

r2
v

∣∣ ≥ . . . ≥
∣∣aT

rm
v

∣∣.
6: Find the smallest integer, s, such that

s∑

i=1

∣∣aT
ri

v

∣∣ ≥
m∑

i=s+1

∣∣aT
ri

v

∣∣.

7: Set T ← min {T, s}.
8: end if

9: end for

Output: T .

is fixed, while the number of measurements, m, is flexible.

In this case, where n is fixed, our algorithm’s computation

time is polynomial in m. We further note, that while the

running time of the algorithm might still be relatively large in

practice, from the engineering design point of view it needs

to be executed only once during the design of the system to

analyze its performance. In real-time only (6) needs to be

evaluated, which can be done very efficiently using linear

programming.

The algorithm described above is different from the exist-

ing algorithm in the literature for computing the breakdown

point. In the introduction we have mentioned that in the

absence of noise, (3) and (4) are equivalent problems when

B ∈ Rp×m, p = m − n, BA = 0. The following result,

proved in [8] and in [2, §II], states that the ability of (4) to

recover e from the underdetermined linear system w = Be

depends only on the sign pattern of e:

Theorem 4.3: If for some e
′ ∈ Rn, we have

e
′ = arg min

e

‖e‖1 subject to Be = Be
′, (21)

then for all ẽ such that sign (ẽi) = sign (e′i) , i = 1 . . . n,

ẽ = arg min
e

‖e‖1 subject to Be = Bẽ.

From this result, to determine whether we can recover any

T -sparse signal e (i.e. ‖e‖0 = T ), we only need to check

one e for each T -sparse sign pattern. Specifically:

T ∗ = min
{
T ∈ N

∣∣ ∃e′ ∈ ET : e
′ 6= argmin

e|Be=Be′

‖e‖1
}

(22)

where ET
.
= {e ∈ Rm | ∀i : ei ∈ {−1, 0, 1}, ‖e‖0 = T} .

Since |ET | = 2T
(
m

T

)
, a straightforward algorithm for

computing (22) requires time

T∗∑

T=1

2T

(
m

T

)
tlp (m× p) , (23)

where tlp is the time it takes to solve the linear programming

problem (21). We note that instead of actually solving for the
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Fig. 1. We attempt to estimate a line model from which 40 noisy and
corrupted points are drawn. The breakdown point of the MSoD estimator
is 10 points. Corrupting the 10 leftmost points corresponds to the worst-
case in which the MSoD will fail. In the example shown here we corrupted
only the 9 leftmost points. Shown in the plot are the initial model estimated
using least-squares for all the points, the model estimated by the iterative
least-squares method, and that estimated by the MSoD. We can see that
the MSoD works well, but the iterative trimming method, labeled “iterative
LS,” fails to converge to a good model.

right hand side of (21), one can check if e
′ minimizes the

right hand side by looking for appropriate sub-gradients (see

[2, §II]). This alternative approach, however, still requires

solving a linear programming problem of similar size.

It is easy to see that the running time of our algorithm (20)

is exponentially faster than the alternative (23) when n/m is

small compared to T ∗/m (i.e. A is very tall) or when n/m
is very close to one (i.e. A is almost square). The first case

is precisely the interest of robust estimation – the number of

measurements needs to be large so as to tolerate more errors.

This is the case for the robust state estimation problem one

often encounters in control systems.

V. COMPARISON TO OTHER ROBUST ESTIMATORS

In this section we compare the Minimum Sum of Distances

(MSoD) estimator to other typical robust estimation schemes

in the literature.

A. Iterative Trimming

Arguably, this is the simplest robust estimator. Its appli-

cation involves calculating an estimate using all (noisy and

corrupted) measurements, say by least squares in our case.

After discarding a certain number of measurements which

are most inconsistent with the estimate, one recomputes

the estimate using the remaining measurements. One may

iterate the above process until only a predefined number

of measurements remains, or until the residual error of the

remaining measurements drops below some predefined level.

The main drawback of this method is that for certain

corruption, the initial estimate from all the data can be

made to favor some of the corrupted measurements over

the uncorrupted measurements. We are not aware of any

work that carefully analyzes the breakdown point of such an

iterative method. However, we found that we can make this

method fail using far fewer corrupted measurements than the

breakdown point calculated for the MSoD estimator. Figure

1 shows a simple example in which the iterative least squares

method fails but MSoD succeeds.

B. Random Sampling

Another popular approach to obtain robust estimate is

through the RANdom SAmpling Consensus (RANSAC)

method [9]. In our context, this corresponds to randomly

selecting n of the m measurements (equations) and solving

x. One then checks how many other measurements are con-

sistent with this estimate, say error incurred is below some

level. The algorithm repeatedly select sets of n measurements

until an estimate with high consensus is obtained. In theory,

this approach has a breakdown point of 50%.

With p randomly selected sets of n measurements, the

probably that at least one set contains no corrupted mea-

surements at all is 1− (1− qn)
p

where q is the percentage

of uncorrupted points. When n is small, this probability of

success can be very high with relatively small number of

selections – the reason why RANSAC has been very popular

amongst practitioners. However, ensuring a fixed probability

of success requires that the number of selections p grows

exponentially in n, making it utterly inefficient when the

dimension n is high. Linear programming solvers which

minimize the MSoD cost function, on the other hand, require

time polynomial in the size of the matrix A. Hence, MSoD

is more scalable than RANSAC in dimension n, despite a

lower breakdown point.2

VI. APPLICATION - VEHICLE POSITION ESTIMATION

In this subsection we present a “real-life” application that

demonstrates the potential benefits of the Minimum Sum

of Distances Estimator (MSoD). The problem which we

address is estimating the position, orientation and velocity of

a vehicle moving in 2D. The vehicle has inertial navigation

sensors (gyroscopes) that generate noisy measurements of its

velocity v and its rate of orientation change θ̇. In addition,

the vehicle receives noisy measurements of its east, e, and

north, n, position. A typical source for such measurements

is a GPS system, which may produce corrupted or erroneous

measurements due to multi-paths. The inertial measurements

are generated every ts seconds, while the position measure-

ments are generated every Ts seconds, with ts ≪ Ts.

Given the car state at time t0, its position at time t1 is

e (t1) = e (t0) +
∫ t1

t0
cos θ (τ) v (τ) dτ

n (t1) = n (t0) +
∫ t1

t0
sin θ (τ) v (τ) dτ.

Denote by ·̂ our estimate of the car state and by x =(
e− ê, n− n̂, θ − θ̂, v − v̂

)T

our (presumably small) esti-

mation error. Denote by ge, gn the position measurements

and by y (t)
.
=

(
yT
0 (t) , . . . , yd (t)

T
)T

the measurement

residuals over a dTs-time period, where

yk (t)
.
=

(
ge (t + kTS)− ê (t + kTS)
gn (t + kTS)− n̂ (t + kTS)

)
≈

(
1 0 0 0
0 1 0 0

)
x (t + kTs)

.
= Cxk (t) .

2It has been shown in the literature that for randomly generated A, the
breakdown point of MSoD grows linearly in m [2], [10]. However, the
fraction is normally bounded from above by 1/3.
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Based on our assumptions, we can write

x (t + Ts) ≈

x (t) +




∫
t+Ts

t
cos θ(τ)v(τ)dτ−

∫
t+Ts

t
cos θ̂(τ)v̂(τ)dτ∫

t+Ts

t
sin θ(τ)v(τ)dτ−

∫
t+Ts

t
sin θ̂(τ)v̂(τ)dτ

0
0


 ≈




1 0
∫

t+Ts

t
− sin θ(τ)v(τ)dτ

∫
t+Ts

t
cos θ(τ)dτ

0 1
∫

t+Ts

t
cos θ(τ)v(τ)dτ

∫
t+Ts

t
sin θ(τ)dτ

0 0 1 0
0 0 0 1


 x (t)

.
=

F (t) x (t)

so that

y (t) ≈




C
CF (t)

...
CF (t+(d−1)Ts)...F (t+Ts)F (t)


 x (t)

.
= A (t) x (t) .

(24)

The approximations are due to the linearization of the

nonlinear relation between the presumably small estimation

error and the measurement residuals, and due to the noise

and corruptions of the measurements.

Equation (24) is the linear model on which we apply our

estimation scheme. Every time a new position measurement

is generated we use it together with the last d position mea-

surements to correct the vehicle estimated state. The matrix

A (t) and the estimated expected positions in the y vector are

regenerated every time a new position measurement arrives

to reflect our best estimate so far.

Simulation results are given in Figure 2. In this simulation,

the breakdown point, calculated by Algorithm 1, ranges from

4 to 6, depending on the vehicle maneuvers. While the

number of corrupted measurements occasionally exceeded

the breakdown point, the results were still remarkably good.

This is because the breakdown point represent a worst case

scenario whose probability is relatively low. For comparison

we also show in Figure 2 simulation results when a standard

nonlinear Kalman filter was used for this system.

VII. CONCLUSION

The main contribution of this paper was to show that

the MSoD estimator, which was known to be robust with

respect to corruption, is also stable with respect to noise.

We also showed how to quantify the robustness and stability

properties for deterministic matrices. Further study, for which

the results in this paper can be used as a basis, is still needed.

Key problems include developing a probabilistic or average-

case analysis, as well as studying whether reweighting (by

scaling the ai’s) can improve the estimator.
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