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Abstract— In this paper the extremum seeking algorithm
with sinusoidal perturbation has been modified and extended
in two ways: a) the amplitudes of the perturbation signals,
as well as the gain of the integrator block, are time varying
and tend to zero at a pre-specified rate; b) the output of the
system is corrupted with measurement noise. Local convergence
to the extremal point, with probability one and in the mean
square sense, has been proved. Also, it has been shown how the
proposed algorithm can be applied to mobile sensor networks
as a tool for achieving the optimal observation positions. The
proposed algorithms have been illustrated through several
simulations.

I. INTRODUCTION

The extremum seeking methodology application to diverse

problems in control and communications has a long history.

It represents a nonmodel based method for adaptive control

which deals with systems where the reference-to-output map

is uncertain but is known to have an extremum. In 1950s and

1960s this approach was popular as “extremum control” or

“self-organizing control” (see e.g. [1], [2], [3]). Following the

emergence of the main theoretical breakthroughs in the field

of adaptive control, Åström and Wittenmark stated in [4] that

extremum control belongs to the most promising future areas

for adaptive control. A significant contribution to this field

has been made in the last years by Krstić and his co-workers,

who succeeded both to clarify the main conceptual aspects

of this methodology and to present interesting and useful

applications (see [5], [6], [7], [1], [8], [9], [10], [11]). They

presented stability analysis for extremum seeking systems in

both continuous and discrete-time case using averaging and

singular perturbations providing sufficient conditions for the

plant output to converge to a neighborhood of the extremum

value.

However, all these approaches have been related to the

case of deterministic systems and perturbing sinusoidal

signals with constant amplitudes. This paper represents

an attempt to clarify properties of the main discrete-time

extremum seeking scheme presented in [6] in which the

following new assumptions are introduced: a) the ampli-

tudes of the sinusoidal perturbation signals, as well as the

gain of the integrator block, are time varying and tend to

zero at a pre-specified rate; b) the output of the system

is corrupted with measurement noise. In general, the first

assumption opens up a possibility to obtain convergence of

the whole scheme to a unique extremum point and not to its
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neighborhood which depends on the perturbation amplitude

even in the deterministic context. The second assumption,

i.e. the inclusion of the additive stochastic component in

the extremum seeking loop, allows important generalizations

and applications of the extremum seeking methodology to

a large number of real adaptation problems in control and

signal processing. The main contribution of the paper is a

theoretical analysis of the extremum seeking scheme which

starts from the above assumptions and formulates conditions

for the local convergence to the extremum point in the mean-

square sense and with probability one. In order to illustrate

new application areas for the presented theoretical results,

it is also shown how the extremum seeking scheme can

be applied to an adaptive state estimation problem which

minimizes the observation noise influence and, thus, can be

used for the optimal positioning of mobile sensors.

Section II contains the problem definition. Section III

is devoted to the main theoretical results, formulated as

Theorem 1, whose proof consists of two main parts. In the

first part it is proved that the extremum seeking scheme under

time varying perturbations and time varying integrator gain is

locally stable at the extremum point and that asymptotically

the system model can be linearized and represented by a

time varying gain and a constant coefficient. This coefficient

is found to be equal to the linearization coefficient obtained

in the time invariant case by the averaging methodology [6],

[12]. In the second part the stochastic aspects are treated

using the methodology of stochastic approximation with

colored noise, e.g. [13], [14], [15], [16], [17]. It is proved

that the system converges under the specified conditions

to the extremum point in the mean square sense and with

probability one. In Section IV a new application of the

extremum seeking scheme is presented. It is shown that it can

be used for mobile sensor networks as a tool for achieving

the best observation points for distributed state and parameter

estimation schemes based on Kalman filtering. The proposed

algorithms have been illustrated through several simulations.

II. DISCRETE-TIME EXTREMUM SEEKING ALGORITHM

WITH TIME-VARYING GAINS

We will consider a discrete-time extremum seeking algo-

rithm with sinusoidal perturbation, as shown in Figure 1.

The basic idea is as follows. Since we cannot measure the

gradient of the function whose extremum we are seeking, a

slow sinusoidal perturbation (compared to the dynamics of

the stable systems Fi(z) and Fo(z)), with frequency ω = aπ,

0 < a < 1, a is a rational number, is added to the system

input in order to observe its effects to the output y(k).
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Without loss of generality, we will assume that f(θ) has

a minimum at θ = θ∗ and that it has the quadratic form:

f(θ) = f∗ + (θ − θ∗)2 (1)

where f∗ is a constant. Possible higher order terms can be

neglected in the local convergence analysis; hence we are

omitting them here. The high pass filter z−1
z+h

, 0 < h < 1
filters out a DC component of the measurement y(k) which

is corrupted by noise ζ(k). Then, the resulting signal is being

demodulated (by the multiplication with the same frequency

sinusoid, followed by integration). Hence, the input to the

integrator − 1
z−1 is proportional to the slope of the function

f(θ) and it will drive θ to the extremal value (for which the

slope of the function f(θ) is zero).
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Fig. 1. Discrete-time extremum seeking scheme

In the next section we will prove convergence of θ(k)
to the extremal point θ∗ (with probability one and in the

mean square sense) in the presence of the measurement

noise ζ(k). What makes this possible is, similarly like in

stochastic approximation algorithms (e.g. [18], [19], [20]),

the introduction of the time varying, vanishing gains β(k),
γ(k) and α(k) which make the system capable of eliminating

noise. Note that in the case of similar algorithm whose local

stability has been analyzed in ([6], [7]) noisy measurements

and time-varying gains have not been assumed; hence θ(k)
in their case was proved to converge only to some O(α)
neighborhood of the extremal point. Also, because of the

time varying gains, the averaging theory can not be applied

directly, like in ([6], [7]), which makes the analysis of the

above system much more complicated. For the clarity of

presentation, we will assume that dynamics of the systems

Fi(z) and Fo(z) are fast enough so that they can be neglected

in the convergence analysis.

The following equations model the behavior of the above

described system:

y(k) = f∗ + (θ(k) − θ∗)2 + ζ(k) (2)

θ(k) = α(k) cos(ωk) − γ(k) 1
z−1 [ξ(k)] (3)

ξ(k) = β(k) cos(ωk − φ) z−1
z+h

[y(k)] (4)

where ζ(k) is the measurement noise, and the expression

H(z)[x(k)] denotes a time domain signal obtained as the

output of the transfer function H(z) when the input is x(k).
Similarly like in [6] we define the tracking error as:

θ̃(k) = θ∗ − θ(k) + α(k) cos(ωk) (5)

and obtain the following equation (for details of the deriva-

tion see [6] Sections 3 and 4):

θ̃(k + 1) − θ̃(k) = ǫ(k){L(z)[α(k)θ̃(k)]+

+Φ1(k) + Φ2(k) + Φ3(k) + u(k)} (6)

where ǫ(k) = γ(k)β(k) and

L(z) = − 1
2 [ejφM(z, ejω) + e−jφM(z, e−jω)], (7)

Φ1(k) = s(2ωk)Im{M(z, ejω)[α(k)θ̃(k)]}, (8)

Φ2(k) = −c(2ωk)Re{M(z, ejω)[α(k)θ̃(k)]}, (9)

Φ3(k) = c(ωk) z−1
z+h

[θ̃(k)2], (10)

u(k) = d(k) + c(ωk) z−1
z+h

[ζ(k)] (11)

d(k) = c(ωk) z−1
z+h

[f∗ + α(k)2 cos2(ωk)] + ε−k. (12)

In addition, s(2ωk) = sin(2ωk−φ), c(2ωk) = cos(2ωk−φ),
c(ωk) = cos(ωk − φ), ε−k denotes exponentially decaying

terms, and M(z, ejω) = (ejωz − 1)/(ejωz + h). Hence, all

the terms in equation (6) are time-varying; the first four terms

depend on θ̃ (Φ3(k) is nonlinear), while the input term u(k)
is composed of the deterministic part d(k) and the stochastic

part n(k) = c(ωk) z−1
z+h

[ζ(k)] .

III. CONVERGENCE ANALYSIS

In the convergence analysis we will assume that the

following basic assumptions are satisfied:

(A.1) The sequence {ζ(k)} is a martingale difference

sequence defined on a probability space (Ω,F , P ) with a

specified sequence of σ-algebras Fk ⊆ Fk+1, such that the

variables ζ(k) are measurable with respect to Fk and they

satisfy

E{ζ(k)2} = σ(k)2 < ∞, k = 1, 2, ... (13)

(A.2) The sequence ǫ(k) is decreasing, ǫ(k) > 0, k =
1, 2, ..., limk→∞ ǫ(k) = 0

(A.3) The sequence α(k) is decreasing, α(k) > 0, k =
1, 2, ..., limk→∞ α(k) = 0

(A.4)
∑∞

k=1 ǫ(k)α(k) = ∞
(A.5)

∑∞
k=1 ǫ(k)2 < ∞

(A.6)
∑∞

k=2 ǫ(k)[α(k − 1) − α(k)] < ∞
(A.7)

∑∞
k=2[ǫ(k − 1) − ǫ(k)] < ∞

(A.8)
∑∞

k=1 ǫ(k)α(k)2 < ∞
The following theorem deals with the asymptotic behavior

of the above algorithm.

Theorem 1. Let the assumptions (A.1-8) be satisfied. Then

θ(k) converges to θ∗ almost surely (a.s) and in the mean

square sense under the condition that supk(|θ̃(k)|) < K
(a.s.), 0 < K < ∞.

Proof. We shall analyze the right hand side of (6) term by

term.

We start by writing

ǫ(k)L(z)[α(k)θ̃(k)] = ρ(k)L(z)[θ̃(k)] + ǫ(k)δl(k), (14)

where δl(k) = L(z)[α(k)θ̃(k)]−α(k)L(z)[θ̃(k)] and ρ(k) =
ǫ(k)α(k). If l(k), k = 0, 1, ... is the impulse response of the

system S with transfer function L(z), we have

δl(k) = l(0)[α(k) − α(k)]θ̃(k) + l(1)[α(k − 1)−

−α(k)]θ̃(k − 1) + · · · + l(k − 1)[α(1) − α(k)]θ̃(1) (15)
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so that

δl(k) = [α(k − 1) − α(k)]y1(k) (16)

where y1(k) can be considered as the output of a

time varying system S1 with the impulse response

h1(k, j) = l(j)α(k−j)−α(k)
α(k−1)−α(k) and input θ̃(k), i.e. y1(k) =

∑k−1
j=0 h1(k, j)θ̃(k−j). System S1 is b.i.b.o. stable, having in

mind that h1(k, j) is absolutely summable under the adopted

assumptions (S is asymptotically stable and α(k) satisfies

(A.3)).

Now, we will use the result of [6] and apply the averaging

operator

AVG{L(z)[θ̃]} = limT→∞
1
T

∑T

k=0 L(z)[θ̃] (17)

so that we obtain

AVG{L(z)[θ̃]} = −κθ̃ (18)

where κ = Re{ejφ ejω−1
ejω+h

}. Notice that we also have κ =
−

∑∞
j=0 l(j), according to the above notation.

Writing now L(z)[θ̃(k)] = −κθ̃(k) + δlκ(k), we have

δlκ(k) = L(z)[θ̃(k)] + κθ̃(k) = (19)

=
∑k−1

j=0 l(j)[θ̃(k − j) − θ̃(k)] + [
∑k−1

i=0 l(i) + κ]θ̃(k)

where the last term is equal to λ(k)θ̃(k), with λ(k) =
∑∞

i=k l(i). After iterating (6) back to the initial condition

and using (14), we obtain

δlκ(k) = −l(1){ǫ(k − 1)[α(k − 1)L(z)[θ̃(k − 1)]+

+δl(k − 1) + Φ(k − 1) + u(k − 1)]} − l(2){ǫ(k − 2)·

[α(k − 2)L(z)[θ̃(k − 2)] + δl(k − 2) + Φ(k − 2)+

u(k − 2)] + ǫ(k − 1)[α(k − 1)L(z)[θ̃(k − 1)]+ (20)

δl(k − 1) + Φ(k − 1) + u(k − 1)]} + ... + λ(k)θ̃(k)

where Φ(k) = Φ1(k)+Φ2(k)+Φ3(k). After regrouping the

terms in (20), we obtain

δlκ(k) =
∑k−1

j=1 [−
∑k−1

i=j l(i)]ǫ(k − j)·

·{α(k − j)L(z)[θ̃(k − j)] + δl(k − j) + Φ(k − j)+

u(k − j)} + λ(k)θ̃(k) (21)

Defining two time-varying systems S2 and S3 with im-

pulse responses h2(k, j) = l̄(k, j) ρ(k−j)
ρ(k−1) and h3(k, j) =

l̄(k, j) ǫ(k−j)
ǫ(k−1) , respectively, where l̄(k, j) = −

∑k−1
i=j l(i), we

can write

δlκ(k) = ρ(k − 1)y2(k) + ǫ(k − 1)y3(k) + λ(k)θ̃(k) (22)

where y2(k) =
∑k−1

j=0 h2(k, j)L(z)[θ̃(k − j)] and y3(k) =
∑k−1

j=0 h3(k, j)[δl(k−j)+Φ(k−j)+u(k−j)] are the outputs

of S2 and S3, respectively. One can easily verify that both

S2 and S3 are b.i.b.o. stable under the adopted assumptions,

while λ(k) is exponentially decaying.

We focus now on the terms Φi(k) from (6), i = 1, 2, 3.

Considering first Φ1(k) defined by (8), we form, similarly

as above, the difference

δl1(k) = α(k)s(2ωk)Im{M(z, ejω)[θ̃(k)]}−

−s(2ωk)Im{M(z, ejω)[α(k)θ̃(k)]} (23)

and obtain that

δl1(k) = α(k)s(2ωk)[α(k − 1) − α(k)]y4(k) (24)

where y4(k) is the output of the b.i.b.o. stable system S4

with the input θ̃(k) and with the impulse response sequence

h4(k, j) = m1(j)
α(k−j)−α(k)
α(k−1)−α(k) , where {m1(j)} is the im-

pulse response of Im{M(z, ejω)} which is stable.

Further, we write Im{M(z, ejω)[θ̃(k)]} = κ1θ̃(k)+δ1
κ(k),

where κ1 = Im{ ejω−1
ejω+h

}, and, following the methodology of

deriving (20) and (21), we obtain

δ1
κ(k) =

∑k−1
j=1 [−

∑k−1
i=j m1(i)]ǫ(k − j)·

·{α(k − j)L(z)[θ̃(k − j)] + δl(k − j) + Φ(k − j)

+u(k − j)} + µ1(k)θ̃(k) (25)

where µ1(k) =
∑∞

i=k m1(i). Following further an analogous

reasoning as above, we obtain

δ1
κ(k) = ρ(k − 1)y5(k) + ǫ(k − 1)y6(k) + µ1(k)θ̃(k) (26)

where y5(k) and y6(k) are the outputs of b.i.b.o. stable

systems S5 and S6 with impulse responses h5(k, j) =

m̄1(k, j) ρ(k−j)
ρ(k−1) and h6(k, j) = m̄1(k, j) ǫ(k−j)

ǫ(k−1) , where

m̄1(k, j) = −
∑k−1

i=j m1(i), and with the inputs L(z)[θ̃(k −
j)] and δl(k − j) + Φ(k − j) + u(k − j), respectively.

Consequently, we have

Φ1(k) = α(k)s(2ωk)[κ1θ̃(k) + δ1
κ(k)] + δl1(k) (27)

Using completely analogous arguments we obtain that

Φ2(k) = −{α(k)c(2ωk)[κ2θ̃(k) + δ2
κ(k)] + δl2(k)} (28)

where κ2 = Re{ ejω−1
ejω+h

}, while

δl2(k) = α(k)c(2ωk)[α(k − 1) − α(k)]y7(k) (29)

and

δ2
κ(k) = ρ(k − 1)y8(k) + ǫ(k − 1)y9(k) + µ2(k)θ̃(k) (30)

where y7(k) is the output of the b.i.b.o. stable system

S7 with the input θ̃(k) and with the impulse response

sequence h7(k, j) = m2(j)
α(k−j)−α(k)
α(k−1)−α(k) . {m2(j)} is the im-

pulse response of Re{M(z, ejω)} which is stable, µ2(k) =
∑∞

i=k m2(i), while y8(k) and y9(k) are the outputs of

b.i.b.o. stable systems S8 and S9 with impulse responses

h8(k, j) = m̄2(k, j) ρ(k−j)
ρ(k−1) and h9(k, j) = m̄2(k, j) ǫ(k−j)

ǫ(k−1) ,

where m̄2(k, j) = −
∑k−1

i=j m2(i), and with the inputs

L(z)[θ̃(k−j)] and δl(k−j)+Φ(k−j)+u(k−j), respectively.

Therefore, after replacing the obtained expressions for

L(z)[α(k)θ̃(k)] + Φ1(k) + Φ2(k) + Φ3(k) in (6), we obtain

θ̃(k +1) = [1−κρ(k)+ η(k)]θ̃(k)+π(k)+ ǫ(k)u(k) (31)

where η(k) = [κ1s(2ωk) − κ2c(2ωk)]ρ(k) and

π(k) = ǫ(k)δl(k) + ρ(k)δlκ(k) + ǫ(k)c(2ωk)δ1
κ(k) +

ǫ(k)δl1(k) + ǫ(k)s(2ωk)δ2
κ(k) + ǫ(k)δl2(k) + ǫ(k)Φ3(k) (32)

Considering first the term η(k), we can easily derive that

η(k) = ρ(k) sin(2ωk+ψ), where ψ depends on φ and φM =
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Arg{ ejω−1
ejω+h

}. If N is the integer period of σ(k), we have

further that

|
∞
∑

k=1

η(k)| =

⌊N
2
⌋

∑

j=1

bj

∞
∑

k=0

[ρ(j+kN)−ρ(j+⌊
N

2
⌋+kN)] < ∞

(33)

where bj ≥ 0, j = 1, . . . , ⌊N
2 ⌋, having in mind that ω is

rational and that (A.7) holds. Therefore, having in mind that
∑∞

k=1 ρ(k) = ∞, from (31) we obtain for k large enough

that

θ̃(k + 1) =
∏k

j=1(1 − κ′ρ(j))θ̃(1)+

+
∑k

j=1[π(j) + ǫ(j)u(j)]
∏k

i=j+1(1 − κ′ρ(i)) (34)

where 0 < κ′ < κ. Now, using the inequality 1 − x ≤ e−x

it is easy to see that
∏k

j=1(1 − κ′ρ(j)) → 0 when k →
∞, having in mind the condition A.4. Furthermore, after

applying the Kronecker’s lemma to the second term at the

right hand side of (34), we conclude that θ̃(k) converges to

zero almost surely if
∑∞

j=1[π(j)+ǫ(j)u(j)] converges (a.s.).

In order to show that the last condition holds, we shall

decompose π(j) as π(j) =
∑3

i=1 πi(j), where π2(j) and

π3(j) contain only those components of y3(j), y6(j) and

y9(j) (outputs of b.i.b.o. stable linear systems S3, S6 and

S9) that are responses to the inputs ǫ(j)d(j) and ǫ(j)n(j),
respectively; π1(j) conatins all the remaining terms of π(j).

According to the assumptions (A.2) - (A.7), boundedness

of θ̃(k) guarantees the property that
∑∞

k=1 π1(k) converges.

This statement is evident for all the terms in π1(k) except

the last one, where the conclusion that
∑∞

k=1 ǫ(k)Φ3(k)
converges follows from similar arguments as those used in

deriving (33).

The analysis goes now to the terms in (31), depending on

d(k). Using the identity cos2(ωk) = 1
2 (1 + cos(2ωk)), we

obtain that d(k) = d1(k) + d2(k) + ε−k, where

d1(k) = c(ωk) z−1
z+h

[f∗ + 1
2α(k)2] (35)

d2(k) = 1
2c(ωk) z−1

z+h
[α2(k) cos(2ωk)] (36)

Considering the term d1(k) we first conclude that z−1
z+h

[f∗] =
0 (high pass filter). Furthermore,

z−1
z+h

[α(k)2] = α(k)2
∑k−1

j=0 l∗(j)α(k−j)2

α(k)2 (37)

where sequence {l∗(j)} is the impulse response of the

system z−1
z+h

. Reasoning as above, we conclude that |d1(k)| ≤
k2α(k)2, where k2 > 0 is a constant. Similarly, for d2(k)
we have

d2(k) = 1
2c(ωk)α2(k)·

·
∑k−1

j=0 l∗(j) cos(2ω(k − j))α2(k−j)
α(k)2 (38)

which leads, as above, to the conclusion that |d2(k)| ≤
k3α(k)2, where k3 > 0 is a constant. Therefore, we have

|d(k)| ≤ k4α(k)2 (39)

for some constant k4 > 0.

Consequently, it follows clearly that, under the adopted

assumption (A.8),
∑∞

j=1[ǫ(j)d(j) + π2(j)] converges.

The last part of (31) to be analyzed is the stochastic

component, obtained as a consequence of ǫ(k)n(k). We shall

first demonstrate that
∑∞

k=1 ǫ(k)n(k) converges a.s. (40)

We shall use the results from [15] (Theorem 1) which state

that the sufficient conditions for (40) to be satisfied, both

with probability 1 and in the mean square sense, are

(a) r(k) =
∑∞

j=k+1 ǫ(j)Ψj,k → 0, k → ∞ (41)

(b)
∑∞

k=1 ǫ(k)2σ(k)2 < ∞ (42)

(c)
∑∞

k=1 ǫ(k)σ(k)r(k) < ∞ (43)

where Ψk,m = ‖E{n(k)|Fm}‖2 with k > m, ‖ ·‖2 = (E{| ·
|2})

1

2 , Fk is a sequence of σ-algebras such that the variables

n(k) are measurable with respect to Fk. These conditions

specify a class of noise with a sufficiently slowly increasing

second moment and a sufficiently fast decreasing correlation.

For condition (a) we have

E{n(j)|Fk} = E{
∑j

i=1 l∗(j − i)ζ(i)|Fk}c(ωj)

=
∑j

i=1 l∗(j − i)E{ζ(i)|Fk}c(ωj)

= c(ωj)[
∑k

i=1 l∗(j − i)ζ(i)

+
∑j

s=k+1 l∗(j − i)E{ζ(s)|Fk}]

= c(ωj)
∑k

i=1 l∗(j − i)ζ(i) (44)

where we used the fact that E{ζ(s)|Fk} = 0 for s > k and

E{ζ(s)|Fk} = ζ(s) for s ≤ k (since ζ(i) is a martingale dif-

ference sequence), {l∗(i)} is the impulse response sequence

of z−1
z+h

. Furthermore, from (41) and (44), we have

r(k) =
∑∞

j=k+1 ǫ(j)|c(ωj)|·

·E{(
∑k

i=1 l∗(j − i)ζ(i))2}
1

2 ≤

≤ K ′
∑∞

j=k+1 ǫ(j)
∑k

i=1 l∗(j − i)2 (45)

for some positive constant K ′, where we used the fact that

E{ζ(i)ζ(j)} = 0 for i 6= j and E{ζ(i)ζ(j)} = σ(i)2 for

i = j. The last term in (45) goes to zero when k → ∞
having in mind that ǫ(k) → 0 and l∗(k) → 0 when k →
∞. Therefore, the condition (41) is satisfied. Condition (42)

follows directly from the assumptions (A.1) and (A.5). To

prove condition (43) we have
∑∞

k=1 ǫ(k)σ(k)r(k) ≤

≤ K ′
∑∞

k=1 ǫ(k)σ(k)
∑∞

j=k+1 ǫ(j)
∑k

i=1 l∗(j − i)2 =

=
∑∞

k=1 ǫ(k)2σ(k)
∑∞

j=k+1
ǫ(j)
ǫ(k)

∑k

i=1 l∗(j − i)2 (46)

The last term converges having in mind conditions (A.2) and

(A.5). Therefore, the property (40) holds.

Using the above arguments, if follows directly that
∑∞

j=1 π3(j) converges almost surely.

Therefore,
∑∞

j=1[π(j)+ǫ(j)u(j)] converges almost surely,

and we have the result.

Remark 1. The results of Theorem 1 hold under the general

condition that |θ̃(k)| is bounded w.p. 1. If we are, in general,

interested in the probability P (|θ̃(k)| < K for all k ≥ k0),
where K is a preselected constant, we can follow the line
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of thought in [19] based on the Kolmogorov’s inequality for

martingales. Assuming that the noise amplitude is bounded

w.p. 1 by a constant Kζ , it is possible to show that

P (|θ̃(k)| < K + M∗ for all k ≥ k0) ≥ 1 − N∗

K2 , where M∗

is proportional to Kζ and N∗ = E{θ̃(1)2}+ Nζ , where Nζ

is proportional to supk(σ(k)2). Therefore, N
K2 corresponds

to the small probability that θ̃ will get out of the predefined

local region. A rigorous analysis of this issue is out of the

scope of this paper.

IV. AN APPLICATION TO MOBILE SENSOR NETWORKS

AND EXPERIMENTS

In this section some direct applications of the above

extremum seeking scheme to the optimal positioning of

mobile sensors will be presented.

Assume that we have a random number generator which

generates zero-mean white noise {ξ(k)} with variance which

depends on a parameter θ, i. e. E{ξ(k)2} = R(θ), where

R(θ) is assumed to be a convex function of θ. Our goal is to

find θ minimizing R(θ) by measuring {ξ(k)} generated for

different values of θ. According to the above results, we can

apply the extremum seeking (ES) scheme for this purpose.

Assume that η(k) = ξ(k)2 and write η(k) = R(θ) + ζ(k),
where ζ(k) = ξ(k)2 − R(θ). The sequence {ζ(k)} is white

and zero-mean with finite variance, assuming that the fourth-

order moment of ξ(k) is finite. Therefore, we assume that

in the ES scheme depicted in Fig. 1, η(k) represents the

noisy output, R(θ(k)) represents the noiseless output and

ζ(k) represents the measurement noise. It is easy to conclude

that the above theorem can be applied, and that the ES under

the conditions of Theorem 1 provides convergence of θ̃(k)
to θ∗ with probability 1.

Following the approach in [10], the scheme in Fig.1 can

be generalized to two dimensional case, using orthogonal

sinusoidal perturbations. Then, the ES scheme is able to find

the position in the plane corresponding to the minimal noise

variance, assuming that we can model the vehicle as a single

integrator.

Assume now that we are faced with the problem of state

estimation in which the Kalman filter is applied, and that

it is necessary to find the best place in the plane for an

observer, assuming that the measurement noise variance is

coordinate dependent. This problem is fundamental in appli-

cations related to mobile sensor networks. Recall that in the

optimal steady state regime of the estimator the innovation

sequence {ν(k)} = {z(k) − Cx̂(k|k)} is white, where z(k)
is the system output, x̂(k|k) is the state estimate and C the

output matrix of the system, assuming that we have a scalar

output. Assume that {n(k)} is the measurement noise, which

is white, with variance depending on the position of the

observer in a plane, i.e., E{n(k)2} = R(x(k), y(k)) (x(k)
and y(k) are the coordinates). Then, we have

E{ν(k)2} = Rν(x, y) = CP (x, y)CT + R(x, y) (47)

where P (x, y) is the steady state estimation error covariance

matrix which satisfies the algebraic Riccati equation

P = ΦPΦT − ΦPCT [CPCT + R]−1CPΦT + Q (48)

where Φ is the state matrix of the system model and Q is the

input driving noise covariance. We can calculate p = CPCT

by assuming that CΦPΦT CT = ap and CΦPCT = bp, for

some constants a and b. From (48) we obtain that p, which

is scalar, is a solution of the quadratic equation

b2p2 + (1 − a)p(p + R) − q(p + R) = 0 (49)

where q = CQCT . It is easy to verify that for R small

enough p ≈ p∗ + a∗R where p∗ and a∗ > 0 are constants

depending on the parameters a, b and q. Therefore, from (47)

we derive

Rν(x, y) ≈ R∗
ν + a∗

x(x − x∗)2 + a∗
y(y − y∗) (50)

for some constants R∗
ν , a∗

x and b∗x, assuming that R(x, y) can

be approximated by a quadratic function. From this result we

conclude that the observer position can be asymptotically

optimized by applying the ES scheme similarly like in

the above case. Namely, we take the realizations ν2(k) as

measurements (instead of ξ2(k)) and apply the ES scheme

from Fig. 1 (for two dimensional case see [10]); the scheme

asymptotically provides the optimal observer position.

One practical modification of this scheme is to take
1
T

∑k−1
i=k−T ν(k)2 instead of ν2(k) in order to reduce the

equivalent noise variance (by the factor T ).

In order to illustrate the proposed algorithms we provide

two examples with simulation studies.

Example 1. In this example we demonstrate the results

of Theorem 1 for the two dimensional case. The nonlinear

function f(x, y) is assumed to be quadratic f(x, y) = 1 +
1
2x2 + 1

2y2 and the measurement noise variance is σ2 = 0.4.

Other system parameters are h = 0.1 and ω = 0.6π. In

order to satisfy conditions (A.2-8) we assume that α(k) =
1

k0.25 and ǫ(k) = 1
k0.75 . In Fig. 2, x(k) and y(k) coordinates

are shown as a function of time, for the initial conditions

x(0) = 1.7 and y(0) = 1.7. We can see that they both

converge exactly to zero (the minimum of function f(x, y)),
in accordance with the results of Theorem 1.

0 100 200 300 400 500
−5

0

5

x(t)

0 100 200 300 400 500
−2

0

2

4

y(t)

Fig. 2. x(k) and y(k) coordinates (Example 1)

Example 2. This example will illustrate the algorithm

for the optimal positioning of the Kalman estimator in the

plane. The vehicle, on which the Kalman state estimator is

implemented, is modelled as a single integrator. We assume

the following model for the Kalman state estimator F =
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[

0.5 −0.1
0.2 0.2

]

, G =

[

0.2 0
0 0.2

]

, H = [0 1], where F is the

system matrix, G is the input matrix, H is the output matrix,

input noise covariance matrix is

[

1 0
0 1

]

and the measurement

noise variance depends on the coordinates of the vehicle x(k)
and y(k) as the quadratic function R(x, y) = 0.5+5x2+5y2.

The other system parameters are h = 0.1 and ω = 0.6π, and,

like in the previous example, α(k) = 1
k0.25 and ǫ(k) = 1

k0.75 .

As described above, we take the filtered squared residuals
1
T

∑k

i=k−T ν(k)2 as the measurements in the ES scheme,

where T = 3. The coordinates x(k) and y(k) as a function of

time are shown in Fig. 3, for the initial conditions x(0) = 1.5
and y(0) = 1, respectively. The exact convergence to the

minimum noise variance point (0,0) is evident. The trajectory

of the vehicle is shown in Fig. 4.

0 100 200 300 400 500
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0

2

4

x(t)

0 100 200 300 400 500
−1

0

1

2

3

4

y(t)

Fig. 3. x(k) and y(k) coordinates (Example 2)
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1
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2.5
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3.5

x

y

Fig. 4. Trajectory of the mobile observer (Example 2)

V. CONCLUSION

In this paper, new assumptions have been introduced

into the extremum seeking algorithm with sinusoidal per-

turbation. It has been assumed that the integrator gain and

the perturbation amplitude are time varying (decreasing in

time with the proper rate) and that the output is corrupted

with the measurement noise. The local convergence of the

algorithm, with probability one and in the mean square

sense, has been proved. Also, two direct applications to

the optimal mobile sensor positioning have been proposed.

These problems are fundamental in multi-agent systems and

mobile sensor networks, which gives a great perspective

for further applications of the proposed algorithms. The

simulation studies illustrate the results of the main theorem

- convergence to the extremal point with complete noise

elimination.

A direct extension of this work would be to analyze an

application of the proposed algorithm to the optimal place-

ment in the plain for the case when vehicles are modeled as

double integrators or unicycles.
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[5] K. B. Ariyur and M. Krstić, Real Time Optimization by Extremum

Seeking. Hoboken, NJ: Wiley, 2003.
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[8] H. H. Wang, M. Krstić, and G. Bastin, “Optimizing bioreactors by
extremum seeking,” Int. Journal Adapt. Contr. Sign. Proc., vol. 13,
pp. 651–669, 1999.

[9] N. J. Killingsworth and M. Krstić, “PID tuning using extremum
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