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Abstract—There are a vast number of manufacturing 
applications that are repetitive in nature and therefore can 
benefit from Iterative Learning Control (ILC) algorithms.  
However, some of these applications are unfit for continuous 
open loop signal updates from ILC either because the complete 
manufacturing cycle includes abrupt transitions in system 
dynamics or is prohibitively long for efficient implementation.  
This paper explores a method to control one such system, 
Micro Robotic Deposition (μRD), using ILC as an open loop 
control signal identification technique.  Instead of continuously 
updating the ILC control signal for the complete operation, we 
exploit the characteristic that all μRD cycles are a sequence of 
a few basis tasks and only these basis tasks are learned.  
Control signals for these basis tasks build a library of basis 
signals, which can then be appropriately sequenced as the 
control signal for the complete manufacturing cycle.  This 
paper introduces a method to build this basis signal library and 
extract and coordinate the signals depending on predefined 
μRD operations and material used as specified by numerically 
controlled machine language.  The methods applied to μRD 
display the ability to drastically improve end product quality 
with a significantly shortened signal identification process. 

I. INTRODUCTION 
TERATIVE Learning Control (ILC) is a control algorithm 
that has been applied to systems that have repeated 
reference trajectories, identical initial conditions, and 

dwells in actuation between iterations[1].  The ILC 
algorithm uses information recorded from previous input 
and error signals to iteratively modify the open loop control 
signal.  The open loop signal can either be used alone in 
open loop stable systems or in conjunction with feedback 
control[2], utilizing the noncausal nature of ILC to augment 
the causal nature of feedback control.  With properly chosen 
algorithm parameters, ILC converges to an open loop signal 
that compensates for uncertainties that detract from system 
performance, notably unmodeled dynamics and repeated 
disturbances.    
 Typically, ILC is implemented as a continuously active 
algorithm.  The dynamics of the system can be time varying 

provided that the changes in dynamics are not abrupt, 
therefore correlating with previous iterations.  The standard 
system tracks a short duration trajectory, ensuring that the 
storage and calculation of updated signals is computationally 
efficient[3].  However, there are many systems, particularly 
in manufacturing, where abrupt changes in dynamics do 
occur, such as when a robot lifts a heavy part.  Additionally, 
complete operations can be on the order of minutes, 
preventing the implementation of computationally intensive 
algorithms such as those utilizing lifted system analysis[4] 
and non-traditional sensors such as machine vision[5].  
Fortunately, many manufacturing operations consist of a few 
basis tasks sequenced appropriately to complete the intended 
operation.  Instead of applying ILC to the complete 
trajectory, a more computational and time efficient method 
is to learn the shorter basis tasks and then select the 
corresponding input signal, termed basis signal, as needed to 
complete the entire operation. Systems that are appropriate 
for this implementation must be appropriate for ILC[1] and 
satisfy the following assumptions: 
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Assumptions: 
1) Repetition of basis tasks in an operation 
2) Time invariant dynamics within a task 
3) Existence a bijective map between basis signals and 

basis tasks 
4) Approximate basis signal continuity at the 

transition between adjacent basis tasks 
One such system is Micro Robotic Deposition (μRD)[6].  

μRD is a rapid prototyping process in which a colloidal ink 
is extruded through a nozzle in a predefined trajectory to 
build three-dimensional structures, Fig. 1.  Structures are 
built in a layer-by-layer fashion, similar to the more well-
established Fused Deposition Modeling[7], except that a 
ceramic or polymeric ink is used rather than a polymer melt.  
In the μRD community, there is a demand for advanced 
multi-material structures such as near-net shape structures, 
structures with embedded sensors, and structures with 
multiple domains of different material properties[8].  
Common to each of these structures is the requirement for 
precise modulation of material flowrate so that material 
transitions are both well connected (no unintended material 
gaps) and within tolerance.  Fundamental limitations of the 
system dynamics prevent precise flowrate modulation by 
simple on-off control schemes[9].  ILC has been shown as a 
successful flowrate modulation technique in [5], however 
[5] focused on a complete build trajectory.  Typically in 
μRD, different materials vary significantly in viscosity[10] 
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and build times are on the order of minutes.  Therefore, this 
previously developed technology must be modified to make 
the flowrate modulation for the complete build cycle 
feasible. 
 All structures built by μRD are built in a sequence of 
basis tasks, termed here as Start, Stop, Corner, Steady-State, 
and No-Flow.  Therefore, the correct input signal to build 
any structure in μRD is a concatenation of basis signals 
applied at the correct location in the build cycle.  Basis 
signals are learned in a fixed training routine that contains 
the set of basis tasks.  Learned signals are stored in a 
database, termed here as the basis signal library, which is 
indexed and extracted by their associative basis task, 
material, and nozzle size.  The extraction is dictated by logic 
applied to set of commands defining the structure 
architecture (e.g. G-Code).   
 Since the ILC algorithm is applied to a fixed training 
trajectory, the same conditions for boundedness of 
trajectories and stability that apply to ILC apply to this 
implementation[1].  However, in any system, there will be 
hysteresis effects and signal discontinuities at the transitions 
between basis input signals when applied to a trajectory that 
is not the training trajectory.  Consequently system 
performance is sacrificed for gains in modularity.  This 
implementation of ILC can be extended to applications 
beyond μRD.  For instance, a pick-and-place robot 
manipulating objects on an assembly line will have different 
dynamics depending on the load[11].  Tasks such as linear 
moves and end effecter moves can be learned in both the 
load and no-load scenarios and used accordingly.   

This paper explores the idea of identifying basis signals 
through a training routine and extracting them to build entire 
structures with a multi-material μRD system.  The μRD 
system used is described in Section II.  The basis signal 
identification technique is described in Section III, detailing 
the training routine, signal learning, segmentation into 
individual basis signals, and construction of a signal library.  
Section IV describes the logic employed to extract the 
appropriate basis signal and provides a simple example.  
Section V shows this method’s utility in building structures 
with advanced architectures.  Section VI follows with 
concluding statements.   

II.  SYSTEM DESCRIPTION 
This research is applied to a multi-material μRD system.  

System components and functions will be described in the 
following sections.   

A. XYZ Gantry System 
Position of the deposition head is controlled by an XYZ 

gantry system as described in [12].  The gantry system has 
approximately 20 times the bandwidth of the extrusion 
systems and therefore we only consider the systems with the 
dominant time scale, which are the extrusion systems, for 
ILC application. 

B. Multi-Material Deposition Head 
The deposition system mounted to the XYZ gantry system 

is a prototype multi-material deposition head.  The head 
contains four individual extrusion systems oriented in a 
rotary array, see Fig. 1a, however the technology developed 
here extends to more than four extrusion systems.  Each 
individual extrusion system consists of a motor and lead 
screw assembly which linearly translates a plunger, which in 
turn applies pressure to the ink reservoir to extrude the ink, 
see the schematic in Fig. 1b.  An individual extrusion system 
is selected by rotating that system into the ‘active’ position.  
The rotational system is locked into place during deposition 
of a material by a solenoid and locking pin mechanism.  The 
entire system is oriented at a slight angle (2°) from parallel 
with the deposition substrate to provide clearance between 
non-active extrusion systems and the structure being 
fabricated.   

Extrusion 
System 1

Extrusion 
System 2

Rotational
System

Locking
Mechanism

     

(a) (b) 

Fig. 1.  Multi-Material Deposition Head. (a) Drawing of complete system.  
The Multi-Material Deposition Head is a rotary array of four individual 
extrusion systems.  Extrusion systems 3 and 4 are removed for clarity.  The 
rotational system positions the correct extrusion system into the ‘active’ 
position and is locked in place during deposition.  (b) Schematic of an 
individual extrusion system.  Plunger displacement (input) applies pressure 
to a reservoir of ink which in turn extrudes ink (output) through the nozzle. 

 
The material extrusion systems, diagramed in Fig. 1b, are 

single-input single-output (SISO) systems where the input, 
u(k), is the plunger displacement and the output, y(k), is the 
material volumetric flowrate out.  The extrusion system, 
denoted by operator H, is a function of build material, M, 
and nozzle size, N, Fig. 2.  H is bounded-input bounded-
output (BIBO) stable[5] and is assumed to be time-invariant 
here.  The subscript i denotes the basis task index (e.g. u1(k) 
is basis signal number 1).   

 
Fig. 2.  Block diagram of the material extrusion system in μRD.  SISO 
system H(M, N) is BIBO stable and assumed to be time invariant.   

 
The extrusion system, H(M, N), is nominally described by 

a first order transfer function relating the volumetric 
flowrate through the syringe nozzle and the plunger 
displacement, equation (1).  (1) is derived in [5] and in 
similar systems[13,14]. 
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Two different operating modes are considered, extruding 
either Material A or Material B but with the same nozzle 
size, where Materials A and B have different fluid 
viscosities and therefore exhibit different system dynamics, 
HA and HB.    First order parameters K and τ for systems HA 
and HB, identified by a downward step input (not shown), 
are given in Table I.  Noticeable in the nominal system 
results are the slow time constants that prevents simple on-
off control from effectively modulating flowrate.  
Additionally, Material B has a higher viscosity than Material 
A, realized in the difference in time constants.   

 
C. Machine Vision System 

Material flowrate is measured by a machine vision system.  
An in depth description of the machine vision system can be 
found in [5] and [15].  Briefly, a CCD video camera is 
mounted to the XYZ gantry system and focused at the exit 
of syringe nozzle.  Video of each deposition trial is recorded 
and flowrate is calculated based on information known 
about the cross-sectional area of the extruded ink and the 
gantry velocity.   

III. BASIS SIGNAL IDENTIFICATION 

A. Signal Identification 
Basis signals for each of the basis task for μRD, Start, 

Stop, Corner, Steady-State, and No-Flow, are identified in a 
training routine.   

ILC algorithm (2) is applied to a training reference for 
systems HA and HB.  The training reference, reference signal 
in Fig. 3, is a pulse signal with a momentary pause in the 
pulsed region.  The rising and falling steps are representative 
of the Start and Stop basis signals, respectively.  The 
momentary pause in gantry velocity during the pulsed region 
simulates the gantry trajectory during a Corner basis signal.  
During a Corner basis signal, it is desirable to maintain a 
constant flowrate despite the decrease in gantry velocity.  
Here, a Corner is simulated by proceeding in a straight line, 
instead of actually changing direction, to make flowrate 
measurement easier.  

( )1( ) ( ) ( ) ( ) ( )j ju k Q q u k L q e k+ = + j        (2) 
Learning filter L(q) is a model inversion filter, 

, where k1ˆ( ) ( )pL q k P q −= p = 0.25 and ˆ( )P q  is the discrete-
time version (1) of with a fast zero added to the numerator to 
make the inversion proper.  Q-filter, Q(q), is a second-order 
lowpass Butterworth filter with a bandwidth of 3 Hz. 

Results from ILC algorithm (2) applied to the training 
reference signal are shown in Fig. 3.  Both systems 
drastically improve reference signal tracking at high 

iterations, approximating the training reference signal.  Units 
are expressed in mm3/mm because it is critical to control the 
volume of material extruded per linear travel of the Multi-
Material Deposition Head.  Root mean squared (RMS) error 
decreases to less than 20% the RMS of iteration 0 at the 
most accurate iteration for both systems, Fig. 4.   
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TABLE I 
NOMINAL SYSTEM PARAMETERS 

Parameter HA HB

K 1.08 0.89 
τ (s) 2.7 4.5 

Fig. 3.  Normalized flowrate response to the training reference at iterations 
0, 15, and 30 for system HA (left) and HB (right).  
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Fig. 4.  Root mean squared error at each iteration for systems HA and HB.   
 

B. Signal Segmentation 
The control signals that yields the output responses seen 

in Fig. 3 are shown in Fig. 5.  Notice that the more viscous 
Material B requires approximately 1.5 times the control 
effort to achieve approximately the same output as Material 
A.  Each basis signal is demarcated by distinct transitions in 
signal magnitude that correspond to a particular basis task.  
The input signals for systems HA and HB are segmented at 
these demarcation points and stored as basis signals for their 
respective operation and system.  Fig. 6 shows the input 
signal for system HA segmented into the constitutive basis 
signals.  The input signal for system HB is segmented at the 
same points in time, not shown.  The Start, Stop, and Corner 
basis signals are of finite length because each of these tasks 
occurs at a singular location.  The Steady-State and No-Flow 
basis signals are of variable length because Steady-State and 
No-Flow regions are variable in length, as determined by the 
individual structure being constructed.  The Steady-State 
signal is set to the mean input magnitude during the Steady-
State region.  The No-Flow signal is set to zero magnitude.   
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Fig. 5.  Input signal u(k) for iteration 31 for systems HA and HB. 
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Fig. 6.  Input signal uA(k) for iteration 31 for system HA segmented into its 
constitutive basis signals. 

C. Library Structure 
The basis signals are assembled into matrix structure (3).  

Each basis signal is organized by task (Start, Stop, Corner, 
Steady-State, or No-Flow) and systems (HA or HB) and 
numbered, 0, 1, …, n–1.  Information critical to the signal 
extraction, Section IV, is contained in the first two rows of 
(3).  Leadi informs the extraction algorithm how far in 
advance of the desired task the basis signal should begin.  Ki 
informs the extraction algorithm of the length of signal ui(k) 
for the specific basis task.  The remaining rows contain the 
discrete time signals for each basis task, indexed by task 
number and time step.   

     (3) 

0 1

0 1 1
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IV. BASIS SIGNAL EXTRACTION 

A. Signal Selection 
Basis signals from the control signal library, (3), are 

selected using logic applied to the computer language 
instructing the part construction.  Three main considerations 
govern the logical decisions for extracting the correct basis 
signal: the current and future tasks, a hierarchy of tasks, and 
allowable task sequences. 

1) Current and Future Tasks 
The state of the current task and future tasks is continually 

monitored during a build operation.  The control signal is 
generally non-casual, preempting the desired location of the 
task; therefore the extraction logic looks ahead in the 
computer language to determine the future tasks.  Signals for 
the next task will begin as the current task is being 
completed. 

2)  Hierarchy of Tasks 
In a given manufacturing application, some tasks assert 

priority over other tasks.  In the case of μRD a Stop signal 
has the highest priority because of the possibility of short 
segments of material in which the Start and Stop signals will 
overlap in time.  If the Start signal was allowed to complete 
and then followed by the Stop signal, the combination would 
result in excess material.  Instead it is better terminate the 
Start signal short of completion, resulting in a less 
developed line of material.  An analog of this hierarchical 
decision is with a pick-and-place robot system in which the 
pick operation would take highest priority so the robot will 
not miss items on an assembly line.  A general hierarchy is 
shown in Fig. 7, where the highest priority task, task 0, is 
considered first followed by subsequent tasks in the 
hierarchy.  In the case of μRD, the hierarchy is Stop, Start, 
Corner, Steady-State, and then No-Flow. 

 

1 ⎫
⎪
⎪⎪

⎪
⎪
⎪⎭

 
Fig. 7.  Diagram of the hierarchy of tasks.  The decision to select task 0 is 
considered first, followed by the subsequent tasks in the hierarchy.  The 
open loop input signal, OLinput, is therefore a function of the active task and 
the time step within the selected signal. 

 
3) Allowable Task Sequence 

Integrated into the individual decision blocks in the task 
hierarchy are rules dictating which tasks are allowed to 
follow a previous task.  For instance, the control signal 
cannot directly transition from the Steady-State signal to the 
No-Flow signal; a Stop signal must be executed first.  
Additionally, in a system switch, system HA must be stopped 
by its Stop signal followed by a dwell period to switch 

928



  

systems, and then by a Start signal for system HB.  An 
allowable tasks flow chart for a two material μRD system is 
shown in Fig. 8.   

 
Fig. 8.  Allowable tasks flow chart for a two material (HA and HB) μRD 
system.  Task changes within the same system are shown in their respective 
colors.  Task changes that require a system switch are shown in black.  (S-S 
= Steady-State, N-F = No-Flow).   

B. Signal Transfer 
μRD characteristically has smooth signal transitions 

between the different tasks, reasonably satisfying 
Assumption 4.  This characteristic simplifies the transfer of 
tasks because the transition will not excite high frequency 
dynamics in the system.  The basis signals are simply 
sequenced without any signal modification at the transition.  
Not all applications will have this characteristic and 
measures to blend the two signals at the transition will need 
to be applied to satisfy Assumption 4. 

C. Basis Signal Extraction Example 
Here we show an example sequence of basis signals 

applied to system HA.  In this simple example, the machine 
language commands the system to fabricate the structure in 
Fig. 9a.  The signal extraction algorithm performs the logical 
operations described in Section IV to select both the next 
task in the sequence as well as to coordinate the timing 
based on information in the basis signal library.  The 
sequence of basis signals to complete this operation is: 

{No-Flow, Start, Steady-State, Corner, Steady-State, 
Corner, Steady-State, Stop, No-Flow}. 

 
N-F

Start

Corner S-S Corner

S-S

Stop

N-F

X
Y

S-S

       
Fig. 9.  Example of a sequence of basis signals used to construct a simple 
structure.  (a) Schematic of structure.  S-S = Steady-State, N-F = No-Flow  
(b) Image of structure after fabrication.   
 
The appropriately sequenced basis signals, identified in 
Section III, are shown in Fig. 10.  Basis signals Steady-State 
and No-Flow are interrupted at the appropriate time because 
they are outranked in the hierarchy by the Start, Stop, and 
Corner basis tasks.  Notice the demarcation lines for 

beginning and ends of basis signals, as well as when in the 
signal the task is scheduled to happen.  The resulting 
structure fabricated is shown in Fig. 9b. 
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Fig. 10.  Sequence of basis signals to build the structure in Fig. 9. 

V. CONSTRUCTION OF ADVANCED ARCHITECTURES 
The basis signal approach to building a complete signal is 

best suited for advanced architecture structures that contain 
both multiple materials and frequent terminations and 
commencements in material deposition.  These architectures 
either cannot be or are not easily learned in whole by ILC.     

An example of a structure containing frequent 
terminations and commencements during material 
deposition is a tic-tac-toe structure, which has multiple 
linear and circular sections that are disconnected from each 
other.  In this case, the entire operation could be learned in 
an extended identification procedure, however the process 
would be prohibitively time consuming and require 
extensive computational time to store and process image 
data.  Here we build a tic-tac-toe structure, Fig. 11, from a 
sequence of the basis signals identified by the significantly 
reduced identification routine in Section III.  Each task and 
its location are diagramed in Fig. 12.  Note: the structure in 
Fig. 11 was fabricated with different basis signals than those 
shown in Fig. 10, however basis signals used were identified 
with a method identical to Section III. 

(a) (b) 

10 mm
  

5 mm

 
Fig. 11.  Tic-tac-toe structure exhibiting the ability to perform all five tasks, 
Start, Stop, Corner, Steady-State, and No-Flow.  Image on the right is an 
enlarged section of complete structure, denoted by the red box in the left 
image. 
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Fig. 12.  Diagram of tasks to build the tic-tac-toe structure in Fig. 11. 

VI. CONCLUSIONS 
ILC is an effective algorithm for improving system 

performance on many systems that track repetitive 
trajectories.  However, ILC is traditionally trajectory 
specific.  This paper explores a modular approach to ILC, 
exploiting the repetition of tasks that is common to 
manufacturing operations.  By applying signals learned 
through ILC as modular basis signals, system unfit for 
traditional ILC, such as those requiring abrupt changes in 
system dynamics and lengthy trajectories, can be controlled.  
The process of implementing this approach is displayed on a 
multi-material μRD system, a system that has multiple 
system dynamics depending on the material being deposited 
and typically requires lengthy build times.  The 
identification, segmentation, and storage of basis signals 
corresponding to a set of basis tasks is displayed, as well as 
the algorithm for extracting basis signals depending on 
machine language governing structure fabrication.  An 
example of an advanced architecture structure, containing 
multiple repetitions of basis tasks, is displayed.  The total 
build time in this example is prohibitively long for 
conventional implementations of ILC, but by using the basis 
signal method introduced here, the structure can be 
fabricated with a significantly decreased ILC identification.     
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