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Gene Regulation Models and Evolution

M. Sami Fadali, Senior Member, M. Savageau, Senior Member

Abstract— We examine the dynamics of gene regulation for a
system with K environments with each environment favoring a
different pattern of gene transcription and regulation in a
prokaryotic organism. We recast the model of the system as
discrete-time K-periodic. This allows us to exploit the well
known properties of periodic systems to characterize the
steady-state behavior of wild type versus mutant populations of
the organism: We also obtain conditions on the parameters of
the state matrix using the properties of positive linear systems.
We examine in more detail the example of the lac operon of E.
Coli which has two environments: a high demand environment
H and a low demand environment L. The gene regulation
system alternates between the two environments as the
organism completes one life cycle. We derive conditions under
which the system reaches steady growth alternating between a
state xy and x; as each life cycle is completed. Our results show
the dependence of the mutant to wild type ratio on the ratio of
high demand to low demand duration.

I. INTRODUCTION

Gene regulation is necessary for the survival of
prokaryotic enzymes. The regulatory mechanisms

control transcription of messenger RNA (m-RNA) and
translation through one of two types of regulation: positive
or negative. In positive regulation, transcription begins
when an activator is present in the organism’s environment.
In negative regulation, the regulator protein deactivates a
transcription inhibitor to allow the initiation of protein
synthesis.

The demand theory of gene regulation [4],[5], states that
positive control is favored by a high demand environment
while negative control is favored by a low demand
environment. This controls genetic mutations of the
organism and maintains the dominance of wild type
organisms under normal environmental conditions.

E. Coli provides an excellent demonstration of the
demand theory through its lac and mal operons [4][5]. In
prokaryotes, an operon is a gene unit that functions in a
coordinated manner by means of an operator, a promoter,
and one or more structural genes that are transcribed
together. We examine the mathematical model of gene
regulation in E. Coli using concepts from system theory. In
particular, we view the life cycle of an organism as a
positive [2], periodic [1] system and examine the
implications for the system parameters and for its mutations.
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We model the ratio of promoter mutant to wild type,
both of which grow steadily after a transient period. The
ratio of the two populations exhibits a sawtooth periodic
form. We obtain constraints on the ratio of high demand to
low demand duration. Our approximations use the
assumption of a small mutation rate x and a small selection
coefficient 1-o. The results agree with the small cycle time
results of [4], [5].

The paper begins with a discussion of a general gene
regulation system and relevant properties of periodic
systems and positive systems. We then apply the properties
of periodic and positive systems to the model of [4], [5], to
obtain conditions that govern the model parameter and
characterize is steady-state behavior. We examine the
implications for gene regulation as applied to E. Coli.

Nomenclature

o relative growth rate in more nutritionally deficient

environment.

relative mutation as a function of gene expression

reference growth rate hr”'

relative mutation with loss of normal expression

reference mutation rate per base per generation

relative mutation rate for gain of high-level promoter site

relative mutation rate for loss of high-level promoter site

relative mutation rate for loss of a functional regulator

protein

relative growth rate with superfluous expression

7 relative mutation rate for loss of a regulator’s functional
target site
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II. SYSTEM DYNAMICS FOR GENE REGULATION

Consider a simple model of gene regulation where a given
effector gene cycles between K alternative environments.
Each environment requires a different mechanism of gene
regulation to produce the enzymes that allow the organism to
fully exploit available nutrients and ensure survival. We
assume linear dynamic in each environment governed by

x=4,i=1--,K (1)
where x denotes an n by 1 state vector, and 4; is the state
matrix in the domain 4, i =1, ... , K. Alternatively, the

model may represent ratios of the numbers of mutant forms
of the organism to the number of wild type organisms.

We assume that the system remains in i for a duration 7;
and that the life cycle time is

=31, @

After each life cycle, new organisms return to the first
domain so that the state matrices are governed by

1706



Ak =4 3)
Hence the system can be considered periodic with period K

[1].

If the initial state of the system is in domain 7, then the
state of the system at time 7 is given by

x(t) = el il AT, "x(t,) 4
j-1

At:t—ZZ} (5)
th

For one complete life cycle starting at the beginning of the 7
phase, we have
x(t, +C) = 0(i + K,i)x(t,)
k=i+K-1 (6)

AT,

H e

We can treat the system as a discrete-time system with
sampling period unity and analyze it using the model
x(k+1) = A(k)x(k)
A(k)= A(k+K) (7)
A(k) = ™"

The following result allows us to characterize the
eigenvalues of the discrete-time periodic system.

1+K1

Theorem 1 [3].
Given a periodic system with repetition period K
x(k+1) = A(k)x(k) g
A(k)= A(k+K) ®
Then the state-transition matrix of the system is written as
Dk, j) = P()RP()) )
where P(k) is K-periodic and R is a constant matrix. The
response of the system is K-periodic if and only if at least
one of the eigenvalues of R is unity. .
The state-transition matrix defined over the repetition
period K is known as the monodromy matrix. Using the
periodicity of the matrix P(k), the monodromy matrix at time
zero is given by
O(j+K, j)=PHR P ()) (10)
Hence, the eigenvalues of R* are also the eigenvalues of
the monodromy matrix. The eigenvalues of the monodromy
matrix, known as the characteristic values, determine the
stability of the periodic system. The system is stable if and
only if all its characteristic values are inside the unit circle.
We now examine the discrete-time system over a
complete life cycle and discuss its steady-state behavior.
We denote the monodromy matrix by ® for brevity. We
express the initial state x(#,) in terms of the eigenvectors v;,
i=1, 2, ..., n, of the monodromy matrix

x(t0)=iaivi (11

If the eigenvalues are all inside the unit circle, then the
state converges asymptotically to zero. If at least one
eigenvalue is outside the unit circle, then the state will
diverge (unless the initial state has zero coordinates in the

direction of the unstable eigenvectors). The response of the
discrete-time system (6) in terms of the eigenvectors is

Xty +C) =) a,®v, = D Ay, (12)
i=l1 i=l1

Repeatedly updating the state over / cycles, we have

x(t, +1C) = Za(l)v —Za, , (13)

i=1 i=1

The steady state reached depends on the locations of the
characteristic values of the system. Any value whose
magnitude is less than unity gives a term that decays to zero
asymptotically. Hence, if one eigenvalue (or more) has
magnitude unity while all others are inside the unit circle,
then the system converges to a fixed state. For example, if
only the /" eigenvalues of the discrete system is unity, the
system approaches the i eigenvector in the steady state.

III. POSITIVE SYSTEMS

A positive system is one whose state trajectories with any
nonnegative initial conditions correspond to state vectors
whose entries are nonnegative. For an unforced system, we
have the following condition for a positive system.

Theorem 2 [1]
An unforced state-space continuous-time system is positive
if and only if all the off-diagonal entries of its state matrix
are positive. An unforced state-space discrete-time system is
positive if and only if all the entries of its state matrix are
nonnegative. .

Since the gene regulation system governs variables that
can only assume positive values, we conclude that all the
off-diagonal terms in the model must be positive. This gives
the following physical constraints
a 20,a;, 20

i j=12,
For the response of the system to remain bounded, all the
diagonal terms must be negative or zero. For a system that
switches between two state matrices, the response can
remain bounded if one of the matrices has positive
eigenvalues and the other has negative eigenvalues.
Combining the properties of periodic systems and
positive systems, we have the following result.
Corollary 2.1
A discrete-time periodic system is positive if and only if all
the entries of all its state and input matrices are nonnegative.
Proof
Sufficiency is trivial since the product of a nonnegative
matrix and a nonnegative vector always yields a nonnegative
vector. We prove necessity by contradiction. Let the state
matrix of a positive system A(k) have a negative entry a; and
consider the zero-input response due to the input

X =00 1 0]

Then the state at time k+1 has the /™ entry a;;, which
contradicts positivity. Similarly, if the input matrix of a
positive matrix has a negative entry then there exists a

) (14)
n,i# j
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nonnegative input for which the response has a negative
entry. The condition is therefore necessary. |

IV. APPLICATION TO LAC OPERON

Consider a simple model of E. Coli with four populations:
wild type, promoter mutant, modulator mutant, and double
(promoter and modulator) mutant. The organism cycles
between two alternative environments: a high demand
environment A and a low demand environment L

. Ayx,xe H [ ]T
X = x=|x x, X, X

Ax,xelL b
where the state variables are the numbers of each population.
Here, x, is the wild type, x, is the promoter mutant, x; is the
modulator mutant, and x4 is the double mutant. Both 4 and

Aj are in the form
a, 0 0 0

a,;, a, 0 0
A~: 21i 22i

=la o JielH, L}

a0
0 ay ay ay

where “1” denotes wild type, “2” denotes promoter mutant,
“3” denotes modulator mutant, and “4” denotes double
mutation, i.e. both promoter and modulator mutation. The
corresponding state-transition matrix (matrix exponential) is
triangular and the product of two triangular matrices is
triangular with the diagonal terms given by

ettt =12, m (15)

Note that the transition from L to H while governed by a
different state-transition matrix has the same diagonal terms.
In both cases, the populations typically reach a state of
steady growth after a transient period.

We are interested in the ratio of mutant to wild type
populations which can exhibit periodic behavior. Since the
probability of a double mutation is low, we consider the
gene regulation system with only one mutation possible. We
consider a two-state system with the state matrices

4 = Ay 0 4 = ay, O
H = L=
Ay Aoy ay, Ay

where the subscript “1”” denotes wild type and the subscript

“2” denotes a “mutant” form. The entries of the matrices are
derived from the mutation rates and are given by
a,; = [1 - (m21i +myy, )]gwi

Ay = [1 —Myy; ]gpi

Ay = My 8 i

iel{H,L}

where g, (g,;) denotes wild type (promoter mutant) growth
rate, my, denotes the mutation rate from / to 4.

The system parameters can be written in terms of more
specific relative growth rates and mutation rates. The
relative growth rates are: A for mutants that have lost
normal expression of the effector gene, o for mutants that
exhibit superfluous expression, & for the more nutritionally
deficient of the two environments. The relative mutation
rates are: 7 for loss of a high-level promoter site, v for gain

(16)

(17

of a high-level promoter site, 7 for loss of a regulator target
site, p for loss of a functional protein regulator. Using the
definitions and numerical values provided in Table 1 [4], [5],
gives the parameter values of Table 2.

Since the diagonal entries are typically unequal, the
system starting in the state H has the state-transition matrices

ay it
4t e 0
€ = — a it Ayt Ayt
ai(e nit _ g2 ) e

— A,y
a = 21i

ie{H,L}
(18)

Ay — Aoy
If the initial state of the system is in the domain A and
lasts for the duration T}, then the system switches to the
domain L which lasts for the duration 7;. The state-
transition matrix of the system after one complete cycle is
given by

eALTL eAHTH = |:_1 g:|e”1|LTL+“uHTH

a
0
) eaIZLTL+aZ2HTH

+| 0_ 0 eazzLTL+allHTH
ay,—a, 0

and the discrete-time state equation is

{xl(kﬂ)} _ @(TL,TH){xl(k)}
5 (k+1) % (k)

(19)

(20)

¢, O
O(T,,.T;) =
( ) {¢21 ¢22}

¢ _eallLTL+allllTll
11—

— @ T +anyTy
P =e

21

ay Tp+ay Ty ay Ty +aynyTy

P =a.e —aye
+ [511 _ aL ]eaZZLTL+a1IHTH
For the modulator mutant, the peak occurs at the
beginning of the low demand phase. If we start in the low

demand region we have

-

ay Ty +ay 4T,
¢11:ellLL nuntn

— LT +as, Ty
P =e

(22)

ayy Ty +ay, T, @y Ty +asy, Ty

¢ =aye —ae

+ [CTL _ EH ]eaSSHTH +ay, T,

For E. Coli, the typical high demand duration is 3 hours [4].
The form of the state-transition matrix is identical for the

two mutant strains. We are particularly interested in the ratio

of mutant to wild-type population, which we denote by r, for

the promoter mutant and r,, for the modulator mutant. Either

ratio at the beginning of high demand is governed by

r(k+1)=ar(k)+b, (23)
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a = ¢22 /¢l] — e(“:zL_”nL)TL‘*'(“zzu a1y )Ty
P
b, = ¢21/¢11
— 5 (1 _e(‘IZZH*aHH)TH k(“zu_*aul_)Tl_
H
+ aL [1 _ e(azzl_*“m )TI ]

If we start in the low demand region, the ratio evolves with
the dynamics (23) with the coefficients given by

_ P _
Y
br =¢21/¢11

— 67 (1 _ e(“:u_“nL)TL )e(”’.’ZII_allll )Tu
L

24

(az:L’anL )TL“‘(“zzH’“HH )TH

a

(25)

+ EII [1 — e(“z:H’”nH)TH ]
The solution of the difference equation (23) is given by
k-1
r(k)=a} " r0)+> a™'b,
i=0
k —
=ar0)+ - : b

(26)

»
r

For a nonnegative response, we require both a, and b, to
be positive. The ratio at the beginning of either the high or
low demand phase approaches a fixed level. For a, <1, the

zero-input response due to (k) decays to zero and a steady-

state is approached. For the promoter mutant, we have

(a22L i )TL + (a22H —any )TH <0 (27
which simplifies to
TH/TL < (allL —dyy )/(aZZH _allH) (28)

Substituting for the parameters for different controls
shows that that this condition is always met. For example,
we have for negative control and the promoter mutant

1,1, <=2l pe=2)+ 7]

y72.0) (30)
~ (1-2)/(uns) = 4x10°
Similarly, for the modulator mutant we have
Ty /T, <(a11L_a33L)/(a33H_allH) G1)

~((1-0)8)/ ulz + p)=260.417

The two conditions involve large values that are typically
met by the ratio 7;/T;. We conclude that the model is
consistent with periodic steady-state behavior.

If a steady-state solution exists then we can rewrite the
recursion for the population ratio as
r=ar+b, (32)
to obtain the steady-state solution
I”.YS :bl‘/(l_ar)
The same result is obtained in the steady state from (26).

The number of cycles to reach 99% of the steady-state
value with zero initial conditions is given by

1-af 0.99h

rk) = b, === (33)
l-a, l-a,

Solving for the time to steady state gives

P In(0.01) _ In(0.01) 34

* " In(a,)

(aZZL —dyy )TL +(a22H _allH)TH

Substituting from the values of Table 1 and Appendix |
gives the approximation

M , negative control
H1=A)T,
o~ ! (35)
~1n(0.01) .
———= |, positive control
7/[1 - U)T .

where |_ —| denotes the ceiling (round up). The numerical

values based on the data in Appendix I are

~
s

N {|-153.506/TH 1, negative control (36)

[4605.170/T, ], positive control

Multiplying both sides of (36) by the cycle time C shows
agreement with the results [5] over the linear range. The
model predicts that for positive control the time to steady
state decreases with 7;/C whereas for negative control it
decreases with T,/C..

For the promoter mutant we have the ratio

{aﬂ (1= glen—eun i Jlame e 1 }

-]

rp - 1_e’a2|TL+(0’22H*aHH)TH (37)
and for the modulator mutant
{EL (1 _ e(“zz/ﬁam. )T/. )e(“zzH*“nH )TH £
+ 7 1— (azzu —any )Tu
A aH [ e ] ( 9) (38)

—ay, Ty +(agy —ay 4 )Ty

l1-e
The parameter values of Tables 1-2 and the relations of

Appendix I give the ratios summarized in Tables 3 and 4.
Table 3 gives approximate expressions for the coefficient a,
whose magnitude determines the rate at which the steady
state is reached. Table 4 gives the steady state ratio of
mutant to wild type population. Table 5 gives the total
mutant to wild type population ratio. Based on the tables, we
make the following observations.

1709

The steady-state level for the ratio of mutant to wild-type
is proportional to the mutation rate and is therefore very
small. While the mutants are always present, the wild
type population remains much larger. The model
predicts that, unless there is a major change in the
mutation rate, wild type will always dominate.

The steady state level for the promoter mutant increases
with the ratio Ty/T, for positive control but decreases for
negative control.

The steady state level for the modulator mutant increases
with the ratio Ty/T; for negative but decrease with the
ratio for positive control.

The mutant to wild type ratio for negative control and for
positive control first decreases with Ty/T; then
increases, with inflexion point at 8x10™* and 80
respectively (see Figure 1). The results agree
approximately with the extent of selection curves of [5].



V. CONCLUSION

We examined the equations governing gene regulation using
well known concepts from system theory to characterize the
behavior of mutant versus wild type populations. We used
the properties of periodic systems and positive systems to
obtain conditions for convergence to a steady-state. For
values of the model parameter from the literature, the model
predicts that wild type will dominate regardless of the initial
population ratio. For a sudden increase in mutation rate, or
for o approximately equal to unity (relative growth rate with
superfluous expression), mutant populations become a
significant portion of the total population. The results also
yield interesting relations between the steady-state
population ratios and the ratio 7/7;. As in [4],[5], the
results show that the high demand portion of the cycle 7:,/C
is a good indicator of demand. The results indicate that the
time to steady-state is inversely proportional to 7;,/C for
negative control and to 7;/C for positive control. They also
show that the mutant to wild type ratio goes through a
minimum as a function of the ratio T/T;.

Table 1 Numerical values

H T

o) A

0 o

T | nev

6E-10 | 20

60 | 0.97

1/80 | 0.999

10 | 1

Table 2 Parameter values for E. Coli.

ap = [1 —(my +m31)] g

L H
N P N P
[I-p(ztptm)] |[I-(ztptV)] |[1-m(ttptm)e] |[1-p(ztptv)e]
7 V /4 1
0.0125 1 1 0.0125
ap=1-my)g,
L H
N P N P
lu(rp)] | u(erpel | [u(cp)] | [u(ctpe]
7o yo A 70
0.0125 0.0125 0.97 0.0125
as3 = (1-ms3) gn
L H
N P N P
[1-pre] [1-pvly [1-pnely [1-pvelys
yoo A
0.0125 1 1 0.97
a = my 8w
L H
N P N P
172572 uvy urey HVEYD
7.5E-12 6E-10 6E-10 4.8E-8
azy = mz; 8w
L H
N P N P
H(Ttp)yd u(ztpyy H(ztp)ey u(rtp)eyd
6E-10 4.8E-8 6E-10 4.8E-8
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Table 3 Coefficient a,.
Promoter mutant Modulator mutant
P e‘V[(l_O')TL] _(1_5)75Tu

e*}’(l’ﬂ)TH

e

e—}«)‘(l—o‘)TL

Table 4 Population ratio r.

Promoter mutant Modulator mutant

|taleitr) |l o)

N|
umo (e T, 7, e\ T,
_l—/l[_5+_TH] - (r+p —5 _TL +7

(2]
(3]
(4]

(3]

Table 5 Mutant to Wild Type Ratio 7+ 7,

Negative u & Ty | wns(e T,
L r+—(r+p) L+ =+ L
Control 1—0{” 5P) r,[T1-a\s T,

T, T
B It sl|+ec+ptvoil
l-o | \T,0 T,

4.9803

Positive
Control

1.27

1.265 1 49802

1.26
4.9802
1.255
4.9801 -
1.25-

4.9801 -
1.245+

4.98

1.24r

T]]/TL

T]]/TL

‘ ‘ 198 ‘

6 7 8 9 75 80 85
x 10

(a) Negative control. (b) Positive control.

Fig. 1 Mutant to wild type steady state ratios.

1.235
5

REFERENCES

[1] S.Bittanti, P.Colaneri, “Analysis of discrete-time linear

periodic systems,” Control and Dynamic Systems, Vol.
78, C.T. Leondes Ed., Academic Press, pp. 313-339,
1996.

L. Farina and S. Rinaldi, Positive Linear Systems:
Theory and Applications, Wiley Interscience, NY, 2000.
W. J. Rugh, Linear System Theory, Prentice-Hall, Upper
Saddle River, NJ, 1996.

Michael A. Savageau, Demand Theory of Gene
Regulation. I. Quantitative Development of the Theory,
Genetics, 149:1665-1676 (August1998).

Michael A. Savageau, Demand Theory of Gene
Regulation. II. Quantitative Application to the Lactose



and Maltose Operons of Escherichia coli, Genetics,

149:1677-1691 (August1998).
Appendix
Computation and Approximation of Model Parameters
I- Negative control
a) Promoter mutant

Ay — Ay = 7/{(1 - ﬂ)_
~ 7(1 —/1)
Ay =y, = HTYO
ay =ayy, /(allH Ay )
= prs/{(1=2)= pl(z + p)e -
= ums/(1-2)
a, = aZlL/(allL _a22L)= -1

—ay Ty Hany—any )Tu

wl(e+ p)e—2)+ zel}

)+ 72'6']}

a, =e
— o171 0T=r (=2 al(e+p)e-2)ere)iT,
~ o7
{ + ,uy([(r + p)(é‘ ) ”E]TH + 70T, )}
~ e
b -z (1 e(a s = )Ty )e(”zzL*”nL)TL

{i-drcnn)
[~ A)ers/(

~ )](1+,u7zy5TL)+,u7r;/5TL
R yur (gT +6T))
e =b,/(1-a,)
< (e, + 6T, )/l -7 ")
~ urdle/5+T, T, )/(1-2)

b) Modulator mutant

A3y — Ay = ,u(r-i—p)g]/
Q33 —dyy = 75(0'_1"'#(7 tp+ 77[1 —o-g]))
~ ;/5(6—1)
ay = a}IH/(allH _a33H)
=—ule+ pley/\ulz + pley}
=-1

a, =ds, /(allL - a33L)
= ury3|{yo(1— o — ulz + p + 21 - o))}
= purf(1-o)
a, = e(aJJLfaHL)T,_+(a33,,7a”,, )i
= Olo-tulerprali-oa))T, +ule+pler Ty
~e 1o <
br — a_L (1 _ e(”JJL_”HL)TL )e(azsu a0 )Ty
R
~ ! FHP)e Ty (1 e 100, ),wr/(l O_)
_ (1 _ ete+perTy )

~ ,U7/[7T5TL +(T+p)‘9TH]

Finss = br/(l - ar)
~ uy[noT, +(c + p)eT, ]/(1 _ o), )
=tz +(c+ p)e/oNT, /T,) V(- 0)

II- Positive control
a) Promoter mutant

Uy =y = YOUVE
Aypp — AL = 7[(0_1)"'#((7"',0)(1 _50_)""/)]

~—y(1-0)
Ay =0y /(allH - aZZH)
=-1
a, = a21L/(allL _aZZL)
~uv/(1-0)

(“zzL*"l 1L )TL *(“zzu ~nny )Tu

a, =e
~ o Um0y TayduveTy,
~ e*}/[(l*")TL] < 1

b = _(l _ e(aZZH ~ayy )Ty )e(azu—alu )7,

I T
~ youveT,
Foe =b,/(1-a,)
~ %u(éTH -vI, )/(1 — et )
~ uv(esT, T, +1)/(1-0o)

b) Modulator mutant
Ay — Ay = —(l -o- ,ug(r +p+ v)—,uav))/é'
~—~(1-ops
Ay — Ay = 7/“(7 + ,D)
ay = aSIH/(allH _a33H)
= —y(z'+p)8/(l —a—ye(z’+p+v)—y0'v)
~—ulc+pl/(1-0)
a, =ay, /(allL - a33L)
=—v/(z+p)
ar — e(“JJL’”HL)TL+(”3311"11111 )Tu
— eVﬂ(’*ﬁ)TL’(l’U)«V‘;T}I
~ e’“*"')ﬁ”‘n < 1
br — EL (1 _ e(“su‘anL)TL )e(awH‘anH)TH
+ EH (1 _ e(“nH*allH)TH )
~ _(1 _ eV/‘(T“'P)TL k‘(l_g)ﬂvu V/(T + p)
(1= )ulr + ple/(1-0)
~ v T, [1 - (1= o)y, |+ plz + pleyo T,
~ v, + &5+ p)T; |
=b /(1 a )
T, < esfe s I, Yot

= wv/S)T, /T, )+ lz + p)]/(1 o)
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