
  

  

 

Abstract— We examine the dynamics of gene regulation for a 
system with K environments with each environment favoring a 
different pattern of gene transcription and regulation in a 
prokaryotic organism. We recast the model of the system as 
discrete-time K-periodic.  This allows us to exploit the well 
known properties of periodic systems to characterize the 
steady-state behavior of wild type versus mutant populations of 
the organism: We also obtain conditions on the parameters of 
the state matrix using the properties of positive linear systems.  
We examine in more detail the example of the lac operon of E. 
Coli which has two environments: a high demand environment 
H and a low demand environment L.  The gene regulation 
system alternates between the two environments as the 
organism completes one life cycle.  We derive conditions under 
which the system reaches steady growth alternating between a 
state xH and xL as each life cycle is completed.  Our results show 
the dependence of the mutant to wild type ratio on the ratio of 
high demand to low demand duration.  

I. INTRODUCTION 
ene regulation is necessary for the survival of 
prokaryotic enzymes.  The regulatory mechanisms 
control transcription of messenger RNA (m-RNA) and 

translation through one of two types of regulation: positive 
or negative.  In positive regulation, transcription begins 
when an activator is present in the organism’s environment.  
In negative regulation, the regulator protein deactivates a 
transcription inhibitor to allow the initiation of protein 
synthesis.   

The demand theory of gene regulation [4],[5], states that 
positive control is favored by a high demand environment 
while negative control is favored by a low demand 
environment.  This controls genetic mutations of the 
organism and maintains the dominance of wild type 
organisms under normal environmental conditions. 

E. Coli provides an excellent demonstration of the 
demand theory through its lac and mal operons [4][5].  In 
prokaryotes, an operon is a gene unit that functions in a 
coordinated manner by means of an operator, a promoter, 
and one or more structural genes that are transcribed 
together.  We examine the mathematical model of gene 
regulation in E. Coli using concepts from system theory. In 
particular, we view the life cycle of an organism as a 
positive [2], periodic [1] system and examine the 
implications for the system parameters and for its mutations.  
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We model the ratio of promoter mutant to wild type, 
both of which grow steadily after a transient period. The 
ratio of the two populations exhibits a sawtooth periodic 
form.  We obtain constraints on the ratio of high demand to 
low demand duration. Our approximations use the 
assumption of a small mutation rate μ and a small selection 
coefficient 1−σ.  The results agree with the small cycle time 
results of [4], [5].  

The paper begins with a discussion of a general gene 
regulation system and relevant properties of periodic 
systems and positive systems.  We then apply the properties 
of periodic and positive systems to the model of [4], [5], to 
obtain conditions that govern the model parameter and 
characterize is steady-state behavior.  We examine the 
implications for gene regulation as applied to E. Coli. 

 
Nomenclature 
δ  relative growth rate in more nutritionally deficient 

environment. 
ε  relative mutation as a function of gene expression 
γ  reference growth rate hr-1 

λ relative mutation with loss of normal expression 
μ reference mutation rate per base per generation 
ν  relative mutation rate for gain of high-level promoter site 
π  relative mutation rate for loss of  high-level promoter site 
ρ relative mutation rate for loss of a functional regulator 

protein 
σ relative growth rate with superfluous expression 
τ  relative mutation rate for loss of a regulator’s functional 

target site 

II. SYSTEM DYNAMICS FOR GENE REGULATION 
Consider a simple model of gene regulation where a given 
effector gene cycles between K alternative environments. 
Each environment  requires a different mechanism of gene 
regulation to produce the enzymes that allow the organism to 
fully exploit available nutrients and ensure survival.  We 
assume linear dynamic in each environment governed by 

KiAx i ,,1, L& ==  (1) 
where x denotes an n by 1 state vector, and Ai is the state 
matrix in the domain i, i = 1, … , K.  Alternatively, the 
model may represent ratios of the numbers of mutant forms 
of the organism to the number of wild type organisms.  

We assume that the system remains in i for a duration Ti 
and that the life cycle time is 
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After each life cycle, new organisms return to the first 
domain so that the state matrices are governed by 
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iKi AA =+  (3) 
Hence the system can be considered periodic with period K 
[1]. 
 

If the initial state of the system is in domain i, then the 
state of the system at time t is given by  
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For one complete life cycle starting at the beginning of the ith 
phase, we have 
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We can treat the system as a discrete-time system with 
sampling period unity and analyze it using the model 
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The following result allows us to characterize the 
eigenvalues of the discrete-time periodic system. 
 
Theorem 1 [3].  
Given a periodic system with repetition period K 
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Then the state-transition matrix of the system is written as 
)()(),( 1 jPRkPjk jk −−=Φ  (9) 

where P(k) is K-periodic and R is a constant matrix. The 
response of the system is K-periodic if and only if at least 
one of the eigenvalues of R is unity.  

The state-transition matrix defined over the repetition 
period K is known as the monodromy matrix.  Using the 
periodicity of the matrix P(k), the monodromy matrix at time 
zero is given by 

)()(),( 1 jPRjPjKj K −=+Φ  (10) 
Hence, the eigenvalues of RK are also the eigenvalues of 

the monodromy matrix. The eigenvalues of the monodromy 
matrix, known as the characteristic values, determine the 
stability of the periodic system.  The system is stable if and 
only if all its characteristic values are inside the unit circle. 

We now examine the discrete-time system over a 
complete life cycle and discuss its steady-state behavior.  
We denote the monodromy matrix by Φ for brevity. We 
express the initial state x(t0) in terms of the eigenvectors vi, 
i= 1, 2, …, n, of the monodromy matrix 
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If the eigenvalues are all inside the unit circle, then the 
state converges asymptotically to zero.  If at least one 
eigenvalue is outside the unit circle, then the state will 
diverge (unless the initial state has zero coordinates in the 

direction of the unstable eigenvectors).  The response of the 
discrete-time system (6) in terms of the eigenvectors is 
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Repeatedly updating the state over l cycles, we have 
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The steady state reached depends on the locations of the 
characteristic values of the system.  Any value whose 
magnitude is less than unity gives a term that decays to zero 
asymptotically. Hence, if one eigenvalue (or more) has 
magnitude unity while all others are inside the unit circle, 
then the system converges to a fixed state.  For example, if 
only the ith eigenvalues of the discrete system is unity, the 
system approaches the ith eigenvector in the steady state.  
 

III. POSITIVE SYSTEMS 
A positive system is one whose state trajectories with any 
nonnegative initial conditions correspond to state vectors 
whose entries are nonnegative. For an unforced system, we 
have the following condition for a positive system. 
 
Theorem 2 [1] 
An unforced state-space continuous-time system is positive 
if and only if all the off-diagonal entries of its state matrix 
are positive.  An unforced state-space discrete-time system is 
positive if and only if all the entries of its state matrix are 
nonnegative.  

Since the gene regulation system governs variables that 
can only assume positive values, we conclude that all the 
off-diagonal terms in the model must be positive.  This gives 
the following physical constraints 
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For the response of the system to remain bounded, all the 
diagonal terms must be negative or zero.  For a system that 
switches between two state matrices, the response can 
remain bounded if one of the matrices has positive 
eigenvalues and the other has negative eigenvalues. 

Combining the properties of periodic systems and 
positive systems, we have the following result. 
Corollary 2.1 
A discrete-time periodic system is positive if and only if all 
the entries of all its state and input matrices are nonnegative. 
Proof 

Sufficiency is trivial since the product of a nonnegative 
matrix and a nonnegative vector always yields a nonnegative 
vector. We prove necessity by contradiction. Let the state 
matrix of a positive system A(k) have a negative entry aij and 
consider the zero-input response due to the input  

[ ]Tjjk 1111 1)( +×−×= 00x  
Then the state at time k+1 has the ijth entry aij, which 

contradicts positivity.  Similarly, if the input matrix of a 
positive matrix has a negative entry then there exists a 
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nonnegative input for which the response has a negative 
entry.  The condition is therefore necessary. ■ 

IV. APPLICATION TO LAC OPERON 
Consider a simple model of E. Coli with four populations: 
wild type, promoter mutant, modulator mutant, and double 
(promoter and modulator) mutant.  The organism cycles 
between two alternative environments: a high demand 
environment H and a low demand environment L  
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where the state variables are the numbers of each population. 
Here, x1 is the wild type, x2 is the promoter mutant, x3 is the 
modulator mutant, and x4 is the double mutant. Both AH and 
AL are in the form 
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where “1” denotes wild type, “2” denotes promoter mutant, 
“3” denotes modulator mutant, and “4” denotes double 
mutation, i.e. both promoter and modulator mutation. The 
corresponding state-transition matrix (matrix exponential) is 
triangular and the product of two triangular matrices is 
triangular with the diagonal terms given by 

nje LjjLHjjH TaTa ,,2,1, L=+  (15) 
Note that the transition from L to H while governed by a 

different state-transition matrix has the same diagonal terms.  
In both cases, the populations typically reach a state of 
steady growth after a transient period. 

We are interested in the ratio of mutant to wild type 
populations which can exhibit periodic behavior.  Since the 
probability of a double mutation is low, we consider the 
gene regulation system with only one mutation possible.  We 
consider a two-state system with the state matrices 
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where the subscript “1” denotes wild type and the subscript 
“2” denotes a “mutant” form. The entries of the matrices are 
derived from the mutation rates and are given by 
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where gwi (gpi) denotes wild type (promoter mutant) growth 
rate, mkl denotes the mutation rate from l to k.   

The system parameters can be written in terms of more 
specific relative growth rates and mutation rates.  The 
relative growth rates are:  λ for mutants that have lost 
normal expression of the effector gene, σ for mutants that 
exhibit superfluous expression, δ  for the more nutritionally 
deficient of the two environments. The relative mutation 
rates are: π for loss of a high-level promoter site, ν for gain 

of a high-level promoter site, τ for loss of a regulator target 
site, ρ for loss of a functional protein regulator.  Using the 
definitions and numerical values provided in Table 1 [4], [5], 
gives the parameter values of Table 2. 

Since the diagonal entries are typically unequal, the 
system starting in the state H has the state-transition matrices 
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If the initial state of the system is in the domain H and 
lasts for the duration TH, then the system switches to the 
domain L which lasts for the duration TL.  The state-
transition matrix of the system after one complete cycle is 
given by 
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and the discrete-time state equation is 
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For the modulator mutant, the peak occurs at the 
beginning of the low demand phase. If we start in the low 
demand region we have 
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For E. Coli, the typical high demand duration is 3 hours [4]. 
The form of the state-transition matrix is identical for the 

two mutant strains. We are particularly interested in the ratio 
of mutant to wild-type population, which we denote by rp for 
the promoter mutant and rm for the modulator mutant. Either 
ratio at the beginning of high demand is governed by 

rr bkrakr +=+ )()1(  (23) 
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If we start in the low demand region, the ratio evolves with 
the dynamics (23) with the coefficients given by 
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The solution of the difference equation (23)  is given by 
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For a nonnegative response, we require both ar and br to 
be positive. The ratio at the beginning of either the high or 
low demand phase approaches a fixed level. For ar <1, the 
zero-input response due to r(k0) decays to zero and a steady-
state is approached.   For the promoter mutant, we have 
( ) ( ) 011221122 <−+− HHHLLL TaaTaa  (27) 
which simplifies to 

( ) ( )HHLLLH aaaaTT 11222211 −−<  (28) (29) 
Substituting for the parameters for different controls 

shows that that this condition is always met.  For example, 
we have for negative control and the promoter mutant 
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Similarly, for the modulator mutant we have 
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The two conditions involve large values that are typically 
met by the ratio TH/TL.  We conclude that the model is 
consistent with periodic steady-state behavior. 

If a steady-state solution exists then we can rewrite the 
recursion for the population ratio as 

rr brar +=  (32) 
to obtain the steady-state solution 
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The same result is obtained in the steady state from (26).  

The number of cycles to reach 99% of the steady-state 
value with zero initial conditions is given by 
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Solving for the time to steady state gives 
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Substituting from the values of Table 1 and Appendix I 
gives the approximation 
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where ⎡ ⎤  denotes the ceiling (round up). The numerical 
values based on the data in Appendix I are 
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Multiplying both sides of (36) by the cycle time C  shows 
agreement with the results [5] over the linear range. The 
model predicts that for positive control the time to steady 
state decreases with TL/C whereas for negative control it 
decreases with TH/C .  

For the promoter mutant we have the ratio 
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and for the modulator mutant 
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The parameter values of Tables 1-2 and the relations of 
Appendix I give the ratios summarized in Tables 3 and 4.  
Table 3 gives approximate expressions for the coefficient ar 
whose magnitude determines the rate at which the steady 
state is reached.  Table 4 gives the steady state ratio of 
mutant to wild type population. Table 5 gives the total 
mutant to wild type population ratio. Based on the tables, we 
make the following observations.  
• The steady-state level for the ratio of mutant to wild-type 

is proportional to the mutation rate and is therefore very 
small. While the mutants are always present, the wild 
type population remains much larger. The model 
predicts that, unless there is a major change in the 
mutation rate, wild type will always dominate. 

• The steady state level for the promoter mutant increases 
with the ratio TH/TL for positive control but decreases for 
negative control. 

• The steady state level for the modulator mutant increases 
with the ratio TH/TL for negative but decrease with the 
ratio for positive control. 

• The mutant to wild type ratio for negative control and for 
positive control first decreases with TH/TL  then 
increases, with inflexion point at 8×10−4 and 80 
respectively (see Figure 1). The results agree 
approximately with the extent of selection curves of [5].   
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V. CONCLUSION 
We examined the equations governing gene regulation using 
well known concepts from system theory to characterize the 
behavior of mutant versus wild type populations.  We used 
the properties of periodic systems and positive systems to 
obtain conditions for convergence to a steady-state. For 
values of the model parameter from the literature, the model 
predicts that wild type will dominate regardless of the initial 
population ratio.  For a sudden increase in mutation rate, or 
for σ approximately equal to unity (relative growth rate with 
superfluous expression), mutant populations become a 
significant portion of the total population. The results also 
yield interesting relations between the steady-state 
population ratios and the ratio TH/TL.  As in [4],[5], the 
results show that the high demand portion of the cycle TH/C  
is a good indicator of demand. The results indicate that the 
time to steady-state is inversely proportional to TH/C  for 
negative control and to TL/C  for positive control. They also 
show that the mutant to wild type ratio goes through a 
minimum as a function of the ratio TH/TL.   
 

Table 1 Numerical values 
μ τ ρ λ δ σ π γ,ε,ν
6E-10 20 60 0.97 1/80 0.999 10 1 

Table 2 Parameter values for E. Coli. 
a11 = [1 −(m21 + m31)] gw 

L H 
N P N P 

[1−μ(τ+ρ+π)] 
γδ 

 [1−μ(τ+ρ+ν)] 
γ 

 [1−μ(τ+ρ+π)ε] 
γ 

 [1−μ(τ+ρ+ν)ε] 
γδ 

0.0125 1 1 0.0125 
a22 = (1−m42 ) gp 

L H 
N P N P 

[1−μ(τ+ρ) ] 
γδ 

[1−μ (τ+ρ)ε] 
γσ 

[1−μ (τ+ρ)] 
γλ 

[1−μ (τ+ρ)ε]
γδ

0.0125 0.0125 0.97 0.0125 
a33 = (1−m43 ) gm 

L H 
N P N P 
[1−μπε] 
γδσ 

[1−μν]γ [1−μπε]γ [1−μνε]γδ
λ

0.0125 1 1 0.97 
a21 = m21 gw 

L H 
N P N P 
μπγδ μνγ μπεγ μνεγδ 
7.5E-12 6E-10 6E-10 4.8E-8 

a31 = m31 gw 
L H 
N P N P 
μ (τ+ρ)γδ μ (τ+ρ)γ μ (τ+ρ)εγ μ (τ+ρ)εγδ
6E-10 4.8E-8 6E-10 4.8E-8 

 
Table 3 Coefficient ar. 

 Promoter mutant Modulator mutant 
P ( )[ ]LTe σγ −− 1  ( ) HTe γδσ−− 1  
N ( ) HTe λγ −− 1  ( ) LTe σγδ −− 1  

 
Table 4 Population ratio r. 
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Table 5 Mutant to Wild Type Ratio rpss+ rmss 
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(a) Negative control. (b) Positive control. 
Fig. 1 Mutant to wild type steady state ratios. 
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Appendix 
Computation and Approximation of Model Parameters 
I- Negative control 
a) Promoter mutant 
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b) Modulator mutant 
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II- Positive control 
a) Promoter mutant 
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b) Modulator mutant 
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