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Abstract— This paper presents a theoretical framework and
the control strategy for single input discrete-time stochastic
systems for which the control variations increase state un-
certainty (CVIU systems). This type of system model can be
useful in many practical situations, such as in monetary policy
problems, medicine and biology, and, in general, in problems
for which a complete dynamic model is too complex to be
feasible. The optimal control strategy for a single-input CVIU
system associated with a convex cost functional is devised using
dynamic programming and tools from nonsmooth analysis.
Furthermore, this strategy points to a region in the state space
in which the optimal action is of no variation, as expected from
the cautionary nature of controlling underdetermined systems.
In addition, a specific result for the case when the cost functional
is differentiable is obtained and discussed. These results are
illustrated through a numerical example in economics.

I. INTRODUCTION

In the last decade, many results from control theory

have been used in non-traditional application areas, such

as economics [1], [2], medicine [3], and biology [4], [5].

These areas provide new and challenging scenarios, where

decision making and control occur in uncertain and non-

linear environments. Traditionally, in stochastic control prob-

lems, the imbedded system uncertainty is modeled mainly

by means of additive or multiplicative disturbances [6] and

of parameter uncertainty—such as in Markov Jump Linear

Systems [7]. However, these models may not suffice to

describe uncertainty in many situations.

Consider, for instance, the problem faced by a National

Central Bank (NCB) when defining the monetary policy [8],

[9]. As it increases or decreases the interest rate, the NCB has

an uncertainty about the expectations of the economic agents.

Significant course change in the monetary policy may induce

unexpected and undesired consequences such as an increase

in inflation or reduction of the GDP. On the other hand, if the

variation of the interest rate is too small, the NCB objectives

may not be accomplished. This is an example of a system for

which any change of policy by the decision maker (in this

case, the NCB), leads to an increase in system uncertainty.

This situation is also present in other types of systems. For

example, in medicine, the dynamics of a patient’s response to

the variation of the dosage of a medication is nonlinear and
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uncertain [10], [11], [12]. Large dosage variations may lead

to unpredictable consequences, while small dosage variations

may have no effect on the patient’s health. Both the monetary

policy and the control problem encountered in medicine

are examples of systems where control variations increase

state uncertainty (CVIU). From a control theory perspective,

CVIU systems can be used to control systems with complex,

underdetermined dynamics, for which the behavior near a

given point and for a given control policy can be fairly

well described by a linear model. However, large variations

of the control action can drift the system to regions where

the linear approximation error is too large. In this case, the

approximation error is in correspondence to the uncertainty

generated by policy variations.

The aim of this paper is to provide a theoretical framework

for CVIU systems and to characterize the optimal control

strategy for these systems. Section II presents a formal defi-

nition of CVIU systems with a single input and the construc-

tion of a CVIU model. Section III introduces auxiliary results

from non-smooth analysis, convex optimization theory and

probability that will be used to characterize the optimal

control policy for CVIU systems. Section IV deals with the

one-stage optimal policy, applying the convexity assumption

and the tools from non-smooth analysis in order to guarantee

that the value function inherits convexity. Section V delves

on the characterization of the optimal policy and identifies

three regions on the state space for which the sign of the

optimal policy is known. The optimal action for one of these

regions is of no variation of the control, as expected from the

cautionary nature of controlling under-determined systems.

Taking advantage of the decision regions, an algorithm for

obtaining the optimal control policy is presented in Section

VI. An application in economics is presented in Section VII,

and the paper is finalized with a summary of the results in

Section VIII.

II. SINGLE INPUT MODEL

Consider a discrete-time system described by the state

equation:

xk+1 = Akxk +bkuk +ωk, (1)

where A ∈R
n×n, b∈R

n×1. Furthermore, xk ∈R
n, uk ∈R and

ωk ∈ R
n are respectively, the state, the input and the noise,

which is a stochastic process. We consider that the magnitude

of the control action acts as a source of system uncertainty

in such a way that the noise sequence ωk is modulated by

the absolute value of the control |uk|, as follows:

ωk = (σ k +σk|uk|)εk,
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where σ k > 0,σk > 0, and εk is an i.i.d. random vector with a

normalized covariance matrix cov(ε̃k) = In×n. In connection,

suppose that in a given time window 0 ≤ k ≤ N, the system

performance is evaluated by means of the cost functional,

J(x0,µ) = E
[N−1

∑
k=0

Ck(xk,uk)+CN(xN)
]

, (2)

where E[·] stands for the expected value of the corresponding

random variable, Ck is non-negative for each 0 ≤ k < N −1

and convex in both arguments. Also, the terminal cost CN is

non-negative and convex. We assume that at each time instant

k the policy maker can determine the input control, uk, having

perfect state information, and µ = {u0,u1, . . . ,uN−1} stands

for an admissible policy.

A. Construction of a CVIU model

A traditional discrete-time state space equation can be

rearranged into a CVIU model through a simple change of

variables. In order to show how this can be done, consider

the discrete-time system given by (1). As discussed in the

previous section, since in CVIU systems control variations

act as a source of system uncertainty, ωk will depend on

successive control variations. Let us denote,

vk = uk −uk−1.

We assume that the noise sequence ωk is modulated by the

absolute value of control variations |vk|, as follows:

ωk = (σ k +σk|vk|) ε̃k,

where σ k > 0,σk > 0, and ε̃k is an i.i.d. random vector with

a normalized covariance matrix cov(ε̃k) = In×n.

This system can be described in the state space form by

defining the augmented system:

x̃k+1 = Ãkx̃k + b̃kvk +(σ k +σk|vk|)εk, (3)

where

x̃k :=

[

xk

uk−1

]

, Ãk :=

[

Ak bk

0 1

]

, b̃k :=

[

bk

1

]

,εk :=

[

ε̃k

0

]

.

Since the systems described by (1) and (3) are equivalent,

in the remaining of this paper, the control input at a given

time instant k will be denoted as uk.

III. USEFUL RESULTS

We assume throughout that the cost functions Ck(·, ·) for

each k and CN(·) are convex functions, and we will draw

from the properties of such a class of functions.

The proof of the next propositions are mostly quoted from

the literature.

Proposition 1 ([13]): Suppose f is differentiable. Then f

is convex if and only if dom( f ) is convex and

f (x)− f (x0) ≤ ∇ f (x)T (x− x0) (4)

Definition 1 ([14]): Let f : R
n → R be Lipschitz near x ∈

R
n. Let Ω be any set of zero measure in R

n, and let Ω f

be the set of points in R
n where f fails to be differentiable.

Then the Generalized Gradient at x, denoted by ∂ f (x) , will

be the set

∂ f (x) = co

{

lim
xi→x

∇ f (xi) : xi /∈ Ω,xi /∈ Ω f

}

where “co” means “closed convex hull”.

Proposition 2 ([14]): Let f be Lipschitz near each point

of an open convex subset U ⊂ R
n. Then f is convex in U if

and only if ∂ f is monotone in U , i.e.,

〈ζ − ζ̃ ,x− x̃〉 ≥ 0, ∀x, x̃ ∈U,ζ ∈ ∂ f (x), ζ̃ ∈ ∂ f (x̃)
Proposition 3 ([13]): Let U ⊂ R

n and V ⊂ R
m be

nonempty and convex sets. Then, if f : U ×V →R is convex

in V , the function g given by:

g(x) = inf
y∈V

f (x,y)

is convex in x, provided g(x) > −∞ for all x.

Proposition 4 (Chain Rule [14]): Let f = g◦h, where h :

R
m → R

n and g : R
n → R are given functions. One has

∂ f (x) ⊂ co{∂g(h(x))∂h(x)} ,

If f is convex, the inclusion becomes an equality. Note that

∂h(x) ∈ R
n×m and ∂g(h(x)) ∈ R

1×n.

Proposition 5 (Local Extrema [14]): If f : R → R
n at-

tains a local minimum or maximum at x0, then 0 ∈ ∂ f (x0).
Proposition 6 (Integral Functionals [14]): Let g : R

n ×
R

m → R be a Lipschitz measurable function such that

|g(x1,y)−g(x0,y)| ≤ K(y)||x1 − x0||, ∀x1,x0 ∈ R
n; y ∈ R

m

Also, let f : R
n → R be defined as

f (x) =
∫

U
g(x,y)dy, U ⊂ R

m

Then

∂ f (x) = ∂
∫

U
g(x,y)dy ⊂

∫

U
∂xg(x,y)dy

Proposition 7 (Danskin’s Theorem [15]): For x ∈ R
n and

u ∈R let (x,v)→V (x,v) be a convex differentiable function.

Furthermore, let u∗(x) defined as

u∗(x) = argmin
u∈R

V (x,u) (5)

be unique for every x. Then, the function x →V ∗(x) defined

as

V ∗(x) = inf
u∈R

V (x,u) (6)

is differentiable for every x.

Proposition 8 ([16]): For x ∈ R
n and u ∈ R, let (x,u) →

V (x,u) be a continuous convex function and let V ∗ and u∗

be as in (6) and (5). Then,

∂V ∗(x) = co{∂xV (x,u) : u ∈ u∗(x)}
Lemma 1: Consider f : R

n → R a differentiable convex

function and ε a random variable with zero mean, and g :

R → R given by:

g(t) = E[ f (x0 + εt)],

where E[·] stands for the expected value of the random

variable.
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(i) t → g(t) is non-decreasing for all t ≥ 0.

(ii) If ε is also symmetrically distributed, then g(t1)≤ g(t2)
for |t1| ≤ |t2|.
Proof: For part (i), we evaluate

dg(t)

dt
= E[∇T f (x0 + εt)ε]

=
1

t
E[∇T f (x0 + εt)(tε + x0 − x0)]

Since f is convex, one can use (4) with x = x0 + εt and

Jensen’s Inequality to obtain:

1

t
E[∇T f (x0 + εt)(tε + x0 − x0)] ≥

1

t
E[ f (x0 + εt)− f (x0)]

≥
1

t
( f (x0)− f (x0)) ≥ 0

Consequently, g′(t)≥ 0 and g is non-decreasing. For part (ii),

note that if ε has zero mean and is symmetrically distributed,

ε ∼−ε holds and:

E[ f (x0 + εt)] = E[ f (x0 − εt)]

= E[ f (x0 + ε|t|)], ∀t ∈ R.

In this situation, g(t) is even non-decreasing for t ≥ 0 and

non-increasing for t ≤ 0, which completes the proof.

IV. CONVEXITY CHARACTERIZATION

We aim at the dynamic programming method, and in

a preliminary step we are interested in characterizing the

function V : R
n ×R → R and V ∗ : R

n → R, defined as

V (x,u) = C(x,u)+E [F(x1)] , (7)

and

V ∗(x) = inf
u∈Rm

V (x,u), (8)

where C : R
n ×R → R and F : R

n → R are both convex,

non-negative and Lipschitz functions. The random vector x1

is determined by (1) with x0 = x and u0 = u. Note that the

system is time homogeneous in the sense that if xk = x and

uk = u, one is evaluating equivalently the expected value

in (7) of xk+1. The following lemma is important for the

characterization of V ∗.

Lemma 2: The functions V (x,u) and V ∗(x) given by (7)

and (8) , respectively, are convex.

Proof: To simplify the notation, let us write EF : R
n ×

R → R, the expected value in (7)

EF(x,u) = E [F(x1(x,u))] (9)

with

x1(x,u) = Ax+bu+(σ +σ |u|)ε.

Using Proposition 1 we have that

∂x1(x,u) =
[

A b+σ Su ε
]

(10)

where Su is a set given by:

Su =











+1, if u > 0

−1, if u < 0

[−1,1], if u = 0

,

The first step is to prove that EF(x,u) is convex. Let ζ ∈
∂EF(x,u) and ζ̃ ∈ ∂EF(x, ũ). From Proposition 4, we have

ζ ∈E[β T γ], β ∈ ∂F(x1(x,u)), γ ∈ ∂x1(x,u)

ζ̃ ∈E[β̃ T γ̃], β̃ ∈ ∂F(x1(x, ũ)), γ̃ ∈ ∂x1(x, ũ).

with
γ =

[

A b+σ sε
]

, s ∈ Su

γ̃ =
[

A b+σ s̃ε
]

s̃ ∈ Sũ.

For simplicity, we define

∆ =

[

x− x̃

u− ũ

]

, x, x̃ ∈ R
n; u, ũ ∈ R

In view of Proposition 2, to prove that EF(x,u) is convex is

equivalent to showing that

E[β T γ − β̃ T γ̃]∆ ≥ 0, β ∈ ∂F(x1(x,u)), β̃ ∈ ∂F(x1(x, ũ)).
(11)

Note that
[

A b+σ sε
]

∆ =Ax+bu+(σ +σ su)ε

− [Ax̃+bũ+(σ +σ s ũ)ε]

and similarly,

−
[

A b+σ s̃ε
]

∆ =Ax̃+bũ+(σ +σ s̃ũ)ε

− [Ax+bu+(σ +σ s̃ u)ε]

Based on these equations and noting that F is convex, we

have that

E[β T γ]∆ ≥E [F(Ax+bu+(σ +σsu)ε)]

−E [F(Ax̃+bũ+(σ +σsũ)ε)] (12)

and similarly,

E[β̃ T γ̃T ]∆ ≥E [F (Ax̃+bũ+(σ +σ s̃ ũ)ε)]

−E [F (Ax+bu+(σ +σ s̃ u)ε)] (13)

Since σ > 0 and from the definition of s and s̃, we observe

that

σ +σ s̃u ≤ σ +σ |u| = σ +σsu

σ +σ s ũ ≤ σ +σ |ũ| = σ +σ s̃ ũ

Adding (12) and (13) we obtain:

E[β T [A b+σ sε]− β̃ T [A b+σ s̃ε]]∆ ≥ 0

Therefore, x,u → EF(x,u) is convex. Finally, note that C

is convex, and thus, x,u → V (x,u) and x → V ∗(x) (due to

Proposition 3) will also be convex, completing the proof.

Even though V ∗ is defined as a piecewise function, it will

be differentiable if V is strictly convex and differentiable.

Moreover, based on V , we can characterize the generalized

gradient of V ∗. These facts are stated in the following lemma.

Lemma 3: Let V be defined as in (7) and V ∗ as in (8).

Also, let u∗(x) be defined as

u∗(x) = argmin
u∈R

V (x,u). (14)

then

1) ∂V ∗(x) = co{∂xV (x,u) : u ∈ u∗(x)};

2) V ∗(x) will be differentiable if V is a strictly convex

differentiable function.

Proof: The proof follows from Propositions 7 and 8.
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V. WHEN NO VARIATION IS OPTIMAL

With the fact that the value function is convex at hand,

we proceed further with the purpose of determining the sign

of u∗ based solely on the value of the state x. Assume that

a function (x,u) → f (x,v) is differentiable. Provided that f

is also convex in u, one can obtain the sign of the minimum

in u by analyzing ∇u f |u=0 for each x. If ∇u f |u=0 > 0 (< 0),
then the function is increasing (decreasing) at the origin and,

consequently, the minimum will be in the negative (positive)

half-plane. Of course, if ∇u f |u=0 = 0 the optimal solution is

u∗ = 0. Note that this analysis can not be applied to V in

(7) since, even though V is convex, it will not necessarily be

differentiable at u = 0 (in fact, this will never be the case).

The following Lemma presents a result regarding this issue

and points out that there will be a region in the state space

where u∗ = 0 if the cost function is Lipschitz. Furthermore,

for the case where C and F are differentiable, we will show

that a region where u∗ = 0 will always exist.

Lemma 4: For the function V described in (7) and u∗

given by (14) we have that










u∗(x) > 0, if x ∈ R1(V ),

u∗(x) < 0, if x ∈ R2(V ),

u∗(x) = 0, if x ∈ R3(V ).

(15)

where

R1(V ) =
{

x : x ∈ R
n, lim

ui↓0
∇V (x,ui) < 0

}

, (16)

R2(V ) =
{

x : x ∈ R
n, lim

ui↑0
∇V (x,ui) > 0

}

, (17)

R3(V ) = R1 ∪R2. (18)

Proof: Since ∂uV is either a point or a closed connected

interval of the line, we get from convexity a non-decreasing

notion in u for ∂uV , in the sense that

u1 ≤ u2 ⇐⇒ ∃γ1 ≤ γ2, γ1 ∈ ∂uV (u1,x),γ2 ∈ ∂uV (u2,x).

Therefore, we can determine the sign of u∗(x) observing only

∂uV |u=0. If γ > 0,∀γ ∈ ∂uV |u=0, then V is increasing at the

origin and u∗ < 0. Conversely, if γ < 0,∀γ ∈ ∂uV |u=0 then V

is decreasing at the origin and u∗ > 0; clearly, if 0∈ γ∂uV |u=0

then u∗ = 0, e.g., see Proposition 5.

Note that for the verification above we do not need to

examine all elements of ∂uV |u=0 to determine the sign of u∗.

Based on the fact that ∂uV is increasing in u and using the

definition of generalized gradient we have that,

lim
ui↓0

∇V (x,ui) = max∂uV |u=0,

lim
ui↑0

∇V (x,ui) = min∂uV |u=0,

where the limits are calculated avoiding sets of zero measure

and the points where u →V (x,u) fails to be differentiable.

From these arguments, we obtain the following conditions

lim
ui↓0

∇V (x,ui) < 0 =⇒ u∗(x) > 0,

lim
ui↑0

∇V (x,ui) > 0 =⇒ u∗(x) < 0,

which results in three complementary regions covering the

state space given by (16), (17) and (18) defined in the

statement of the Lemma.

Note that the region R3 can be defined as

R3 = {x : 0 ∈ ∂uV (x,0)}

or, equivalently as

R3 = {x : lim
u↓0

∇V (x,u) > 0, lim
u↓0

∇V (x,u) < 0} (19)

In this manner, we can calculate

lim
ui↓0

∇V (x,ui) =

lim
ui↓0

∇uC +E [∇F(Ax+bui +(σ +σui)ε)(b+σε)] ,

lim
u j↑0

∇V (x,u j) =

lim
u j↑0

∇uC +E [∇F(Ax+bu j +(σ −σu j)ε)(b−σε)] .

Therefore, if C and F are differentiable, these equations

simplify to

lim
ui↓0

∇V (x,ui) = ∇uC(x,0)+E [∇F(Ax+σε)(b+σε)] ,

lim
u j↑0

∇V (x,u j) = ∇uC(x,0)+E [∇F(Ax+σε)(b−σε)] ,

and (19) can be rewritten as

R3={x:|∇uC(x,0)+E [∇F(Ax+σε)b] |<E [∇F(Ax+σε)σε]}

In order to prove that R3 is not empty, it is necessary to show

that [∇F(Ax+σε)σε] > 0. Observing that F is convex, this

can be done by noting that

E [∇F(Ax+σε)σε] = E
[

∇F(Ax+σε)(Ax+σε −Ax)
σ

σ

]

and using Proposition 2 and Lemma 1 directly to obtain

E [∇F(Ax+σε)σε] ≥
σ

σ
E[F(Ax+σε)−F(Ax)] ≥ 0

Also, it is interesting to note that an increase in the value

of σ leads to an increase of E [∇F(Ax+σε)σε] and, con-

sequently, to a larger region where no variation is optimal.

VI. THE DYNAMIC PROGRAMMING

In view of Lemma 2, the Dynamic Programming method

applied to system (1) reads as follows. Let us denote by J∗k
the optimal cost-to-go at instant k for each x as

J∗k (x) = inf
µk

E
[N−1

∑
n=k

Cn(xn,un)+CN(xN)
]

where µk = {uk,uk+1, . . . ,uN−1} is a sequence of admissible

policy drawn from complete state observation. The following

roposition gives a sufficient condition for the existence of the

optimal feedback policies, µ∗
k (x).

Proposition 9 ([17]): Suppose that (2) is limited for all

x0 ∈ R
n and µ . Then, if the set

Uk(x,λ ) =

{u∈R :Ck(x,u)+E[J∗k+1(Akx+bku+(σ k+σk|u|)εk))]≤λ}
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is compact for all x ∈ R
n , λ ∈ R and k ∈ [0,N −1], an N-

stage optimal policy exists.

Theorem 1: Suppose that for each 0 ≤ k < N we have

that x → Ck(x,u),u → Ck(x,u) and x → CN(x) are convex

functions and that (2) is limited for all x0 ∈ R
n and µ . For

the system in (1) and evaluated by mean of the cost function

(2), the optimal policy can be obtained recursively as follows.

1) Define J∗N(x) = CN(x), x ∈ R
n and set k = N −1;

2) Define Jk(x,u) for each x ∈ R
n, as

Jk(x,u)=Ck(x,u)+E[J∗k+1(Akx+bku+(σ k +σk|u|)εk)],

3) For each x ∈ R
n, determine if the optimal action u∗k

will be positive, negative or zero with










u∗k(x) > 0, if x ∈ R1(Jk),

u∗k(x) < 0, if x ∈ R2(Jk),

u∗k(x) = 0, if x ∈ R3(Jk).

(20)

If u∗k ∈ R1(Jk) or u∗k ∈ R2(Jk), determine u∗k such that

Jk(x,u
∗
k) ≤ Jk(x,u) for each u ∈ R. This is equivalent

to requiring that

0∈ ∂uCk(x,u
∗
k)+∂uE[J∗k+1(Akx+bku∗k +(σ k +σk|u

∗
k |)εk)]

4) Define the function J∗k (x) by

J∗k (x) = Jk(x,u
∗
k(x)) = C(x,u∗k(x))+E[J∗k+1(xk+1)]

with xk+1 = Akx+bku∗k(x)+(σ k +σk|u
∗
k(x)|)εk. If k =

0, stop. If else, return to step 2.

The optimal policy uk for each 0 ≤ k < N is thus obtained,

in such a way that

J∗k (x) = Jk(x,u
∗
k(x)) ≤ Jk(x,u),

holds for each (x,u) and, in particular, J∗(x) = J0(x,u
∗
0(x))≤

J0(x,u), ∀(x,u).
Proof: The proof follows directly from Lemma 2,

Lemma 4 and Bellman’s Equation. From Proposition 9,

observe that since Ck is convex for all k ∈ [0,N], the feedback

policies, x → u∗k(x), will always exist.

Note that at each instant k, the decision maker will either

increase, decrease or maintain the previous input depending

on the state value. A possible interpretation for the region

where u∗k = 0 is that, in face of the uncertainty generated by

changing the input of the system, it may be better to keep the

input constant. Intuitively, this strategy agrees with real world

problems when a policy maker, in face of the uncertainty

that his decision may generate, decides to maintain the same

policy he had before.

VII. A MONETARY APPLICATION

In this section, a state-space form of a standard backward-

looking model of the US economy is analyzed within a

CVIU context. The model’s parameters were taken from [18].

Quarterly data for the US economy was used, from the first

quarter of 1960 to the fourth quarter of 2006. The interest

rate , ik, is a four-quarter average federal interest rate from

the Board of Governors. Inflation, πk, is the GDP chain-type

price index, in percent, at an annual rate. The output gap (yk)

is built as 100(qk − q∗k)/q∗k , where qk is the real GDP and

q∗k is the potential GDP. The data used is available from the

Bureau of Economic Analysis. All variables were demeaned

prior to estimation. Therefore, the state-space model used is

xk+1 = Axk +Bvk +(σ +σ |vk|)ξk, ξk ∼ N(0,Σ) (21)

where

xk =
[

πk πk−1 πk−2 yk ik−1

]T
, vk =

[

ik − ik−1

]

,

A =













0.621 0.091 0.239 0.108 0

1 0 0 0 0

0 1 0 0 0

0.041 −0.083 0.011 0.900 (0.117−0.192)
0 0 0 0 1













,

B =
[

0 0 0 0.117 1
]T

,Σ =

[

I4×4 0

0 0

]

.

Also, σ k and σk are diagonal matrices given by:

σ k = diag(σπ ,0,0,σ y,0)

σk = diag(σπ ,0,0,σy,0)

System performance is evaluated by means of the the

quadratic cost function

J(x) = E
[

x′NQxN +
N−1

∑
k=0

x′kQxk + rv2
k

]

(22)

where

Q =













1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0













; r = 0.5.

Simulation results are shown in Figures 1 and 2. In Figure

1, note that the CVIU model generates a smooth monetary

policy, while the LQR leads to large variations of the interest

rate, even though in both cases the behavior of the inflation,

πk, is similar. Figure 2 contrasts the interest rate policy

generated by the CVIU and LQR models with the policy

conducted by the Federal Reserve. Note that the CVIU

model describes more accurately the Federal Reserve Bank

monetary policy than the traditional LQR model.

VIII. CONCLUSIONS

In this paper, we developed a theoretical framework and

the optimal control strategy for CVIU systems associated

with a convex cost functional. The convexity of the cost-to-

go functions was asserted, making it simpler to obtain the

optimal policy using dynamic programming. Since the state

equation is not differentiable, an algorithm for determining

the optimal policy was described using generalized gradients.

The optimal strategy yields that the state-space will be

divided into three disjoint regions, representing the regions

where the optimal control policy is to increase, decrease,

or maintain the previous input. Furthermore, for the case

where the Cost Functional is differentiable, it was asserted

that the region where no variation is optimal will always

exist. This characteristic of the optimal policy is intuitively
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Fig. 1: Behavior of (a) the inflation, πk, (b) the optimal interest rate, i∗k , and (c) the optimal interest rate variation, v∗k for

the CVIU model and the LQR. In the CVIU model, σπ = σy = 0.2. In both cases, σπ = σ y = 0.2.
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Fig. 2: Curves of the historical interest rate values, the interest rate values generated from a standard LQR model (σ = 0.8
and σ = 0), and the interest rate values obtained using a CVIU model with σ = 0.8 and (a) σ = 0.3; (b) σ = 0.8.

sound, since in many real-world problems, in face of the

uncertainty generated by changing the control policy, the

best strategy is to maintain the same policy as before. The

presented CVIU model and analysis can be applied to many

practical scenarios, ranging from monetary policy problems

to medicine and biology and, in general, to problems where

a complete dynamic model is too complex to be feasible.
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