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Abstract— A nonlinear model predictive control algorithm
(NMPC) is proposed that incorporates a novel differential
transformation (DT) based algorithm for the repeated com-
putation of the open-loop optimal control problem. This DT
method converts the two-point boundary value problem from
the indirect optimization approach into a set of algebraic
equations, which is a less computationally expensive way of
solving the open-loop problem. The new NMPC algorithm
is applied to an interplanetary low-thrust trajectory tracking
problem.

I. INTRODUCTION

Ion engines have recently become popular as the primary
means of propulsion for both earth-based satellites and
interplanetary spacecraft [1], [2]. Their appeal is in their
efficiency, which is ten times better than that of conventional
chemical propulsion rocket engines. This results in decreased
fuel cost, increased payload, longer spacecraft life, and/or
feasibility of more types of interplanetary missions. Ion
engines operate differently from conventional rocket engines.
Chemical engines generate high thrust that only lasts a few
minutes at most and is approximated as an impulse in trajec-
tory design. In contrast, ion engines produce extremely small
amounts of thrust, and operate for months. Consequently,
ion engine thrust cannot be considered impulsive; thus new
techniques are necessary for the design and control of low-
thrust trajectories [3].

The bulk of the research into low-thrust trajectories so
far has been on open-loop optimal trajectory design. It is a
challenging problem due to the highly nonlinear dynamics
with no closed form solution and long duration trajectories
that could last for months or years. Thus, much effort has
been devoted to developing new methods of finding low-
thrust trajectories using both indirect and direct optimization
approaches [4], [5].

Much less effort has been made in developing and ap-
plying nonlinear closed-loop control to ensure that a low-
thrust spacecraft follows the designed path and reaches its
destination [6]. This is important because there are many
sources of disturbances on a spacecraft such as engine
errors, unmodeled gravitational fields, atmospheric drag, and
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solar radiation pressure. Currently, NASA’s ion propulsion
spacecraft use linear controllers [7], which are easier to
implement. However, they are not optimal nor robust for a
nonlinear system. Nonlinear controllers are more challenging
to design and implement, but they can be more optimal and
robust than linear controllers.

There has been some effort applying nonlinear control
theory to low-thrust spacecraft. Some have applied Lyapunov
theory to the problem [8]. An approach using a combination
of backstepping and forwarding has also been explored [9].
However, these approaches are not necessarily optimal.

A better technique to ensure a more optimal closed-loop
controller is nonlinear model predictive control (NMPC).
Linear model predictive control is considered a mature field,
but NMPC is a relatively new area with serious attention only
starting in the 1990s. The general concept behind NMPC is
to solve an open-loop optimal control problem every time
a new measurement is obtained for the state of the system.
Then, the open-loop control input calculated is applied until
the next measurement is available. Early NMPC techniques
have already successfully been applied in other fields [10].
So far, there have been a few who have applied NMPC
techniques to low-thrust transfer control. One applied NMPC
with a direct transcription method for solving the open-loop
problem [11]. Another combined NMPC with Rosenbrock’s
direct optimization method [12]. Both were for guidance on
earth-centered low-thrust transfers.

One major disadvantage with NMPC implementation is
the need to solve a nonlinear optimization problem on-
line repeatedly. Optimization techniques currently used are
computationally intensive. This limits the feasibility of ap-
plying NMPC. Recently, a new more efficient algorithm
based on differential transformation (DT) has been devel-
oped by Hwang et al. [13] to solve nonlinear optimal
control problems. It solves the two-point boundary value
problem (TPBVP) from the indirect approach to solving
an optimal control problem. The DT algorithm converts
the TPBVP into a set of algebraic equations that require
far less computational effort to solve. It has already been
demonstrated to be effective in speeding up the process of
finding optimal open-loop low-thrust trajectories [14]. This
paper will introduce a new more efficient NMPC algorithm
that uses the DT algorithm to repeatedly solve the nonlinear
optimization problem, allowing NMPC to be more efficient.
This algorithm is then applied to an interplanetary low-thrust
trajectory tracking problem.
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This paper is organized as follows. Section II describes
the dynamics for the low-thrust interplanetary transfer prob-
lem. Section III contains a description of the differential
transformation algorithm. Section IV discusses the NMPC
algorithm. In Section V, the NMPC algorithm is applied to a
low-thrust interplanetary trajectory tracking problem. Section
VI concludes the paper.

II. LOW-THRUST TRANSFER PROBLEM

A. Model

The interplanetary orbit transfer problem considered here
is assumed to be between two coplanar orbits around the
sun. Hence, the model will be two-dimensional. Additionally,
Cartesian coordinates (x, y) were selected. Then the dynamic
model for this problem is

ẋ1 = x3

ẋ2 = x4

ẋ3 = − µx1
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+ ay

(1)

where µ is the gravitational constant of the Sun; x1, x2,
x3, and x4 are the states that correspond to x, y, ẋ, and
ẏ, respectively; ax is the x-component of the spacecraft
acceleration, and ay is the y-component.

B. Two-Point Boundary Value Problem

In this paper, we consider the cost function defined as
follows from the given initial time t0 to the given final time
tf

J =
∫ tf

t0

1
2

(a2
x + a2

y)dt (2)

J will be minimized subject to the state equations (1), the
given initial conditions x(t0), and the given final conditions
x(tf ). The state vector is x = [x1 x2 x3 x4]>.

Taking the indirect approach to solving this problem, the
corresponding Hamiltonian is

H =
1
2

(a2
x + a2

y) + λ>f (3)

where λ = [λ1 λ2 λ3 λ4]>, f = [f1 f2 f3 f4]>, and ẋ =
f(x). The partial derivative of H with respect to x results in
the following costate equations:

λ̇ = −
(
∂H

∂x

)>
(4)

Let the control input vector be a = [ax ay]>. In this paper,
the input is assumed unconstrained. Then taking ∂H

∂a = 0
results in the following optimal control input

a∗ =
[
a∗x
a∗y

]
=
[
−λ3

−λ4

]
(5)

The optimal inputs (5), the state (1) and costate (4)
equations, and the boundary conditions together result in the

following TPBVP:
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ẋ4 = − µx2

(x2
1+x

2
2)

3
2

+ a∗y

λ̇1 = −µ(2x2
1−x

2
2)

(x2
1+x

2
2)

5
2
λ3 − 3µx1x2

(x2
1+x

2
2)

5
2
λ4

λ̇2 = − 3µx1x2

(x2
1+x

2
2)

5
2
λ3 − µ(−x2

1+2x2
2)

(x2
1+x

2
2)

5
2
λ4

λ̇3 = −λ1

λ̇4 = −λ2

a∗x = −λ3

a∗y = −λ4

(6)

where x(t0) and x(tf ) are the boundary conditions and the
time span [t0 tf ] is fixed. Solving this TPBVP will result in
an optimal low-thrust trajectory.

C. Additional Equality Constraints from Numerical Algo-
rithms

Many algorithms that solve the TPBVP discretize the time
span Ω = [t0 tf ] into several smaller time intervals. Let
t1, t2, t3, · · · be time points in Ω. Then, the subintervals are
defined as Ωk = [tk−1 tk], where k = 1, 2, 3, · · ·. The
union of all the subintervals is the whole time span Ω, but
they do not overlap. With this approach, additional equality
constraints are necessary that relate the states and costates at
the time point tk to the states and costates immediately after
the time point t+k . This will ensure that the algorithm will
find a solution such that x(t) and λ(t) are continuous. For
every tk ∈ {t1, t2, t3, · · ·} where Ω is split, it is necessary
to define the following set of equality constraints

x(tk)− x(t+k ) = 0 (7)
λ(tk)− λ(t+k ) = 0 (8)

Initially, these equality constraints will not be satisfied be-
cause x(t) and λ(t) at each tk are unknown and must
be guessed. A nonlinear program (NLP) will force these
constraints to zero, where x(tk) and λ(tk) are NLP variables.

III. DIFFERENTIAL TRANSFORMATION ALGORITHM

The DT algorithm is discussed in this section. Initially, the
definitions of DT and the inverse DT are presented. Then, the
DT-based algorithm for solving the optimal control TPBVP
is described.

A. Differential Transformation

The differential transformation method was originally in-
troduced for the analysis of electrical circuits in the 1980’s
by Pukhov and Zhou [15], [16]. It has been applied in a few
other areas since then, such as vibration analysis [17], [18],
[19]. Motivations for using DT are a reduction in computa-
tional effort required for solving a set of differential algebraic
equations (DAE’s) and having a solution in an analytical
form. By differential operations, DT transforms the DAE’s
from the time/space domain into a set of nonlinear algebraic
equations in a transformed domain. Now the solution can
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TABLE I
SOME DIFFERENTIAL TRANSFORMATION RELATIONSHIPS

z(t) Zte (i) for i = 0, 1, · · · in the DT -domain
cp(t)± q(t) cPte (i)±Qte (i)

p(t)q(t) Pte (i) ∗Qte (i)
dp(t)

dt
(i + 1)Pte (i + 1)/S

1
p(t)

1
Pte (0)

for i = 0

−
[∑i

l=1
Zte (i−l)Pte (l)

]
Pte

(0) for i ≥ 1√
p(t)

√
Pte (0) for i = 0, Pte (1)

2Zte (0)
for i = 1,

Pte (i)−
∑i−1

l=1
Zte (i−l)Zte (l)

2Zte (0)
for i ≥ 2

be computed with a NLP. Recovery of the solution in the
original time/space domain is done by applying the inverse
DT to the transformed domain solution. The result will be
in an analytical form, finite-term series approximations.

1) Definition of Differential Transformation: Let z(t) be
a (piecewise) smooth function on [t0 tf ] ⊂ <. Define an
expansion point to be te ∈ [t0 tf ]. The images of z(t) at te
in the transformed domain (DT-domain) are

Zte(i) =
Si

i!

(
diz(t)
dti

)
t=te

i = 0, 1, 2, · · · (9)

where Zte(i) is the ith order differential spectrum of z(t) at
te, and S is the spectrum scaling factor, a positive constant.

The DT of z(t) at te is a sequence of ith order partial
derivatives of the function, but explicitly taking the partial
derivatives of z(t) is unnecessary. Instead, one can use basic
relationships, some are in Table I, to transform a function.
A more complete list is in [14]. For Table I, c ∈ < is a
constant, p(t) and q(t) are (piecewise) smooth functions on
[t0 tf ], and Pte(i) ∗Qte(i) ≡

∑i
l=0 Pte(l)Qte(i− l).

2) Definition of Inverse Differential Transformation: The
form of the inverse DT depends on the basis system selected.
For this paper, {ti}∞i=0 is chosen as the basis system. Then,
the inverse DT of the differential spectra {Zte(i)}∞i=0 is

z(t) =
∞∑
i=0

Zte(i)
(
t− te
S

)i
∀t ∈ (t0, tf ) (10)

This definition allows z(t) to be approximated as a finite-
term Taylor series expansion about te. To observe this,
substitute (9) into (10) to obtain

z(t) =
∑∞
i=0

(
diz
dti

)
t=te

(t−te)i

i!

=
∑N
i=0

(
diz
dti

)
t=te

(t−te)i

i! +RN
(11)

Here, N is the number of terms to be kept in the Taylor
series, and RN is the remainder as derived from Taylor’s
theorem:

RN =
(
dN+1z

dtN+1

)
t=ζ

(t− te)N+1

N + 1!
(12)

where ζ is a point between t and te.

B. DT-Based Algorithm for the Two-Point Boundary Value
Problem

In this section we describe the DT algorithm for solving
the TPBVP. It consists of an initialization step and three
main steps. The reformulation of the TPBVP into its DT
form will need to be done only once. It is complicated, but
the payoffs are a reduction in the amount of calculations
needed for analyzing a dynamical system and a solution in
analytical form.

Initialization: The low-thrust transfer problem requires the
application of DT over a large time span Ω ≡ [t0 tf ]. Neces-
sarily, Ω is discretized into subintervals Ωk as described ear-
lier. Choose K − 1 expansion points, te,1, te,2, · · · , te,K−1,
such that t0 < te,1 < te,2 < · · · < te,K−1 < tf . These time
points divide the time span Ω into K subintervals:

Ω1 = [t0 te,1]
Ωk = (te,k−1 te,k] for k = 2, 3, · · · ,K − 1

ΩK = (te,K−1 tf ]

Select the order N of the DT spectrum, which also de-
termines the order of Taylor series approximation of the
solution. Additionally, the spectrum scaling factor S is set at
this point, usually S = 1.

Step 1: Conversion of a TPBVP into an Algebraic Prob-
lem: This step converts the TPBVP from a system of
differential equations and boundary conditions into a set of
algebraic difference equations. It is done in three substeps.

a. Recursive Equations: Apply DT (9) to the TP-
BVP differential equations (6) to transform them
into the set of recursive difference equations in
the DT -domain as shown in the Appendix. This
allows the i + 1th spectral terms at te,k to be a
function of Xte,k

(m),Λte,k
(m), and A∗te,k

(m) for
m = 0, 1, 2, · · · , i. This allows for rapid calculation
of all spectral terms of orders 1, · · · , N from only
the 0th order terms, enabling N to be extremely
high.

b. Boundary Condition Equations: The equations
derived in this substep enforce the boundary con-
ditions. First, apply the inverse DT (10) to obtain
N -term Taylor series expansions of x(t) at te,1 and
te,K−1. Then, equate these expansions to the initial
and final conditions, respectively, to obtain

x(t0) ≈
N∑
i=0

Xte,1(i)(t0 − te,1)i (13)

x(tf ) ≈
N∑
i=0

Xte,K−1(i)(tf − te,K−1)i (14)

c. Continuity Constraints: This substep uses the
equality constraints (7)-(8) to derive a set of al-
gebraic relations between the differential spectra
at neighboring expansion points. First, note that
Xte,k

(0) = x(te,k) for all expansion points. Ap-
plication of DT and inverse DT to the equality

4870



constraints results in

Xte,k
(0) =

N∑
i=0

Xte,k+1(i)(te,k − te,k+1)i (15)

Λte,k
(0) =

N∑
i=0

Λte,k+1(i)(te,k − te,k+1)i (16)

Step 2: Solution of the Nonlinear Algebraic Equations:
The solution to the TPBVP is obtained in terms of the differ-
ential spectra in the DT -domain in this step. The nonlinear
algebraic problem to be solved is defined by the recursive
equations, the boundary condition equations, and the continu-
ity equations. Xte,k

(0), Λte,k
(0), and Ate,k

(0) at each te,k,
k = 1, 2, · · · ,K−1 are the variables to solve for. Then, actual
solution values X∗te,k

(0), Λ∗te,k
(0), and A∗te,k

(0) are used
to find the values of the higher-order spectral terms for the
solution {X∗te,k

(i),Λ∗te,k
(i),A∗te,k

(i)}Ni=1 by reusing the
recursive equations.

Step 3: Conversion to Time Domain Solution: After cal-
culating the solution of the TPBVP in the DT -domain, now
x∗(t), λ∗(t), and a∗(t) need to be recovered in the original
time/space domain. Applying the inverse DT, the solution is
in the form of an N th-order Taylor series expansion of each
variable for each of the K time subintervals. For the states
x∗(t), this results in

x∗(t) =
N∑
i=0

X∗te,k
(i)(t− te,k)i, t ∈ Ωk=1,···,K−1

x∗(t) =
N∑
i=0

X∗te,K−1(i)(t− te,K−1)i, t ∈ ΩK

(17)

The expressions for λ∗(t) and a∗(t) are computed similarly.

IV. NONLINEAR MODEL PREDICTIVE CONTROL
ALGORITHM

This section presents an NMPC algorithm using the DT
method. First, a brief introduction into important NMPC
concepts is given. Then the algorithm is described.

A. Concepts

Nonlinear model predictive control is a strategy for closed-
loop control where at every state measurement, a nonlinear
open-loop optimal control problem is solved. Figure 1 il-
lustrates general NMPC concepts. At time t measurements
of the state x(t) are obtained. Based on these states and a
nonlinear dynamic model of the system, the behavior of the
system x̂ and open-loop optimal control û is predicted over
the prediction horizon Tp. The input û is then applied until
the next measurement is available after a sampling interval
δ. With the new measurement at t+ δ, the whole procedure
repeats.

An essential part of any NMPC approach is the assurance
of stability. There are several NMPC strategies that guarantee
stability [10]. One of these is the zero terminal equality
constraint strategy, which this paper uses. This method
involves enforcing a hard constraint on the states at t+ Tp,
achievable by imposing boundary conditions at t+ Tp [11].

Fig. 1. Schematic of model predictive control [10].

In this paper, this strategy is applied by forcing the boundary
condition of the state at t+Tp to be on the nominal trajectory.

B. DT-Based NMPC Algorithm

This section presents an NMPC algorithm for tracking
a nominal low-thrust trajectory. It takes advantage of the
differential transformation in two ways. First, the nominal
trajectory is itself a solution to an open-loop optimal control
problem, and DT can be applied to find an analytical rep-
resentation of it in the form of equation (17). Second, the
DT algorithm is used to quickly solve the open-loop optimal
control problem within each NMPC iteration.

Initialization: Obtain the DT realization of the nominal
trajectory. This includes the expansion points te,k and the
spectral terms of the states and costates, Xnom

te,k
(k) and

Λnom
te,k

(k) for k = 0, 1, 2, · · ·, at all the expansion points.
Additionally, choose an initial prediction horizon Tp.

Step 1: Measure x at the current time t.
Step 2: Find the boundary condition for the zero terminal

constraint. Determine the target state xnom(t + Tp) on the
nominal trajectory at the end of the prediction horizon Tp.
This can be done by substituting the time t + Tp into the
inverse DT of the nominal trajectory (17). Set the boundary
condition to x̂(t + Tp) = xnom(t + Tp). Note that if Tf <
t+Tp, then Tp is reduced to Tp = Tf − t and the target state
x̂(t+Tp) will then be the endpoint of the nominal trajectory
xnom(Tf ).

Step 3: With the current measured state x(t) as the initial
condition, and the target state x̂(t + Tp), found in Step
2, as the final condition, solve the low-thrust TPBVP (6)
using the DT algorithm. The initial guesses for the 0th-order
spectral terms are the states and costates of the nominal
trajectory at the times corresponding to the expansion points,
Xte,k

(0) = xnom(te,k) and Λte,k
(0) = λnom(te,k). These

can be quickly obtained using the DT representation of the
nominal trajectory and equation (17). The solution to the
TPBVP will result in an open-loop optimal control input
û(t).

Step 4: Apply the control input û(t) until the next sam-
pling time t+δ at the end of the sampling interval δ or until
the end time of the transfer Tf , whichever is sooner.

Step 5: Return to Step 1
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V. APPLICATION TO A LOW-THRUST TRAJECTORY
TRACKING PROBLEM

Here, the NMPC with DT algorithm is applied to a low-
thrust spacecraft trajectory tracking problem. The nominal
trajectory is a 420-day continuous thrust transfer from Earth
to Mars optimized according to the cost defined in (2). The
orbits of Earth and Mars are assumed to be circular and
coplanar. The nominal trajectory begins at true anomaly
ν = 0◦ at Earth orbit and ends at ν = 300◦ at Mars
orbit. True anomaly is the angle of the spacecraft position
vector in the xy-plane. The nominal trajectory is shown in
Fig. 2 along with its acceleration profile. Within the NMPC
implementation, this nominal trajectory was represented in
DT form by 45th-order expansions at 10 evenly spaced
expansion points.

Notice that the acceleration magnitude remains extremely
small throughout the trajectory. Ion engines produce ex-
tremely small accelerations. For example, NEXT ion engines
will be capable of a maximum thrust of only 236 mN [20].
Deep Space 1 (DS1), NASA’s first interplanetary ion engine
spacecraft, had an initial mass of 486.3 kg and a mass of
404.8 kg without the xenon fuel [21]. If DS1 had used the
NEXT engines, its maximum acceleration magnitude would
have ranged from 4.85x10-7 km/s2 to 5.83x10-7 km/s2.

Fig. 2. Nominal Trajectory and Acceleration Profile

While following the nominal trajectory, the spacecraft is
subjected to 2-day total engine failure from day 100 to day
102, where there is no control input available. The goal of the
NMPC algorithm is to track the nominal trajectory in spite
of this disturbance. In this implementation, the prediction
horizon Tp is initially 70 days. Near the end of the trajectory,
this is gradually reduced as described in Step 2 of the NMPC
algorithm. The sampling interval is 2 days. For solving the
open-loop TPBVP at each NMPC iteration, the number of
expansion points used in the DT algorithm is initially 12
with 45th-order expansions. Towards the end of the nominal
trajectory, this is gradually reduced to 1.

The results from simulating the above scenario are shown
in Fig. 3. In this figure, the error is defined as ||qA − qN ||,
where qA is the actual spacecraft position and qN the desired
spacecraft position, with q = [x1 x2]>. The top left plot is
the error over the entire 420-day span of the simulation. On
the bottom left is the closed-loop input magnitude over the
same time span. The plots on the right are close-ups of the
error and input magnitude response to the engine failure.
Also included in the control input close-up plot is the input
magnitude for the nominal trajectory (dotted line).

Fig. 3. NMPC Trajectory Tracking Results (solid lines: NMPC with DT,
dotted line: nominal trajectory)

The NMPC algorithm succeeds in rejecting the disturbance
and in tracking the nominal trajectory. Observe that there
is an increase in the error starting at 100 days when the
engine fails and control input is not available. Then, with
the engine operational on day 102, the NMPC algorithm is
able to reduce the error and steer the spacecraft back onto the
nominal trajectory. The transient behavior shows a maximum
deviation from the nominal trajectory of 4548 km and an
overshoot of only 15 km. Additionally, 9 days from when
the engine is operational, the error settles to below 20 km.
The magnitude of the input spikes to 5.445x10-7 km/s2 when
the NMPC corrects for the large deviation from the nominal
trajectory due to the engine failure, but it remains within the
maximum acceleration range discussed earlier. Note that the
NMPC input plot is segmented because at every sampling
time the control input is recalculated and a discontinuity in
the control input can occur at the sampling time.

VI. CONCLUSION

A nonlinear model predictive control algorithm has been
proposed in this paper that utilizes a new differential trans-
formation based algorithm to solve the on-line open-loop
optimization problem within each iteration of the controller.
Typical methods of solving the open-loop problem are com-
putationally intensive and take a significant amount time
to find a solution. The DT algorithm proposed transforms
the TPBVP from the indirect approach into a system of
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nonlinear algebraic equations where the solution to the
optimal control problem is less computationally expensive.
This makes NMPC more efficient for on-line application
of closed-loop trajectory tracking in spacecraft and in other
applications. The algorithm was demonstrated to be effective
at tracking a low-thrust interplanetary trajectory.

APPENDIX

Here we present the recursive equations for the coplanar
low-thrust transfer problem being considered in this paper.
They represent the TPBVP’s differential equations in the
DT -domain.

X1,te,k
(i+ 1)

X2,te,k
(i+ 1)

X3,te,k
(i+ 1)

X4,te,k
(i+ 1)

Λ1,te,k
(i+ 1)

Λ2,te,k
(i+ 1)

Λ3,te,k
(i+ 1)

Λ4,te,k
(i+ 1)

Ax,te,k
(i)

Ay,te,k
(i)


= S

i+1



X3,te,k
(i)

X4,te,k
(i)

F31,te,k
(i) +Ax,te,k

(i)
F41,te,k

(i) +Ay,te,k
(i)

F51,te,k
(i) + F52,te,k

(i)
F61,te,k

(i) + F62,te,k
(i)

−Λ1,te,k
(i)

−Λ2,te,k
(i)

−Λ3,te,k
(i)

−Λ4,te,k
(i)


F31,te,k

(i) = −µX1,te,k
(i) ∗ Yr3,te,k

(i)
F41,te,k

(i) = −µX2,te,k
(i) ∗ Yr3,te,k

(i)
F51,te,k

(i) = −µYd1r5,te,k
(i) ∗ Λ3,te,k

(i)
F52,te,k

(i) = −3µY12r5,te,k
(i) ∗ Λ4,te,k

(i)
F61,te,k

(i) = −3µY12r5,te,k
(i) ∗ Λ3,te,k

(i)
F62,te,k

(i) = −µYd2r5,te,k
(i) ∗ Λ4,te,k

(i)

Yd1r5,te,k
(i) = D1,te,k

(i) ∗ Yr5,te,k
(i)

Yd2r5,te,k
(i) = D2,te,k

(i) ∗ Yr5,te,k
(i)

Y12r5,te,k
(i) = X1t2,te,k

(i) ∗ Yr5,te,k
(i)

Yr3,te,k
(0) = 1

Rcu,te,k
(0) for i = 0

Yr3,te,k
(i) =

[−
∑i

l=1
Yr3,te,k

(i−l)Rcu,te,k
(l)]

Rcu,te,k
(0) for i ≥ 1

Yr5,te,k
(0) =

[−
∑i

l=1
Yr5,te,k

(i−l)R5th,te,k
(l)]

R5th,te,k
(0) for i = 0

Yr5,te,k
(i) = 1

R5th,te,k
(0) for i ≥ 1

Rcu,te,k
(i) = Rte,k

(i) ∗Rsq,te,k
(i)

R5th,te,k
(i) = Rsq,te,k

(i) ∗Rcu,te,k
(i)

Rte,k
(0) =

√
Rsq,te,k

(0) for i = 0,

Rte,k
(1) =

Rsq,te,k
(1)

2Rte,k
(0) for i = 1

Rte,k
(i) =

[Rsq,te,k
(i)−
∑i−1

l=1
Rte,k

(i−l)Rte,k
(l)]

2Rte,k
(0) for i ≥ 2

D1,te,k
(i) = 2X1sq,te,k

(i)−X2sq,te,k
(i)

D2,te,k
(i) = 2X2sq,te,k

(i)−X1sq,te,k
(i)

Rsq,te,k
(i) = X1sq,te,k

(i) +X2sq,te,k
(i)

X1sq,te,k
(i) = X1,te,k

(i) ∗X1,te,k
(i)

X2sq,te,k
(i) = X2,te,k

(i) ∗X2,te,k
(i)

X1t2,te,k
(i) = X1,te,k

(i) ∗X2,te,k
(i)
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