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Abstract— This paper deals with robust regulation problem
for discrete-time linear systems subject to uncertainties. The
uncertainties are assumed bounded. A new functional based
on the combination of penalty functions and weighted game-
type cost function is defined to deal with this problem. The
solution provided is based on recursive Riccati equations. An
interesting feature of this approach is that the recursiveness
can be performed without the need of adjusting auxiliary
parameters.

Index Terms— Discrete-time systems, game theory, minimum
squares, penalty functions, robust regulators.

I. INTRODUCTION

In the last thirty years, the control community has re-

searched on the robustness of regulators when the systems

are subject to uncertainties in the parameter matrices of the

state and input variables ([2], [4], [8], [9], [10], [11], [14],

[15], [16] [17], [18]). An important tool to solve this class

of problem that has been used is based on linear matrix

inequalities (LMIs). However, the occurrence of possible

unfeasible solutions of the robust regulators, inherent in this

kind of approach, is an important and decisive limitation

for on-line applications. Futhermore, the sufficient conditions

to assure the existence of this kind of regulator are, in

general, very conservative when the system is not subject

to uncertainties.

A second major approach is to extend the standard Riccati-

based design techniques from nominal regulators to robust

regulators. Recursiveness and existence of solution are some

of the useful characteristics provided by Riccati equations.

In adition, when the disturbances are set to zero, the standard

solution for the nominal regulator is attained.

In order to obtain robust regulators based on structural

features of classical quadratic-cost designs, [13] proposed

a framework to design regulators for systems with bounded

data uncertainties. The problem solved is formulated in terms

of a classical constrained two-player game. The solution pro-

vided in this reference depends on the state and on a certain

regularization parameter which appears in the solution of the

optimization problem defined. This solution however is very

hard to implement in practical simulations, since it depends

on the future solution of the Riccati recursion.

This paper proposes a new robust control design based on

penalty functions and game theory. The solution provided
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has the advantage of not depending on the future solution of

the Riccati recursion as occurs in the solution developed in

[13]. Other important feature of this robust regulator is that

it does not depend on any parameter to be adjusted, only

on the parameters and weighting matrices which are known

a-priori.

The notation used in this paper is standard: R is the set of

real numbers, R
n is the set of n-dimensional vectors whose

elements are in R, R
m×n is the set of m× n real matrices,

AT is the transpose of the matrix A, P≻ 0 (P� 0) denotes a

positive definite (semi definite) matrix, a > 0 denotes positive

scalar, ‖x‖ is the Euclidean norm of x, ‖x‖P is the weighted

norm of x defined by (xT Px)
1
2 , A

⊕
B denotes a diagonal

matrix with entries A and B and A† is a pseudo-inverse of

A.

II. PROBLEM FORMULATION

Consider the following discrete-time linear system subject

to uncertainties

xi+1 = (Fi +δFi)xi + (Gi +δGi)ui (1)

for all i = 0, ...,N, where Fi ∈ R
n×n and Gi ∈ R

n×m are

nominal parameter matrices, xi ∈ R
n is the state vector and

ui ∈R
m is the control input. It is assumed that the initial state

x0 is known. Uncertain matrices δFi ∈R
n×n and δGi ∈R

n×m

are unknown matrices modeled as
[
δFi δGi

]
= Hi∆i

[
EFi

EGi

]
(2)

for all i = 0, ...,N, where Hi ∈R
n×k, EFi

∈R
l×n, EGi

∈R
l×m

are assumed known and ∆i ∈ R
k×l with ‖∆i‖ ≤ 1.

We consider for each i = N, ...,0, the problem of obtaining

the optimal solution (x∗i+1,u
∗
i ) that solves the following min-

max optimization problem

minxi+1,ui
maxδFi,δGi

{
J

µ
i (xi+1,ui)

}
(3)

for all i = 0, ...,N, where J
µ
i (xi+1,ui) is the functional cost

given by the following expression

J
µ
i (xi+1,ui) =

[
xi+1

ui

]T [
Pi+1 0

0 Ri

][
xi+1

ui

]
+

+

{([
0 0
I −Gi

]
+

[
0 0
0 −δGi

])[
xi+1

ui

]
−

([
−I
Fi

]
xi +

[
0

δFi

]
xi

)}T

×

×

[
Qi 0

0 µ−2Θ−1

]{
•

}
(4)

with Pi+1 ≻ 0, Ri ≻ 0, Qi ≻ 0, µ > 0 fixed and Θ ≻ 0 with

appropriate dimension.

Remark 2.1: The optimization problem (3)-(4) is a par-

ticular case of the basic robust least-squares problem to be

established in the following section.
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III. THE BASIC ROBUST LEAST-SQUARES PROBLEM

The preliminary results presented in this section deal with

general optimization problems defined for systems subject to

uncertainties in the data. Consider the following constrained

two-player game problem

min
x

max
δA ,δb

{
‖x‖2

Q +‖(A+δA)x− (b+δb)‖2
W

}
; (5)

where A ∈ R
N×n is a nominal matrix, b ∈ R

N×1 is a mea-

surement vector, x is an n-dimensional unknown vector,

Q≻ 0 and W ≻ 0 are weighting matrices, and {δA,δb} are

perturbations modeled by
[
δA δb

]
= H∆

[
EA Eb

]
, ‖∆‖ ≤ 1. (6)

Assume known A, b, W , Q, EA, Eb and H.

An interesting solution for this problem was presented

in [13]. In virtue of the quantity of applications in which

this approach can be useful, we denominate this result as

fundamental lemma.

Lemma 3.1: The optimization problem (5)-(6) has a

unique solution x̂ given by

x̂ =
(
Q̂+ATŴA

)−1
(

ATŴb+ λ̂ET
A Eb

)
(7)

where the modified weighting matrices Q̂ and Ŵ are defined

as

Q̂ := Q + λ̂ET
A EA (8)

Ŵ := W + WH
(

λ̂ I − HTWH
)−1

HTW (9)

and λ̂ is a nonnegative scalar parameter obtained by the

following optimization problem

λ̂ := arg min
λ>‖HT WH‖

G(λ ) (10)

with

G(λ ) := ‖x(λ )‖2
Q +λ ‖EAx(λ )−Eb‖

2 +‖Ax(λ )−b‖2
W (λ )

(11)

and the auxiliary functions are defined by

x(λ ) :=
[
Q(λ )+ATW (λ )A

]−1 [
ATW (λ )b+λET

A Eb

]

Q(λ ) := Q + λET
A EA

W (λ ) := W + WH
(
λ I−HTWH

)−1
HTW .

Proof: See [13].

⋄
For the kind of problem we are interested in solving in

this paper, it is useful to redefine this fundamental lemma in

terms of an array of matrices.

Lemma 3.2: Let R be positive semidefinite and H a full-

column rank matrix. Then, if
[
R H

]
has full-row rank, the

matrix [
R H

HT 0

]
(12)

is invertible.

Proof: See [12].

⋄

In order to redefine the fundamental lemma aforemen-

tioned, note that the quadratic functional of the optimization

problem defined in (5) can also be rewritten in terms of an

array of matrices.

Lemma 3.3: Let f : R
n 7→ R defined by

f (x) := ‖x ‖2
Q +‖(A+δA)x− (b+δb)‖2

W .

Consider the constrained two-player game problem

minx maxδA ,δb { f (x)} ;

[
δA δb

]
= H∆

[
EA Eb

]
, ‖∆‖ ≤ 1.

The following statements are equivalent:

(i)

x̂ ∈ argminx maxδA ,δb { f (x)}

[
δA δb

]
= H∆

[
EA Eb

]
, ‖∆‖ ≤ 1

; (13)

(ii)

x̂ ∈ argminx













I

A

EA



x−




0

b

Eb








T 


Q 0 0

0 Ŵ 0

0 0 λ̂ I




(
•

)


;

(14)

(iii)(α,β ,γ,x) = (α̂, β̂ , γ̂, x̂) is a solution for





Q−1 0 0 I

0 Ŵ−1 0 A

0 0 λ̂−1I EA

I AT ET
A 0









α
β
γ
x



 =





0

b

Eb

0



 , (15)

where, for the items (ii)− (iii), Ŵ is given by (9) and λ̂ is

a non-negative scalar parameter given by (10).

Furthermore, the unique solution x̂ can be given, alterna-

tively, by

x̂ =





0

0

0

I





T 



Q−1 0 0 I

0 Ŵ−1 0 A

0 0 λ̂−1I EA

I AT ET
A 0





−1 



0

b

Eb

0



 . (16)

Proof: Omitted.

⋄

IV. PENALTY FUNCTION

Based on [3], penalty functions transform constrained in

unconstrained optimization problems. The constraints are

placed into the objective function via a penalty parameter

in such way that penalizes any violation of the constraints.

Consider the following constrained optimization problem

minx{ f (x)}
s.t. h(x) = 0

, (17)

with optimal solution xo. Suppose that this problem is

replaced by,

minx{ f (x) + µ−2h(x)T h(x)}, (18)
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where µ is a positive real number. For each µ > 0, let x̂(µ)
be the optimal solution to the problem (18). Then,

xo = lim
µ→0

x̂(µ). (19)

The term µ−2h(x)T h(x) is referred as penalty function. More

details on penalty functions can be seen in [1], [3], [7] and

[19].

Lemma 4.1: Let V ∈R
n×n positive definite, G∈R

k×m and

H ∈R
n×m. Consider the following optimization problem with

constraint

minx

{
(Hx − z)TV (Hx − z)

}

s.t. Gx = u
, (20)

where z ∈ R
n, x ∈ R

m and u ∈ R
k. Associated with (20) we

have the following optimization problem without constraint

x̂(µ) := argmin
x

{
(G x−B)T

V (µ)(G x−B)
}

(21)

where

G =

[
H
G

]
, V (µ) =

[
V 0

0 µ−2Θ−1

]
, B =

[
z
u

]
,

µ> 0 and Θ ≻ 0 has an appropriated dimension. Suppose

that the matrix G is full column rank then, the following

statements are valid

(i) For each µ> 0, the optimal solution x̂(µ) with the

unconstraint optimization problem (21) is given by

x̂(µ) =

[
0

I

]T [
V −1 (µ) G

G T 0

]−1 [
B

0

]
. (22)

(ii) When limµ→0 x̂(µ) = xo, where xo is the optimal

solution for (20) given by

xo =




0

0

I




T 


V−1 0 H

0 0 G

HT GT 0




−1 


z

u

0



 . (23)

Furthermore,

lim
µ→0

(G x̂(µ)−B)T
V (µ)(G x̂(µ)−B) =

= (Hxo− z)TV (Hxo− z). (24)

Proof: Omitted.

⋄

Remark 4.1: Note that the optimal cost (24) obtained

depends on xo and the quadratic term

(Gx̂(µ)−u)T µ−2Θ−1 (Gx̂(µ)−u) (25)

goes to zero when µ → 0.

V. NOMINAL REGULATOR PROBLEM

In this section, we revise the standard regulator for nomi-

nal discrete-time state-space systems (without uncertainties).

We first show that the same classical solution can be obtained

if, in the optimization problem, the minimizing variable is

(xi+1,ui) rather than only ui.

Consider the following discrete-time linear system

xi+1 = Fixi + Giui (26)

for all i = 0, ...,N, where xi ∈ R
n is an n-dimensional state

vector; ui ∈R
m is an m-dimensional control input; Fi ∈R

n×n

and Gi ∈ R
n×m are matrices of known nominal parameters;

the initial state vector x0 is considered known and {ui}
N
i=0 is

defined as a sequence of inputs without constraint. Consider

also the following standard quadratic functional

J = xT
N+1PN+1xN+1 +

N

∑
j=0

L j(x j,u j); (27)

where

L j(x j,u j) = xT
j Q jx j +uT

j R ju j; j = 0, ...,N (28)

and the weighting matrices satisfy the conditions Q j ≻ 0,

R j ≻ 0 and RN+1 = PN+1 ≻ 0. The optimization problem

widely used to deduce classical regulators is defined in order

to determine an optimal control sequence {u∗i }
N
i=0 which is

a solution of

minui
{J} ,

s.t. xi+1 = Fixi + Giui, i = 0, ...,N.
(29)

The optimization problem we propose in the following

provides an optimal control sequence {(x∗i+1,u
∗
i )}

N
i=0 which

is a solution for

minxi+1,ui
{J},

s.t. xi+1 = Fixi + Giui, i = 0, ...,N.
(30)

where J is given by (27)-(28). It is important to emphasize

that the minimization problem is formulated in terms of ui

and xi+1 whose solution is given by the following lemma.

Lemma 5.1: The minimization problem (30) can be

solved through the following recursive procedure

minx1,u0

{
L0(x0,u0) + minx2,u1

{
L1(x1,u1)+

+ ... + minxk,uk−1

{
Lk−1(xk−1,uk−1) + ...+

+ minxN+1,uN

{
LN(xN ,uN) + xT

N+1PN+1xN+1

}}
...

}
,

(31)

subject to xi+1 = Fixi + Giui, i = 0, ...,N.

⋄
The proof of this lemma is easily obtained applying dy-

namic programming [5]. The result of the application of this

approach is the classical optimal linear quadratic regulator

(LQR) which provides an elegant recursive algorithm, useful

to be implemented digitally.

The redefinition of this problem we are proposing is

based on the concept of penalty functions and weighted

least-squares problem. This concept also follows the idea

of quadratic optimization subject to equality constraints.

With lemmas 4.1 and 5.1 in mind, we can define the

following alternative unconstrained minimization problem

for each step i

min
xi+1,ui

{[
xi+1

ui

]T [
Pi+1 0

0 Ri

][
xi+1

ui

]
+ (32)
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+

([
0 0

I −Gi

][
xi+1

ui

]
−

[
−I

Fi

]
xi

)T [
Qi 0

0 Ξ−1

](
•

)}
,

where the constraints are incorporated in the quadratic form,

through of weighting matrix Ξ = µ2Θ.

Theorem 5.1: [6] Considering the optimization problem
(30), the optimal recursive solution is given through the
following linear regulator

[
x∗i+1
u∗i

]
=

[
Li

Ki

]
xi, i = 0, ...,N, (33)

where [
Li

Ki

]
=

[
0 0 0 0 I 0
0 0 0 0 0 I

]
×





P−1
i+1 0 0 0 I 0

0 R−1
i 0 0 0 I

0 0 Q−1
i 0 0 0

0 0 0 0 I −Gi

I 0 0 I 0 0

0 I 0 −GT
i 0 0





−1 



0
0
−I
Fi

0
0




, (34)

Pi = LT
i Pi+1Li + KT

i RiKi + Qi, i = N, ...,0. (35)

The optimal total cost is given by J∗ = xT
0 P0x0.

⋄
As it was pointed out, this section intends only to formu-

late an alternative procedure to solve the classical optimal

linear quadratic regulator. More details on this approach

can be seen in [6]. The framework we will provide in the

next section to design the robust quadratic regulator for the

system subject to uncertainties includes also the fundamental

solution for the nominal problem.

VI. RECURSIVE ROBUST REGULATOR

The unconstrained minimization problem (32) can be

redefined to deduce the robust controller to regulate the

System (1). The following identifications are assumed

Fi→ Fi +δFi and Gi→ Gi +δGi. (36)

Remark 6.1: Notice that (3) deals with a particular case

of the general optimization problem (5) when are performed

the following identifications

Q←

[
Pi+1 0

0 Ri

]
, x←

[
xi+1

ui

]
, W ←

[
Qi 0

0 µ−2Θ−1

]
,

A←

[
0 0

I −Gi

]
, δA←

[
0 0

0 −δGi

]
,

b←

[
−I

Fi

]
xi, δb←

[
0

δFi

]
xi,

H←

[
0

Hi

]
, ∆← ∆i, EA←

[
0 −EGi

]
, Eb← EFi

xi.

(37)

The next lemmas are useful to obtain a recursive robust

solution to regulate the System (1).

Lemma 6.1: Let µ > 0 and Θ≻ 0. Consider the optimiza-

tion problem (3). The following statements are equivalent

(i)

(x̂i+1, ûi) ∈ arg min
xi+1,ui

{
(AiXi−Bi)

T
Wi(AiXi−Bi)

}
(38)

where

Ai =





I 0

0 I

0 0

Î −Ĝi



 , Xi =

[
xi+1

ui

]
, Bi =





0

0

−I

F̂i



xi,

Wi =





Pi+1 0 0 0

0 Ri 0 0

0 0 Ŵ 0

0 0 0 λ̂iI



 , Ĝi =

[
Gi

EGi

]
, Î =

[
I

0

]
,

F̂i =

[
Fi

EFi

]
, Ŵ =

[
Qi 0

0 (µ2Θ− λ̂−1
i HHT )−1

]
.

(39)

(ii) (α1,α2,α3,α4,xi+1,ui) = (α̂1, α̂2, α̂3, α̂4, x̂i+1, ûi) is
the solution for the following linear system





P−1
i+1 0 0 0 I 0

0 R−1
i 0 0 0 I

0 0 Q−1
i 0 0 0

0 0 0 Σ(µ , λ̂i) Î −Ĝi

I 0 0 ÎT 0 0

0 I 0 −Ĝi
T

0 0









α1

α2

α3

α4

xi+1

ui




=





0
0
−I

F̂i

0
0




xi,

(40)

where Σ(µ , λ̂i) =

[
µ2Θ− λ̂−1

i HHT 0

0 λ̂−1
i I

]
.

For the items (i)− (ii), λ̂i is a non-negative scalar param-

eter obtained through the following optimization problem

λ̂i := arg min
λi>‖HT WH‖

Gi (λi) ,

with Gi (λi) given by (11).

Proof: It follows from Lemma 3.3 and Remark 6.1.

⋄

Remark 6.2: If we suppose that (µ2Θ− λ̂−1
i HHT ) � 0

and EGi
, i = 0, ...,N is full row rank, then the System (40)

has a unique solution, according to Lemma 3.2.

Now we are in a position to state the main result of this

paper.

Theorem 6.1: Consider the min-max optimization prob-

lem (3) with µ > 0 fixed. Suppose that (µ2Θ− λ̂−1
i HHT )� 0

and that EGi
, i = 0, ...,N is full row rank. Then, a recursive

solution for (3) is given by

[
x∗i+1

u∗i

]
=

[
Lr

i

Kr
i

]
xi, i = 0, ...,N; (41)

[
Lr

i

Kr
i

]
:=

[
0 0 0 0 I 0

0 0 0 0 0 I

]T

×
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×





P−1
i+1 0 0 0 I 0

0 R−1
i 0 0 0 I

0 0 Q−1
i 0 0 0

0 0 0 Σi Î −Ĝi

I 0 0 ÎT 0 0

0 I 0 −ĜT
i 0 0





−1 



0

0

−I

F̂i

0

0




, (42)

Pi = Lr
i
T

Pi+1Lr
i +Kr

i
T

RiK
r
i +Qi +(ÎLr

i − ĜiK
r
i − F̂i)

T Σ−1
i (•),

(43)

for i = N, ...,0, where

Σi ≡ Σ(µ , λ̂i), Ĝi =

[
Gi

EGi

]
, F̂i =

[
Fi

EFi

]
, Î =

[
I

0

]
(44)

and λ̂i is obtained by the minimization of Gi(λi) over the

interval (‖HT
i µ−2Θ−1Hi‖,+∞).

Proof: It follows from Lemma 6.1.

⋄
Remark 6.3: Notice that in the recursive solution provided

in Theorem 6.1, for each step i = 0, ...,N the parameter λ̂i is

determined over the interval (‖HT
i µ−2Θ−1Hi‖,+∞) where

the bounds are always well defined. In the solution provided

by [13] the optimal parameter λ̂i should be determined over

an interval given by (a,+∞) where a depends on the solution

of the Riccati equation Pi+1, which is not useful for on-line

applications.

Remark 6.4: Consider that EGi
, i = 0, ...,N is full row

rank. The optimal solution (x∗i+1,u
∗
i ), for µ→ 0, is given by

[
x∗i+1

u∗i

]
=

[
Lr

i

Kr
i

]
xi, i = 0, ...,N; (45)

[
Lr

i

Kr
i

]
=

[
0 0 0 0 0 I 0

0 0 0 0 0 0 I

]
× (46)

×





P−1
i+1 0 0 0 0 I 0

0 R−1
i 0 0 0 0 I

0 0 Q−1
i 0 0 0 0

0 0 0 0 0 I −Gi

0 0 0 0 0 0 −EGi

I 0 0 I 0 0 0

0 I 0 −GT
i −ET

Gi
0 0





−1



0

0

−I

Fi

EFi

0

0





,

Pi = Lr
i
T

Pi+1Lr
i + Kr

i
T

RiK
r
i + Qi, i = N, ...,0. (47)

Note that (45)-(47) do not depend on Hi.

The variable µ can be seem as a robustness param-

eter under which the regulator can actuate on the level

of uncertainties of the System (1). Notice that λ̂i ∈[
‖HT

i µ−2Θ−1Hi‖,+∞
)

for each µ ∈ (0,+∞). When µ → 0

we have in consequence that λ̂i → +∞ and Σ(µ , λ̂i) → 0

(limµ→0 Σ(µ , λ̂i) = 0). Furthermore, similar to the Remark

4.1 we have that the quadratic term of (43), (ÎLr
i − ĜiK

r
i −

F̂i)
T Σ−1

i (ÎLr
i − ĜiK

r
i − F̂i)→ 0 when µ→ 0. In consequence,

the robust state feedback gain Kr
i is obtained such that the

eigenvalues of (Fi +GiK
r
i ) are located inside the unit circle

and that EFi
+ EGi

Kr
i = 0 (for future works we intend to

formulate a general rule to explain this phenomenon).

Lemma 6.2: Define

Σ1,i := (µ2Θ−Σ2,iHHT ); Σ2,i := λ̂−1
i I; (48)

Γi := (Ri + GT
i (Σ1,i + P−1

i+1)
−1Gi); (49)

Ωi := (EFi
− EGi

Γ−1
i GT

i (Σ1,i + P−1
i+1)

−1Fi). (50)

Then, the expression (42) can be rewritten as:

Kr
i = −Γ−1

i GT
i (Σ1,i +P−1

i+1)
−1Fi−

−Γ−1
i ET

Gi
(Σ2,i +EGi

Γ−1
i ET

Gi
)−1Ωi;

(51)

Lr
i = P−1

i+1(Σ1,i +P−1
i+1 +GiR

−1
i GT

i )−1Fi−

−P−1
i+1(Σ1,i +P−1

i+1)
−1GiΓ

−1
i ET

Gi
(Σ2,i +EGi

Γ−1
i ET

Gi
)−1Ωi.

(52)

⋄
Remark 6.5: Consider (51)-(52) with EFi

= 0, EGi
= 0, for

all i = 0, ...,N. When µ→ 0, we obtain the standard regulator

for nominal discrete-time state-space systems:

Ki = −(Ri + GT
i Pi+1Gi)

−1GT
i Pi+1Fi; (53)

Li = Fi + GiKi; (54)

Pi = LT
i Pi+1Li + KT

i RiKi + Qi. (55)

Remark 6.6: Taking into account that Kr
i satisfies EFi

+
EGi

Kr
i = 0 (δFi +δGiK

r
i = 0) when µ→ 0

xi+1 = [Fi +δFi +(Gi +δGi)K
r
i ]xi,

= (Fi +GiK
r
i )xi = Lr

i xi, i = 0, ...,N. (56)

Then the cost Ji(.) in the interval N is computed as

J(N,xi+1,ui,δFi,δGi) = xT
0 P0x0, for all admissible uncertain-

ties {δFi,δGi} modeled according to (2).

VII. NUMERICAL EXAMPLE

Let the System (1) with the following parameter matrices

Fi = F =




1.91 0.75 0.52

0 1.20 −0.25

0 0 1.4



 , Gi = G =




1 0 0

0 1 0

0 0 1



 ,

Hi = H =




0.90

0.25

1.00



 , EFi
= EF =

[
1.20 3.00 −1.68

]
,

EGi
= EG =

[
0.84 1.40 −2.16

]
, −1≤ ∆i ≤ 1

and with the following weighting matrices

Qi = Q =




1 0 0

0 1 0

0 0 1



 , Ri = R =




1 0 0

0 1 0

0 0 1



 .

The simulations we perform in this example are based on

Remark 6.4. Firstly, the system subject to uncertainties was

controlled through the standard nominal regulator, secondly

the system was controlled by the robust regulator and thirdly

the system without uncertainties was controlled through the

standard nominal regulator.
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For each instant i, each curve of the Figures 1 and 2

correspond to the mean of euclidean norms of the states and

of the costs calculated over T experiments for N instants

(T = 1000,N = 30). For each experiment j, the matrix ∆i

(‖∆i‖ ≤ 1) was selected randomly and fixed for each instant

i.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

States

i

‖xk‖

SR with uncertainties

SR without uncertainties

RR

Fig. 1. Robust regulator (RR) proposed for the system with uncertainties
(−), standard regulator (SR) applied to the system without uncertainties
(− ·− ·−) and standard regulator (SR) applied to the system subject to
uncertainties (−−−).
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15

20

25

30

35

40

45

50

55

J

i

Costs

RR

SR with uncertainties

SR without uncertainties

Fig. 2. Costs calculated for the RR (system with uncertainties) (−), for
the SR (system without uncertainties) (− ·− ·−) and for the SR (system
with uncertainties) (−−−).

VIII. CONCLUSION

This paper developed a robust regulator for linear discrete-

time systems subject to uncertainties. The main feature of

the approach proposed is the recursiveness of the algorithm

whose Riccati equation is composed of independent matri-

cial blocks. For each step, the solution depends only on

the known parameter matrices of the system and on the

weighting matrices.
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de Automática, Juiz de Fora, Brasil, 2008.
[7] D. G. Luenberger. Linear and Nonlinear Programming. Kluwer

Academic Publishers, Boston, 2nd edition, 2003.
[8] S. Lyashevskiy. Control of discrete-time systems with uncertain

parameters. In Proc. American Control Conference 1997, volume 6,
pages 3621–3625, 1997.

[9] D. Mehdi, M. Al Hamid, and F. Perrin. Robustness and optimality
of linear quadratic controller for uncertain systems. Automatica,
32(7):1081–1083, July 1996.

[10] P. Myszkorowski. Robust control of linear discrete-time systems.
Systems & Control Letters, 22(4):277–280, April 1994.

[11] V. H. Nascimento and A. H. Sayed. Optimal state regulation for
uncertain state-space models. In Proc. American Control Conference

1999, volume 1, pages 419–424, 1999.
[12] R. Nikoukhah, A. L. Willsky, and B. C. Levy. Kalman filtering

and Riccati equations for decriptor systems. IEEE Transactions on

Automatic Control, 37(9):1325–1342, 1992.
[13] A. H. Sayed and V. H. Nascimento. Design criteria for uncertain

models with structured and unstructured uncertainties. In A. Garulli,
A. Tesi, and A. Vicino, editors, Robustness in Identification and

Control, volume 245, pages 159–173. Springer-Verlag, London, 1999.
[14] V. Winstead. Distributionally robust discrete lqr optimal cost. In

Proc. American Control Conference 2001, volume 4, pages 3227–
3228, 2001.

[15] L. Xie and Y. C. Soh. Control of uncertain discrete-time systems with
guaranteed cost. In Proc. 32nd IEEE Conference on Decision and

Control, volume 1, pages 56–61, 1993.
[16] S. Xu and J. Lam. Robust stability and stabilization of discrete

singular systems: an equivalent characterization. IEEE Transactions

on Automatic Control, 49(4):568–574, 2004.
[17] W. C. Yang and M. Tomizuka. Discrete time robust control via state

feedback for single input systems. IEEE Transactions on Automatic

Control, 35(5):590–598, 1990.
[18] L. Yu, J. Wang, and J. Chu. Guaranteed cost control of uncertain

linear discrete-time systems. In Proc. American Control Conference

1997, volume 5, pages 3181–3184, 1997.
[19] Willard I. Zangwill. Nonlinear Programming - A Unified Approach.

Prentice-Hall, New Jersey, 1969.

3082


