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Abstract— This paper proposes a novel state space model for
the drum boilers with natural recirculation. This model uses
the total mass and energy inventories of the boiler as the state
variables, and has an affine structure in the control variables.
A passivity based inventory controller is developed, which
ensures the asymptotic stability of the closed-loop boiler system.
Numerical simulations show the performance and efficiency of
the passivity based controller design technique.

I. INTRODUCTION

The modeling and control of a drum boiler with natural
circulation is quite important because they are widely used
in power generation and account for an important part of
the overall fuel consumption in a power station. A number
of models are suggested in literature to study the dynamic
response of natural circulation boilers[1-5]. These models
are developed based on the mass, energy and momentum
balance laws. In order to map the terms in balance equations
to the intensive variables, the thermodynamic or kinetic
relationships have to be introduced, which often leads to a
set of nonlinear differential functions. Although such models
are important for plant design and simulations, they are
usually not easy to use for control design because of their
complexity.

The availability of steam at proper thermal conditions
and rates is one of the critical features in the operation
of every thermoelectric power plant. Many control schemes
have proposed in achieving this goal [6-8]. Unfortunately, it
is still an open problem to develop a systematic approach to
boiler control design that grantees the stability of the closed-
loop system.

Passivity theory provides an effective method to control
a wide range of process systems. The main advantage of
passivity is that it allows to develop controllers for the
process without detailed modeling. The central feature of
the passivity-based control is that the extensive variables,
such as inventories, are used as the process state variables
for controller design. According to the inventory control
theory, a quadratic error function between the inventories
and their ideal objective values, is a suitable storage function
for passivity design. This choice ensures the passivity of the
whole process system, whose inventories will converge to
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their set points when we use strictly passive feedback [9-
11].

In this paper, a state-space model of drum boiler is
developed, whose states are the extensive variables, i.e. the
total mass and energy inventories of the boiler system. The
model is affine in the control inputs, which facilitates the
design of a passivity-based inventory controller that ensures
asymptotic set-point tracking.

II. MODEL PHILOSOPHY

We consider the modeling and control of a nonlinear
system

dx

dt
= f(x) + g(x, d, m) (1)

where x is the called microscope state, d the disturbances, m
the control variables. Following [9], we define the inventories
Zi(x), i = 1, · · · , n to be any C1 function, so that Zi(x) ≥ 0
for any x. From continuity, we can write

dZi

dt
=

∂Zi

∂x

dx

dt
= pi(x) + φi(x, d, m) (2)

where pi(x) = ∂Zi

∂x f(x) and φi(m,x, d) = ∂Zi

∂x g(x, d, m).
An inventory is said to be invariant if the drift p(x) = 0.
If p(x) ≥ 0, the inventory satisfies the Clausius-Planck
inequality, and if p(x) ≤ 0, it satisfies the dissipative
property.

The state Z of a single component thermodynamic system
is defined by the vector of extensive variables, i.e. the internal
energy, volume and mass.

Z = [U, V,M ] (3)

The inventories U, V,M of a single component system are
invariant so that pi(x) = 0 in (2) holds for i = 1, 2, 3 .
A fundamental result in thermodynamics states that there
exist an inventory S(Z), which satisfies the Clausius-Planck
property. It follows that ∂S

∂x f(x) ≥ 0 holds for all x, so that
we have

pi(x) ≥ 0 (4)

in (2). Inequality (4) is called the second law of thermo-
dynamics. By using the fact that the state is determined by
the vector Z defined in (3), we can define a vector of dual
variables called potentials, so that w = ∂S

∂Z . The potentials
w are functions of the temperature, pressure and chemical
potential, i.e. w = [ 1

T , P
T , µ

T ]. Sometimes the potentials are
also called observables, since they can be measured directly,
whereas the extensive variables often has to be inferred
indirectly.
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Fig. 1. Block diagram of passivity based process model.

A generic macroscopic model of a single component
process system with the microscopic model defined by (1)
can be written in terms of its invariant as follows:

{
dZ
dt = φ(Z, d, m)
y = h(Z)

(5)

The net transport φ(Z, d, m) can be decomposed into n flows
so that φ =

∑
fi, where fi denote the flows of mass, energy

and volume with i = 1, · · · , n. We note that the outputs y are
intensive variables, e.g. the temperature, pressure and water
level. The function h(Z) defines the measurement strategy.
The measurement have to be chosen so that the state Z is
observable from y. Fig. 1 shows a block diagram of the
general process model.

III. BOILER MODEL WITH EXTENSIVE STATES

A. Åström-Bell Boiler Model

In 2000, Åström and Bell proposed a fourth-order drum
boiler model, which relies on a mixture of extensive and
intensive variables. This model captures the key dynamical
properties of drum boilers over a wide operating range.
The Åström-Bell model also pays particular attention
to modeling the drum water level dynamics. It is an
important objective in boiler control design to maintain
a steady water level, because the level mismanagement
contributes to a significant number of emergency shutdowns
[5]. A schematic picture of a boiler system is shown in Fig.2.

The Åström-Bell model consists of four state variables:
the total water volume Vwt, drum pressure p, steam quality
at the riser outlet αr, and steam volume under the liquid
level in the drum Vsd. Denote ṁ as the mass flow rate, V
as the volume, A as intersection area, h as the enthalpy, and
ρ as the density. The subscripts fw, s, w, c, d, r, dc represent
feed water, steam, water, condenser, drum, riser, downcomer,
respectively. The Åström-Bell model is formulated as

e11
dVwt

dt
+ e12

dp

dt
= ṁfw − ṁs

e21
dVwt

dt
+ e22

dp

dt
= Q + ṁfwhfw − ṁshs

e32
dp

dt
+ e33

dαr

dt
= Q− αrhcṁdc (6)

e42
dp

dt
+ e43

dαr

dt
+ e44

dVsd

dt
=

ρs(V ∗
sd − Vsd)
Td

+
(hf − hw)ṁfw

hc

mfw ms

mdc

. .

.

Fig. 2. Schematic picture of a drum boiler.

The drum water level is calculated as

` =
Vwd + Vsd

Ad
(7)

where the drum water volume Vwd and the steam volume
fraction α̂v are

Vwd = Vwt − Vdc − (1− α̂v)Vr (8)

α̂v = ρw

ρw−ρs

[
1− ρs

(ρw−ρs)αr
ln(1 + ρw−ρs

ρs
αr)

]
(9)

Refer to Appendix for detail descriptions of the coefficients
in (6-9).

B. State Space Isomorphism

Theorem 1: Let Vt be the boiler volume, M, U be the
mass and energy inventories in a drum boiler. For any given
M, U , there exists one and only one set of Vwt and p, such
that the following inventory equations hold.

M = ρwVwt − ρs(Vt − Vwt) (10)
U = ρwVwthw − ρs(Vt − Vwt)hs − pVt + mtCpts (11)

where ts is the steam temperature, mt and Cp are the mass
and specific heat of boiler wall.

Proof: Multiplying (10) by hs and subtracting the result
from (11) gives

U −Mhs = ρwhw(hw − hs)− pVt + mtCpts (12)

It follows from (10) that M = (ρw − ρs)Vwt − ρsVt.
Normally, the total volume Vt has the same magnitude order
as the water volume Vwt. Furthermore, the water density is
greatly larger than that of the steam, i.e. ρw À ρs. It leads
that ρw − ρs ≈ ρw and ρwVwt À ρsVt. Accordingly, (10)
can be simplified as

M = ρwVwt (13)

Substituting (13) into (12), we can get

U = Mhw − Vtp + mtCpts.

Note that hw, ts are functions of the pressure p, i.e. hw =
f1(p), ts = f3(p). According to the Gibbs phase law, both
f1 and f3 are bijections. By denoting p = f2(p) and defining

U = F (p) = Mf1 − Vtf2 + mtCpf3 (14)
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we can obtain that F is also a bijection because it is a linear
combination of three bijections f1, f2 and f3. Therefore, for
any given U , there must exist one and only one p such that
(14) holds. In addition, the pressure p uniquely determines
the water density ρw. It follows from (13) that a unique
state Vwt = M/ρw is specified .

Here it is proved that for any given M, U , there exist one
and only one set of Vwt, p satisfying the inventory equations.
The total water volume Vwt specifies the distribution of water
and steam in the plant, and the pressure p determines all the
intensive state variables. Hence M, U can uniquely specify
all the states of the water-steam system in a drum boiler.
This completes the proof of Theorem 1.

Theorem 1 shows that the state space spanned by Vwt and
p is isomorphic to that by M and U . This lays the theoretical
foundations for the development of boiler model with the
inventories as the state variables.

C. State Space Model Based on Inventory

According to (3) and (6), we have the following mass and
energy balances

dM

dt
= ṁfw − ṁs

dU

dt
= Q + ṁfwhfw − ṁshs

Denoting Z1 = [M, U ]T and u = [Q, ṁfw, ṁs]T , we can
get

dZ1

dt
= φ1(Z1)u (15)

where φ1(Z1) =
[

0 1 −1
1 hfw hs

]
with φ1(Z1) is a

functional matrix because both hf and hs are functions of
Z1 due to Theorem 1 and the Gibbs state law.

Using (6) and noting e44 = ρs (see Appendix), we can
obtain

dαr

dt
= −hcṁdc

e33
αr +

1
e33

Q− e32

e33

dp

dt
(16)

dVsd

dt
= − 1

Td
(Vsd − V ∗

sd) +
hf − hw

hcρs
ṁfw (17)

− e43

ρs

dαr

dt
− e42

ρs

dp

dt

It follows from Theorem 1 that p is a function of M and U .
Then the following equations hold.

dp

dt
=

∂p

∂M

dM

dt
+

∂p

∂U

dU

dt
=

[
∂p

∂M
,

∂p

∂U

]
φ1(Z1)u (18)

By substituting (16) and (18) into (17), we can delete the
derivative terms of dαr/dt and dp/dt. By denoting Z2 =
[αr, Vsd]T , (16) and (17) can be rewritten as

dZ2

dt
= φ21(Z1)Z2 + φ22(Z1)u + φ23(Z1)

where

φ21(Z1) = −
[ hcṁdc

e33
0

0 1
Td

]

φ22(Z1) = −
[ e32

e33
e43e32−e42e33

ρse33

] [
∂p

∂M
,

∂p

∂U

]
φ1(Z1)

+

[
1

e33
0 0

e43
e33ρs

hfw−hw

hcρs
0

]

φ23(Z1) =

[
0

V ∗sd

Td

]

Let y = [p, `]T be the outputs. According to Theorem 1
and the Gibbs state law, the water level ` and pressure p are
functions of Z1 and Z2, i.e. y = g(Z1, Z2). Therefore, we
formulate the final state space model for the drum boiler as
follows




dZ1
dt = φ1(Z1)u

dZ2
dt = φ21(Z1)Z2 + φ22(Z1)u + φ23(Z1)
y = g(Z1, Z2)

(19)

D. Decouple of State Variables

Theorem 2: In the state space model of (19), Z2 will
asymptotically converge to some constants after the conver-
gence of Z1 to their respective setpoints.

Proof: It follows from the convergence of Z1 that
dM/dt = 0 and dU/dt = 0. Using Theorem 1, we further
have dVwt/dt = 0 and dp/dt = 0. Accordingly, (16) can be
simplified as

dαr

dt
= −hcṁdc

e33
αr +

1
e33

Q (20)

According to the Appendix, we can get

e33 = K
∂α̂v

∂αr
(21)

with K = [(1−αr)ρs +αrρw]hcVr. It is evident that K ≥ 0
because 1 ≥ αr ≥ 0 and ρw, ρs, hc, Vr > 0. Therefore, the
signal of e33 is solely determined by ∂α̂v/∂αr.

It follows from (9) that

∂α̂v

∂αr
= − ρwρs

(ρw − ρs)2
d

dαr

[
ln(1 + ρw−ρs

ρs
αr)

αr

]

Notice that

d

dαr

[
ln(1 + ρw−ρs

ρs
αr)

αr

]

=
1
α2

r

[
ρw−ρs

ρs
αr

1 + ρw−ρs

ρs
αr

− ln(1 +
ρw − ρs

ρs
αr)

]

we can obtain the following simplified equation

∂α̂v

∂αr
= − ρwρs

(ρw − ρs)2α2
r

f(x) (22)

where f(x) = x
1+x − ln(1 + x) with x = ρw−ρs

ρs
αr. It is

evident that x ≥ 0.
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Here the only thing left is to prove the signal of f(x).
Note that

df(x)
dx

=
1

(1 + x)2
− 1

1 + x
= − x

(1 + x)2

we can get
{

f(x) = 0, x = 0
df(x)

dx < 0, x > 0

It is easy to see that f(x) is a monotonically decreasing
function provided that x > 0. Therefore, f(x) < 0 holds
for any x > 0. Using (21) and (22), we obtain e33 ≥ 0. It
immediately follows that −hcṁdc/e33 < 0. Therefore, due
to (20), the state variable αr asymptotically converge.

It follows from the convergence of αr that dαr/dt = 0.
Then (17) can be rewritten as

dVsd

dt
= − 1

Td
Vsd +

(
hf − hw

hcρs
ṁfw +

1
Td

V ∗
sd

)

Notice that Td is the time constant, V ∗
sd is the volume

constant, and the parameters hf , hw, ρs, hc, ṁfw will be
constants after the convergence of M and U . The Vsd will
converge asymptotically because the coefficient − 1

Td
≤ 0.

This completes the proof of Theorem 2.
Theorem 2 shows that the state variables can be de-

coupled in the stability analysis and controller synthesis
of the boiler systems. The state Z1 dominates the boiler
model’s dynamics. This conclusion can facilitate the control
design. The stability of the model with four intensive states
will grantee provided that we design a suitable controller
to stabilize only two extensive states. This can lead to a
much simplified controller design process, because the mass
and energy inventories are passive, such that they can be
efficiently controlled by simple inventory controllers.

IV. PASSIVITY BASED INVENTORY CONTROL

It is proved in [9] that the synthetic input and output pair
(u, ev) of the controlled part of system (5) is passive

{
u = φ(Z, d, m) + dZ∗1

dt
eZ = Z − Z∗1

and that a control can be calculated if φ(Z, d, m) is invertible
with respect to m. Note that m does not have to be unique.
Z∗1 is the desired setpoint for Z1. Therefore, the inventory
control law can be written in the form:

u = −C(eZ) = φ(Z, d, m) +
dZ∗1
dt

(23)

This control strategy ensures that the closed-loop system
asymptotically tracks the desired set point. The operator C,
which maps errors into synthetic controls, should be strictly
input passive, e.g. the PID controller, adaptive feedforward
controllers, optimal controllers and many gain scheduling
controllers [10].

Now we consider the boiler follow mode. In this mode,
the mass flow rate of steam out of the boiler is set by the

demand for the steam in the turbine. Then the water flow
rate into the drum ṁfw has to be set so that the total mass
inventory is kept constant, and the heat flow rate Q (i.e.
fuel flow rate) has to be controlled so that the total energy
inventory is maintained at a given setpoint.

Denote m = [ṁfw, Q] as the manipulated variables, and
d = ṁs as the disturbance. We can rewrite (15) as follows

dZ1

dt
= φ11(Z1)m + φ12(Z1)d

with φ11(Z1) =
[

1 0
1 hfw

]
and φ12(Z1) = [−1, hs]T .

According to the passivity based controller design theory,
we have the following equations.

dZ1

dt
=

[ −C1(M −M∗)
−C2(U − U∗)

]
+

dZ∗1
dt

where C1 and C2 are PI controllers, M∗ and U∗ are
the setpoints for M and U , respectively. By letting Z∗1 be
constant, we have dZ∗1

dt = 0.

Note that φ11(Z1) is a lower triangular matrix. We
have |φ11(Z1)| 6= 0. Therefore, we can get

m = −φ11(Z1)−1

( [
C1(M −M∗)
C2(U − U∗)

]
+ φ12(Z1)d

)

Finally, we have the following passivity-based control system
[

ṁf

Q

]
= (24)

[
ṁs − C1(M −M∗)
(hs − hw)ṁs − hwC1(M −M∗)− C2(U − U∗)

]

This control structure is the classical combination of feed-
back and feed-forward control, i.e.

m = −φ11(Z1)−1

[
C1(M −M∗)
C2(U − U∗)

]

︸ ︷︷ ︸
Feedback

+φ11(Z1)−1φ12(Z1)d︸ ︷︷ ︸
Feedforward

Since the feedforward term cancels the nonlinearities, this
method is therefore also referred to as input-output lineariza-
tion.

V. STEP RESPONSE TO MASS INVENTORY

To illustrate the performance of the passivity based
inventory controllers, we simulate responses to step changes
in the total mass inventroy. The boiler’s structure parameters
used are those from the Swedish power plant [5]. The
inventory controllers are used as stated in (24). The
thermodynamic properties are calculated using the Xsteam
package [12]. This package is also used to bridge the
inventories with the measured variables, e.g. the steam
temperature and pressure.

Fig. 3 shows the profiles of the inventories and control
variables. It is easy to see from Fig. 3 (1)-(2) that all the
mass and energy inventories are controlled around their
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Fig. 3. Profiles of the inventories and control variables to the step change
in mass.
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Fig. 4. Profiles of key state variables in the Åström-Bell model to the step
change in mass.
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Fig. 6. Dynamic response of key state variables in the Åström-Bell model
to a steam flow change.

setpoints. In particular, the mass inventory M tracks the
new setpoint value after a small overshoot. This overshoot
is caused by the PI controllers.

Fig. 4 demonstrates the step response of some key state
variables in the Åström-Bell model. In the initial stage,
more water is feeded into the drum because of an increased
setpoint of the mass inventory. Higher feedwater flow rate
will cause more steam condensation. This leads to the
increase of the water volume Vwt and the decrease of drum
pressure p. Meanwhile, higher feedwater bring more energy,
then the heat flow rate will decrease to maintain a constant
energy inventory. This leads to the decrease of the steam
quality αr in the riser. Lower drum pressure will cause
more water evaporation. This leads to the increase of the
steam volume Vsd in drum. In the second stage, the inlet
mass flow of the feedwater will decrease after the maximum
overshoot. This reverses all the plot patterns of the state
variables.

The water level presents a typical swell and shrink phe-
nomena. The water level decreases initially due to the de-
creased evaporation in the riser caused by the decreasing heat
flow rate. Then the feedwater flow dominates the dynamics of
the water level. Accordingly, the drum water level increases
and decreases before it is stabilized at the initial value. Here
we can see that the inventory controllers perform quite well.

VI. STEP RESPONSE TO STEAM FLOW

In this example, the drum boiler model is subjected to a
step increase in the outlet steam flow rate equivalent to 10
kg/s. Fig. 5 shows the dynamic responses of the inventories
and the state variables. Fig. 6 shows the step response of
some key state variables in the Åström-Bell model. It is not
hard to see that not only the mass and energy inventories,
but also the drum pressure and total water volume track
their setpoint accurately throughout the simulation time.
Although the two states αr and Vsd are not controlled
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directly, they also converge to the corresponding constant
values.

During the transient period, the state αr increases, while
the Vsd decreases. The reason for this is that more heat and
feed water is required to remedy the step increase of the
outlet steam flow rate in order to maintain the mass and
energy inventories to be constant. More heat to the riser
will evaporate more water, this leads to the increase of the
steam quality αr. At the same time, more feed water will
condensate more steam under the water level in the drum.
This causes the decrease of the steam volume Vsd in the
drum. Finally, the feed water and heat will balance the mass
and energy flow of the outlet steam. Then all the states and
inventories are stabilized.

The dynamic response of water level is complicated and
depends on a combination of the dynamics of water and
steam in the drum. Two competing mechanisms contribute to
the response in water level. The drum water volume decrease
first due to the decrease of the total mass inventories. Then
the rapid initial response of steam leads to the swell of
the water level. The increase of the average steam quality
α̂v causes the drum volume Vwd to increase. After that,
the steam volume Vsd will dominate the level response.
Therefore, the water level decrease with the decrease of Vsd

until both of them are stabilized.

VII. CONCLUSION

This paper proposes a novel state space model for drum
boilers. This model has an affine structure in the control vari-
ables. This facilitates the design of a passivity based inven-
tory controller, which ensures the closed-loop stability and
good control performances. The affine structure in control
variables is derived from the mass, energy and momentum
balances. Then this proposed modeling and passivity-based
control scheme are promising to find applications in a wide
range of process systems governed by constitution laws.
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APPENDIX

The coefficients eij in (5) are calculated as

e11 = ρw − ρs

e12 = Vwt
∂ρw

∂p
+ Vst

∂ρs

∂p
e21 = ρwhw − ρshs

e22 = Vwt

(
hw

∂ρw

∂p
+ ρw

∂hw

∂p

)

+ Vst

(
hw

∂ρs

∂p
+ ρw

∂hs

∂p

)
− Vt + mtCp

∂ts
∂p

e32 =
(

ρw
∂hw

∂p
− αrhc

∂ρw

∂p

)
(1− α̂v)Vr

+
[
(1− αr)hc

∂ρs

∂p
+ ρs

∂hs

∂p

]
α̂vVr − Vr

+ [ρs + (ρw − ρs)αr]hcVr
∂α̂v

∂p
+ mrCp

∂ts
∂p

e33 = [(1− αr)ρs + αrρw]hcVr
∂α̂v

∂αr

e42 = Vsd
∂ρs

∂p
+

1
hc(

ρsVsd
∂hs

∂p
+ ρwVwd

∂hw

∂p
− Vsd − Vwd + mdCp

∂ts
∂p

)

+ αr(1 + β)Vr

[
α̂v

∂ρs

∂p
(1− α̂v)

∂ρw

∂p
+ (ρs − ρw)

∂α̂v

∂p

]

e43 = αr(1 + β)(ρs − ρw)Vr
∂α̂v

∂αr
e44 = ρs

with hc = hs − hw is the condenser heat of the steam.
The steam table is used to evaluate the thermodynamic
features hs, hw, ρs, ρw, ts and the partial derivatives
∂ρs/∂p, ∂ρw/∂p, ∂hs/∂p, ∂hw/∂p, ∂ts/∂p.

Finally, the downcomer mass flow rate ṁdc is given by

ṁdc =

√
2ρwAdc(ρw − ρs)gα̂vVr

k
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