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Abstract— Optimal control of infinite dimensional systems
is one of the central problems in the control of distributed
parameter systems. With the development of high performance
computers, numerical methods for optimal control design have
regained attention and achieved significant progress, mostly
in the form of open-loop solutions. We consider in this work
an optimal control problem for a bilinear parabolic partial
differential equation (PDE) system. Based on the optimal-
ity conditions derived from Pontryagin’s maximum principle
for a reduced-order model, and stated as a two-boundary-
value problem, we propose an iterative scheme for suboptimal
closed-loop control design. In each iteration step, we take
advantage of linear synthesis methods to construct a sequence
of controllers. The convergence of the controller sequence is
proved in appropriate functional spaces. When compared with
previous iterative schemes, the proposed scheme avoids repeated
numerical computation of the Riccati equation and therefore
reduces significantly the number of ODEs that must be solved
at each iteration step. A numerical simulation study shows the
effectiveness of this new approach.

I. INTRODUCTION

Physical actuation can appear in parabolic partial differen-

tial equations (PDEs) in three different ways: source terms

(interior control), boundary conditions (boundary control)

and diffusivity coefficient (diffusivity control). Interior and

boundary controls have been studied extensively, and many

approaches to PDE control have been proposed (e.g., [1], [2]

and references therein). Studies on diffusivity control of

PDEs are however more scarce (e.g., [3], [4]). In this paper

we consider an optimal control problem for a parabolic

system with diffusivity and interior actuation mechanisms.

We consider a 1D parabolic system over Ω = {(x, t) : 0 ≤
x ≤ L, t0 ≤ t ≤ tf}, which is governed by

∂z

∂t
=

∂

∂x

(
ζ
∂z

∂x

)
+λ(x)z+ξ(x)u(t)+v(t)

∂

∂x

(
ζ
∂z

∂x

)
,(1)

z(0, t) = z(L, t) = 0, z(x, 0) = ϕ(x), (2)

where z(x, t) represents the system state, u(t) and v(t) the

interior and diffusivity controls respectively, and ϕ(x) the

initial distribution. For sake of compatibility, it is necessary

to assume that ϕ(0) = ϕ(L) = 0. We assume that ζ(x),
λ(x) and ξ(x) are positive functions.
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We state an optimal control problem for the parabolic

system (1) with the following cost functional

min
u,v

J =
1

2

∫ L

0

S(x)z2(x, tf )dx

+
1

2

∫

Ω

Q(x)z2(x, t)dxdt +
1

2

∫ tf

t0

(
ruu

2 + rvv
2
)
dt,

(3)

where S(x) and Q(x) are positive weighting functions;

ru and rv are positive definite control weighting factors.

In [5], we have demonstrated the existence of solution for

this optimal control problem, and obtained open-loop con-

trollers using the Sequential Quadratic Programming (SQP)

optimization algorithm. However, the uniqueness of optimal

control solution of an arbitrary bilinear infinite dimensional

system can not be guaranteed in general because of the

convexity limitations due to the bilinearity of the problem.

Uniqueness of solution can only be proved under special

conditions. For instance, in [6] the authors have proved

uniqueness of solution for the optimal control problem of

a bilinear distributed parameter system (DPS) only when

the initial state satisfies specific smallness conditions. In

terms of controllability, it has been demonstrated that bilinear

controls can always improve the controllability obtained by

just using either interior or boundary controls (see, e.g., [7]

and references therein).

Control of bilinear parabolic PDE systems arises in dif-

ferent application scenarios. In the control of the toroidal

current density radial profile in magnetically confined fusion

plasmas [8], the dynamics of the plasmas transport are gov-

erned by a singularly perturbed system (see, e.g., Chapter VI

and Chapter VII in [9]). By exploiting the time scale separa-

tion in the evolution of the kinetic and magnetic variables, it

is possible to obtain a magnetic diffusion equation describing

the evolution of the current profile and admiting diffusivity,

interior and boundary actuation. Physical actuators such as

plasma total current, line-averaged density and non-inductive

total power entering the diffusivity-interior-boundary control

terms are used to steer the plasma current density to a

desired profile in a designated time period [5]. In [10],

a saturated flow through a one-dimensional idealized tube

packed with soil is considered. The soil contains contaminant

samples and a fluid is pumped through the tube (from left

to right) to remove the contaminants. The velocity of the

fluid pumped into the tube is considered as the control

variable which appears as the convective coefficient in the

convective-diffusive PDE system governing the contaminant

concentration. In [3], the viscosity coefficient is considered

as a control function for the Burgers’ equation.
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In the design of optimal control strategies for infinite

dimensional systems, reduced order modeling techniques

play a crucial role. Different numerical methods of lines

(MOL), based on the finite element, finite difference and

spectral discretization for the spatial coordinate, have been

used to compute the optimal open-loop controls for parabolic

distributed parameter systems (see, e.g., [11]). In this paper,

we use the proper orthogonal decomposition (POD) method

to obtain a low dimensional dynamical system (LDDS)

for a bilinear parabolic PDE system. The POD method

is an efficient reduced order modeling (ROM) technique

used to obtain LDDS’s from data ensembles which arise

from numerical simulation or experimental observation. The

POD method has been widely used and proved success-

ful to discover coherent structures from complex physical

processes (see, e.g., [12], [13]). In [13], the POD approach

is applied to derive a reduced-order model of the Burgers’

equation, and then the associated optimal control is solved by

using the sequential quadratic programming (SQP) method.

Fundamental aspects of POD methods applied to parabolic

problems, such as error estimates of Galerkin-POD for both

linear and nonlinear parabolic systems, are discussed in [14].

By using the POD model reduction technique, the obtained

reduced order system in this work is a bilinear system.

Generally, for the numerical solution of the optimal control

problem of a finite dimensional bilinear system, a convergent

scheme based on quasi-linearization has been proposed in

[15], and references therein, to solve the optimality condi-

tions successively. The algorithm in [15], constructs linear

systems by updating system and input matrices at each

iteration step. The linear state-costate duality structure of

the optimality conditions is preserved at each iteration step.

Then, Riccati equations are derived to establish succes-

sive feedback laws. Similarly, instead of solving a Riccati

equation iteratively, a Lyapunov equation is solved at each

iteration step in [16]. In this paper, we present a new iteration

scheme based on the optimality condition, which introduces

an inhomogeneous term in the successive linear state-costate

duality structure. In comparison to our previous work [17],

the new proposed scheme avoids repeated computations of

the Riccati equation at each iteration step by introducing an

iterative scheme for the inhomogeneous term involved in the

feedback law, and guarantees convergence to the solution of

the two-boundary-value problem derived from Pontryagin’s

principle.

This work represents a novel effort to connect nonlin-

ear parabolic PDE feedback controls and iterative control

methodologies using model reduction. The paper is organized

as follows. In Section II, we discuss the POD method to

obtain reduced order models. In Section III, Galerkin projec-

tion is discussed based on a test function set composed by

dominant POD modes. In Section IV, we propose an iterative

convergent scheme based on the Picard approximation to

compute the suboptimal control laws. The convergence of

the iteration algorithm is demonstrated in Section V. The

simulation studies are presented in Section VI. Section VII

closes the paper by stating the conclusions.

II. POD REDUCED ORDER MODELING

Given a collection of functions V = {z(x, tj)} = {zj(x)},

j = 1, 2, . . . , n on the domain 0 ≤ x ≤ L, the goal of

the POD process is to produce an optimal orthogonal set of

basis functions VPOD = {ψ1(x), ψ2(x), . . . , ψl(x)}, (l ≤ n)
to approximate the space spanned by the given collection.

We will refer to the set V as the data collection and the set

VPOD as the POD basis. For any two functions fi(x) and

fj(x) in either V or VPOD , we define their inner product

as 〈fi, fj〉 =
∫ L
0
fifjdx, and the induced norm of any

function fi(x) as ‖fi‖L2 = 〈fi, fi〉 =
∫ L
0 f2

i dx. Given any

snapshot zj(x) from the collection set V , we assume that

it is possible to form an l-dimensional subspace VPOD =
span {ψ1, ψ2, . . . , ψl} to span it, i.e., zj ≈

∑l
i=1〈zj , ψi〉ψi.

The POD problem is to find the set VPOD minimizing the

approximation error of zj ≈
∑l

i=1〈zj, ψi〉ψi, i.e.,

min
ψi

Jb =

n∑

j=1

∥∥∥∥∥zj −
l∑

i=1

〈zj , ψi〉ψi

∥∥∥∥∥

2

L2

(4)

subject to the orthogonality condition

〈ψi, ψj〉 = δij =

{
1, i = j,

0, i 6= j.
(5)

We first simplify the cost functional Jb (ψ1, . . . , ψl),

Jb (ψ1, . . . , ψl)

=

n∑

j=1

〈
zj −

l∑

i=1

〈zj , ψi〉ψi, zj −

l∑

i=1

〈zj , ψi〉ψi

〉

=

n∑

j=1

[
〈zj , zj〉 − 2

l∑

i=1

〈zj , ψi〉
2 +

l∑

i=1

〈zj , ψi〉
2

]

=

n∑

j=1

[
〈zj , zj〉 −

l∑

i=1

〈zj , ψi〉
2

]
. (6)

Therefore, to solve the minimization problem (4), it is

equivalent to solve the following maximization problem

max
ψi

JB =

n∑

j=1

l∑

i=1

〈zj , ψi〉
2, subject to : 〈ψi, ψj〉 = δij . (7)

By introducing the operators K (x, x′) =
∑n

j=1 zj(x)zj(x
′)

and Rψ =
∫ L
0 K(x, x′)ψ(x′)dx′, we can rewrite JB =∑l

i=1〈Rψi, ψi〉. Therefore, for any POD basis function ψ ∈
VPOD , we formulate the following optimization problem

max
ψ

JPOD = 〈Rψ, ψ〉, subject to : 〈ψ, ψ〉 = 1. (8)

We define the associate Lagrange functional LPOD =
〈Rψ, ψ〉 − λ̃〈ψ, ψ〉, where λ̃ is an Lagrange multiplier, and

assume that ψ = ψ∗+ηψ′. Then we can compute LPOD(η),
where η is an arbitrary real number and ψ′ is an arbitrary

variation with respect to the optimal solution ψ∗ ∈ VPOD .

The optimality condition then becomes
dLPOD(η)

dη

∣∣∣
η=0

=

2〈Rψ∗ − λ̃ψ∗, ψ′〉 = 0. We note that ψ′ is arbitrary, then
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the optimality condition becomes the following eigenvalue

problem

Rψ = λ̃ψ, or

∫ L

0

K (x, x′)ψ(x′)dx′ = λ̃ψ(x). (9)

For each POD basis function ψ, we assume that it can

be expressed by the observations (or snapshots) zj , j =
1, 2, . . . , n, i.e., ψ =

∑n
k=1 akzk, which means that it

is possible to find a combination of the observation data

(i.e., to determine the coefficients ak) to extract dominant

characteristics. Now we substitute the snapshots expansion

ψ =
∑n
k=1 akzk into (9), then we can obtain

n∑

j=1

[
n∑

k=1

∫ L

0

zj(x
′)zk(x

′)dx′ak

]
zj(x)=λ̃

n∑

j=1

ajzj(x). (10)

By introducing the following matrix notation

Cjk =

∫ L

0

zj(x
′)zk(x

′)dx′, a = [a1, a2, . . . , an]
T

(11)

then we can rewrite (10) as

n∑

j=1

[
n∑

k=1

Cjkak − λ̃aj

]
zj(ρ̂) = 0, i.e., Ca = λa, (12)

where C=[Cjk] ∈ R
n×n. Since C is a nonnegative Hermitian

matrix, i.e., C = CT , it has a complete set of orthogonal

eigenvectors (a1, . . . , an) and each POD basis function can

be expressed as ψi = [z1, . . . , zn] ai, i = 1, 2, . . . , l.

III. POD/GALERKIN METHOD

We let ψj ∈ V ∗

POD be the test function, where V ∗

POD =
span{ψ1, . . . , ψl} is the test function space spanned by the

POD modes. Then, we multiply both sides of (1) by the test

function ψj(x) ∈ V ∗

POD , for j = 1, . . . , l, and integrate by

parts taking into account that ψj(0) = ψj(L) = 0 , to obtain

the following weak form
∫ L

0

∂z

∂t
ψj(x)dx + (1 + v)

∫ L

0

ζ
∂z

∂x

∂ψj

∂x
dx

=

∫ L

0

ξ(x)uψj(x)dx +

∫ L

0

λ(x)z(x, t)ψj(x)dx.

(13)

We implement the Galerkin approximation z(x, t) ≈
y(x, t) =

∑l
k=1 αk(t)ψk(x) and substitute this expression

for z(x, t) into the weak form (13). Then, we can obtain the

following finite dimensional system:

dy

dt
= (K +G)y +Kyv(t) + Fu(t), (14)

where

Mjk=

∫ 1

0

ψj(x)ψk(x)dx=δjk ,Kjk=−

∫ 1

0

∂(ζψj)

∂x

∂ψk

∂x
dx, (15)

Fj=

∫ 1

0

ξ(x)ψj(x)dx,Gjk=

∫ 1

0

λ(x)ψj(x)ψk(x)dx, (16)

where y(t) = (α1(t), . . . , αl(t))
T ∈ R

l, G,K ∈ R
l×l. The

vector y(t) is the finite dimensional approximation, with

respect to the obtained POD modes, of the variable z(x, t) in

(1). The initial values are given by αj(0) = 〈z(·, 0), ψj〉 , j =
1, 2, · · · , l.

IV. BILINEAR QUADRATIC OPTIMAL CONTROL

The finite horizon optimal control problem defined in (3)

can now be rewritten as

min
u,v

J=
1

2
yT(tf )Sy(tf )+

1

2

∫ tf

t0

[
yT(t)Qy(t)+r2uu

2+rvv
2
]
dt,

where Sij =
∫ L
0 S(x)ψi(x)ψj(x)dx and Qij =∫ L

0
Q(x)ψi(x)ψj(x)dx, i, j = 1, . . . , l.

Introducing the Lagrange multiplier p ∈ R
l, we can define

the system Hamiltonian H(y, u, v, p) = 1
2 (yTQy + ruu

2 +
rvv

2) + pT (Ay + Fu+Kyv), where A = K + G. The

minimizing control law is given by




∂H

∂u
= 0 ⇒ u∗(t) = −r−1

u FTp,

∂H

∂v
= 0 ⇒ v∗(t) = −r−1

v (Ky)Tp.

(17)

Thus, using the maximum principle, a canonical optimality

condition can be obtained,





ẏ =
∂H

∂p
= Ay − Fr−1

u FTp −Kyr−1
v (Ky)Tp,

ṗ = −
∂H

∂y
= −Qy −ATp + r−1

v (Ky)TpKTp,

y(t0) = y0, p(tf ) = Sy(tf ).

(18)

which is a nonlinear two-point boundary value problem

(TBVP) and usually impossible to be solved explicitly.

To compute the optimal control for the bilinear system

(14), we propose the following successive scheme based on

the Picard approximation,

ẏ(k+1) = Ay(k+1) −Wp(k+1) −G(k), (19)

ṗ(k+1) = −Qy(k+1) −ATp(k+1) +H(k), (20)

y(k+1)(t0) = y0, p(k+1)(tf ) = Sy(k+1)(tf ), (21)

where the superscript (k) denotes the iteration number and

W = Fr−1
u FT = WT , G(k) = Ky(k)r−1

v

[
Ky(k)

]T
p(k),

H(k) = r−1
v

[
Ky(k)

]T
p(k)KTp(k). To solve the linear two

boundary value problem (19)-(21), it is standard to assume

p(k+1) = Py(k+1) + q(k+1), PT = P and to obtain the

equations

Ṗ = −PA−ATP + PWP −Q, P (tf ) = S,

q̇(k+1) = −(A−WP )T q(k+1) + PG(k) +H(k),

q(k+1)(tf ) = 0,

(22)

where

G(k) = r−1
v Ky(k)

[
Ky(k)

]T [
Py(k) + q(k)

]
,

H(k) = r−1
v

[
Ky(k)

]T [
Py(k) + q(k)

]
KT

[
Py(k) + q(k)

]
.

Then, at each iteration step, the quasi-closed-loop system

becomes

ẏ(k+1) =
(
A−WTP

)
y(k+1) −Wq(k+1) −G(k),

y(k+1)(t0) = y0.
(23)
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When the iteration index (k) is large enough, we can achieve

the following feedback laws,

u=−r−1
u FT(Py+q∗) , v=−r−1

v (Ky)T(Py + q∗) , (24)

where limk→∞ q(k) = q∗.

Remark 1: The solution of the Riccati matrix equation

(P -equation) actually requires the solution of l2 coupled

ODEs, where l denotes the system dimension. The advantage

of this new algorithm resides on the fact that it is not

necessary to compute the Riccati equation in each iteration

step. Only the vector equation for the feed-forward control

term (q-equation) needs to be solved iteratively in each step.

However, the solution of this equation requires the solution

of only l coupled ODEs.

V. CONVERGENCE STUDY

In the rest of this section, it remains to prove the con-

vergence of the iteration scheme in solving the optimal

control problem. Namely, we will show the following limits

in appropriate functional spaces

lim
k→∞

y(k) = y∗, lim
k→∞

q(k) = q∗. (25)

The associated spaces are three Banach spaces

(see, e.g., [15], [18]) B1 = C([t0, tf ],R
l),

B2 = C([t0, tf ],R
l×l), B3 = C([t0, tf ],R

l) with norms

‖y‖B1
= sups∈[t0,tf ] ‖y(s)‖, ‖P‖B2

= sups∈[t0,tf ] ‖P (s)‖

and ‖q‖B3
= sups∈[t0,tf ] ‖q(s)‖, where ‖y‖ =

√∑l
i=1 y2

i ,

‖P‖ =
√∑l

i,j=1 P
2
ij and ‖q‖ =

√∑l
i=1 q

2
i . To show (25),

we only need to show that both
{
y(k)

}
and

{
P (k)

}
are

Cauchy sequences. Thus, the convergence follows due to the

completeness of the Banach spaces. The convergence proof

is based on the contraction mapping theorem for Banach

spaces [19].

Theorem 1: If the control weight factor rv is large

enough, then the iteration scheme is convergent, i.e.,

limk→∞ y(k) = y∗, limk→∞ q(k) = q∗.

Proof: By direct computations, we can obtain

y(k+1) − y(k) (26)

=−

∫ t

t0

e(A−WP )(t−τ)
{
W

[
q(k+1)−q(k)

]
+

[
G(k)−G(k−1)

]}
dτ,

and

q(k+1)−q(k)=−

∫ tf

t

e(A−WP )T (t−τ)P
[
G(k)−G(k−1)

]
dτ

−

∫ tf

t

e(A−WP )T (t−τ)
[
H(k)−H(k−1)

]
dτ. (27)

Then, we compute the norms,

∥∥∥y(k+1)−y(k)
∥∥∥≤

∫ tf

t0

(
γ1

∥∥∥q(k+1)−q(k)
∥∥∥+γ2

∥∥∥G(k)−G(k−1)
∥∥∥
)
dτ,

∥∥∥q(k+1)−q(k)
∥∥∥≤

∫ tf

t0

(
γ3

∥∥∥G(k)−G(k−1)
∥∥∥+γ4

∥∥∥H(k)−H(k−1)
∥∥∥
)
dτ,

where γ1(t) =
∥∥e(A−WP )(t−τ)W

∥∥, γ2(t) =∥∥e(A−WP )(t−τ)
∥∥, γ3(t) =

∥∥∥e(A−WP )T (t−τ)P
∥∥∥ and

γ4(t) =
∥∥∥e(A−WP )T (t−τ)

∥∥∥ = γ2(t).

We rewrite G(k)=r−1
v KY(k)KT

[
Py(k)+q(k)

]
andH(k)=

r−1
v δ

(k)
yy K

T
[
Py(k)+q(k)

]
+r−1

v δ
(k)
yq K

T
[
Py(k) + q(k)

]
, where

Y(k) = y(k)
[
y(k)

]T
, δ

(k)
yy =

[
y(k)

]T
KTPy(k) and δ

(k)
yq =[

y(k)
]T
KT q(k). Now we evaluate G(k)−G(k−1) and H(k)−

H(k−1) in terms of q(k) − q(k−1) and y(k) − y(k−1),
∥∥G(k) −G(k−1)

∥∥
r−1
v

≤
∥∥∥K

[
Y(k) − Y(k−1)

]
KT

[
Py(k) + q(k)

]∥∥∥

+
∥∥∥KY(k−1)KTP

[
y(k+1) − y(k)

]∥∥∥

+
∥∥∥KY(k−1)KT

[
q(k) − q(k−1)

]∥∥∥ , (28)

where Y(k) − Y(k−1) =
[
y(k)−y(k−1)

] [
y(k)

]T
+

y(k−1)
[
y(k)−y(k−1)

]T
. Then, we have

∥∥G(k)−G(k−1)
∥∥

r−1
v

≤γ
(k)
5

∥∥∥y(k)−y(k−1)
∥∥∥+γ(k)

6

∥∥∥q(k)−q(k−1)
∥∥∥ ,

where γ
(k)
5 (t) =

[
‖y(k)‖ + ‖y(k−1)‖

]
‖K‖2

∥∥Py(k) + q(k)
∥∥+

‖K‖2‖P‖
∥∥Y(k−1)

∥∥, γ
(k)
6 (t) = ‖K‖2

∥∥Y(k−1)
∥∥.

Similarly, we have
∥∥H(k) −H(k−1)

∥∥
r−1
v

≤
∣∣∣δ(k)yy − δ(k−1)

yy + δ(k)yq − δ(k−1)
yq

∣∣∣ ‖KT ‖
∥∥∥Py(k) + q(k)

∥∥∥

+
[∣∣∣δ(k−1)

yy

∣∣∣ +
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KTP‖

∥∥∥y(k) − y(k−1)
∥∥∥

+
[∣∣∣δ(k−1)

yy

∣∣∣ +
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KT ‖

∥∥∥q(k) − q(k−1)
∥∥∥ . (29)

Noting δ
(k)
yy − δ

(k−1)
yy =

[
y(k) − y(k−1)

]T
KTPy(k) +[

y(k−1)
]T
KTP

[
y(k) − y(k−1)

]
and δ

(k)
yq − δ

(k−1)
yq =[

y(k) − y(k−1)
]T
KT q(k) +

[
y(k−1)

]T
KT

[
q(k) − q(k−1)

]
,

then we can obtain
∥∥H(k)−H(k−1)

∥∥
r−1
v

≤γ
(k)
7

∥∥∥y(k)−y(k−1)
∥∥∥+γ(k)

8

∥∥∥q(k)−q(k−1)
∥∥∥ ,

where γ
(k)
7 (t), γ

(k)
8 (t) can be obtained by direct computa-

tions

γ
(k)
7 (t)

= ‖KT ‖
∥∥∥Py(k) + q(k)

∥∥∥ ‖KTP‖
(
‖y(k)‖ + ‖y(k−1)‖

)

+
[∣∣∣δ(k)yy

∣∣∣+
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KTP‖+‖K‖‖Py(k)+q(k)‖‖KT q(k)‖,

(30)

γ
(k)
8 (t)

= ‖KT ‖
∥∥∥Py(k) + q(k)

∥∥∥ ‖KTP‖‖y(k−1)‖

+
[∣∣∣δ(k)yy

∣∣∣ +
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KT‖. (31)
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Fig. 1. Closed-loop control system.

Therefore, by taking B-norms both sides, we obtain

[
‖y(k+1) − y(k)‖B1

‖q(k+1) − q(k)‖B3

]
≤
T

rv

[
‖y(k) − y(k−1)‖B1

‖q(k) − q(k−1)‖B3

]
(32)

where the elements of the transform matrix T are given by

T11 = max
τ∈[t0,tf ]

[
γ2(τ)γ

(k)
5 (τ)

]
, (33)

T12 = max
τ∈[t0,tf ]

[
γ1(τ) + γ2(τ)γ

(k)
6 (τ)

]
, (34)

T21 = max
τ∈[t0,tf ]

[
γ3(τ)γ

(k)
5 (τ) + γ4(τ)γ

(k)
7 (τ)

]
, (35)

T22 = max
τ∈[t0,tf ]

[
γ3(τ)γ

(k)
6 (τ) + γ4(τ)γ

(k)
8 (τ)

]
. (36)

Therefore, if all of the eigenvalues of T , σ(T ) satisfy

r−1
v max |σ(T )| < 1, then we can conclude that the se-

quences {y(k)} and {q(k)} are convergent.

Remark 2: In the proof of Theorem 1, we note that the

transformation matrix T calculated in (33)-(36) depends on

the iteration index (k) and also includes the evolutions of y
and q. Although it is difficult to compute the eigenvalues of

T explicitly in each iteration step, to ensure convergence of

the iteration scheme we can just make the control weighting

factor rv large enough. It is possible to prove that a large

enough rv also guarantees boundness for the matrix T .

Increasing the value of rv is also a way to ensure |v| < 1.

VI. SIMULATION STUDY

Closing the control loop with the iteration-based feedback

laws is not as direct as in the finite dimensional case (see,

Fig. 1). After the N -th iteration, we can obtain the feedback

controllers

u(N)=−r−1
u F

T
[
Py+q(N)

]
, v(N)=−r−1

v (Ky)T
[
Py+q(N)

]
,

based on (24), where y(t) is the finite-dimensional approxi-

mation, with respect to the l POD modes, of z(x, t). Before

being able to substitute the feedback laws into the original

system (1), with the physical domain defined over (0 ≤ x ≤
L = 1), we need to rewrite the control laws in terms of

z(x, t), or at least in terms of a higher-order approximation

Y(t) of z(x, t).
We use the pseudo-spectral method to simulate the non-

linear PDE system. Assuming that the evolution can be

expanded by a series of harmonic functions, z(x, t) ≈∑e
j=1 βj(t)φj(x), where φj(x) = sin(jπx), then we can

derive a higher-order finite dimensional system using the

Galerkin projection method

M
dY

dt
= AY + KYv(N) + Fu(N), (37)

where the system state vector is defined by Y =
[β1, . . . , βe]

T
, with e > l. The system matrices can be ob-

tained by following the same lines of (15)-(16) by replacing

the POD modes with harmonics basis functions. By noting

that

αi =

∫ 1

0

z(x, t)ψi(x)dx =

e∑

j=1

βj

∫ 1

0

φj(x)ψi(x)dx

and introducing C ∈ R
l×e, [C]ij =

∫ 1

0 φj(x)ψi(x)dx, then

we have y = CY. Thus, we can formulate the feedback laws

in terms of the new state vector Y,

u=−r−1
u FT (PCY + q∗) , v=−r−1

v (KCY)T (PCY+q∗) .

Therefore, the closed loop system becomes

M
dY

dt
= AY − r−1

u FFT (PCY + q∗)

− r−1
v KY(KCY)T (PCY + q∗) . (38)

We first simulate the system (1) over t0 = 0 ≤ t ≤ tf = 50
with ζ(x) = 10−3, ξ(x) = sin(πx), λ(x) ≡ 0, ϕ(x) =∑5

k=1 sin(kπx) and u(t) = v(t) = 0 to obtain the POD

modes. The system evolution and the dominant POD modes

are shown in Fig. 2 and Fig. 3, respectively. By using the first

four POD modes (l = 4) we can construct a bilinear system

and the approximation error is shown in Fig. 4. In validating

the iteration algorithm, we choose ru = 1, rv = 15, S =
0.5I and Q = 0.01I. The iteration scheme converges and

the obtained feedback laws can enhance the dissipation of

the system evolution. The simulation of the evolution of the

closed-loop PDE system is shown in Fig. 5 using 12 sine

wave basis functions in the pseudo-spectral approximation.

A comparison of the spatial profiles of the controlled and

uncontrolled cases at the final time tf is shown in Fig. 6.

VII. CONCLUSIONS

In this paper we study a controlled parabolic system with

two types of actuation: diffusivity and interior controls. By

using the POD technique, we derive a low dimensional

dynamical system which governs the dominant dynamics of

the original parabolic system. The reduced order system is of

a bilinear form. We propose a convergent successive scheme

based on the Picard approximation to compute the solution

of a finite-time sub-optimal control defined for the reduced-

order bilinear system. This new algorithm avoids repeated

numerical computation of the Riccati equation at each iter-

ation step by introducing an iteration scheme for the feed-

forward control component. In terms of the number of ODEs

required to solve the Riccati matrix equation (P -equation)

and the feed-forward vector equation (q-equation), this new

method can decrease the number of ODEs to be computed

at each iteration step from l2 to l. Simulation studies show

the effectiveness of the model reduction technique and the

successive sub-optimal control laws.
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Fig. 2. Uncontrolled dynamics of z(x, t) in system (1).
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Fig. 4. Error between PDE and reduced-order ODE.
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Fig. 5. Closed-loop dynamics of z(x, t).
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Fig. 6. Comparison of final spatial profiles z(x, tf ) (tf = 50). The initial
spatial profile z(x, t0) (t0 = 0) is also shown.
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