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Abstract— We introduce a dynamic vehicle routing problem
in which demands arrive uniformly on a segment and via a
temporal Poisson process. Upon arrival, the demands translate
perpendicular to the segment in a given direction and with a
fixed speed. A service vehicle, with speed greater than that of
the demands, seeks to serve these translating demands. For the
existence of any stabilizing policy, we determine a necessary
condition on the arrival rate of the demands in terms of the
problem parameters: (i) the speed ratio between the demand
and service vehicle, and (ii) the length of the segment on
which demands arrive. Next, we propose a novel policy for the
vehicle that involves servicing the outstanding demands as per
a translational minimum Hamiltonian path (TMHP) through
the moving demands. We derive a sufficient condition on the
arrival rate of the demands for stability of the TMHP-based
policy, in terms of the problem parameters. We show that in
the limiting case in which the demands move much slower than
the service vehicle, the necessary and the sufficient conditions
on the arrival rate are within a constant factor.

I. INTRODUCTION

Vehicle routing is concerned with planning optimal vehicle

routes for providing service to a given set of customers. In

contrast, Dynamic Vehicle Routing (DVR) considers sce-

narios in which not all customer information is known a

priori, and thus routes must be re-planned as new customer

information becomes available. An early DVR problem is

the Dynamic Traveling Repairperson Problem (DTRP) [1],

in which service requests, or demands arrive sequentially in a

region and a service vehicle seeks to serve them by reaching

each demand location. In this two-part paper, we introduce a

DVR problem in which the demands move with a specified

velocity upon arrival. This problem has applications in areas

such as perimeter defense, wherein the demands are moving

targets trying to cross a region under surveillance by a UAV.

Another application is in the automation industry where the

demands are objects arriving on a conveyor belt and a robotic

arm seeks to perform a pick-and-place operation on them.

The goal in the DTRP [1] is to minimize the expected time

spent by each demand before being served. In [1], the authors

propose a policy that is optimal in the case of low arrival rate,

and several policies within a constant factor of the optimal

in the case of high arrival rate. In [2], they study multiple

service vehicles, and vehicles with finite service capacity.
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In [3], a single policy is proposed which is optimal for the

case of low arrival rate and performs within a constant factor

of the best known policy for the case of high arrival rate.

In [4], decentralized policies are developed for the multiple

service vehicle versions of the DTRP.

The Euclidean Traveling Salesperson Problem (ETSP)

consists of determining the minimum length tour through

a given set of static points in a region [5]. Vehicle routing

with objects moving on straight lines was introduced in [6],

in which a fixed number of objects move in the negative

y-direction with fixed speed, and the motion of the service

vehicle is constrained to be parallel to either the x- or the

y-axis. For a version of this problem wherein the vehicle has

arbitrary motion, termed as the translational Traveling Sales-

person Problem, a polynomial-time approximation scheme

was presented in [7] to catch all objects in minimum time. [8]

and [9] address other versions of ETSP with moving objects.

We introduce a dynamic vehicle routing problem in which

demands arrive uniformly on a segment of length W , via

a temporal Poisson process with rate λ. Upon arrival, the

demands translate in a fixed direction perpendicular to the

line and with a fixed speed v < 1. A service vehicle, modeled

as a first-order integrator with unit speed, seeks to serve these

mobile demands. Our contributions are as follows. First,

we derive a necessary condition on the arrival rate for the

existence of a stabilizing policy, i.e., a finite expected time

spent by a demand in the environment. Second, we propose a

novel policy which involves servicing all of the outstanding

demands as per a translational minimum Hamiltonian path

(TMHP) through them. We derive a sufficient condition for

stability of this TMHP-based policy, and also obtain an

upper bound on the steady-state expected time a demand

spends in the environment. As the arrival rate λ → +∞,

the necessary stability condition implies that the demands

must have v → 0+. This regime of low demand speed is the

focus of this paper. In this regime, we show that the sufficient

stability condition for the TMHP-based policy is within a

constant factor of the necessary condition for stability.

In companion paper [10], we analyze a first-come-first-

served (FCFS) policy in which the demands are served in the

order of their arrival. We show that in the regime of λ → 0+,

the FCFS policy minimizes the expected time spent by a

demand before being served; while in the regime of v → 1−,

we show that every stable policy must serve demands in

the FCFS order, and hence FCFS is optimal. Thus, for low

demand speeds the TMHP-based policy can stabilize higher

arrival rates, while for high demand speeds the FCFS can

stabilize higher arrival rates. This is summarized in Fig. 1.
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Fig. 1. A summary of stability regions for the TMHP-based policy and the
FCFS policy. Stable service policies exist only for the region under the solid
black curve. In the top figure, the solid black curve is due to Theorem IV.1,
the dashed blue curve is due to part (i) of Theorem V.1, and the red curve
is described in [10]. In the asymptotic regime shown in the bottom left, the
dashed blue curve is due to Theorem V.2, and is different than the one in
the top figure. In the asymptotic regime shown in the bottom right, the solid
black curve is described in [10], and is different from the solid black curve
in the top figure.

This paper is organized as follows: we begin with back-

ground results on the traveling salesperson problems in

Section II. The problem formulation is presented in Sec-

tion III. The necessary condition for stability is derived in

Section IV. The TMHP-based policy and its stability results

are presented in Section V. Simulation results are presented

in Section VI. Due to space constraints, we include only a

sketch of proofs for some intermediate results. The complete

proofs are presented in [11].

II. PRELIMINARY RESULTS

We use the following motion to reach a demand.

Proposition II.1 (Constant bearing control, [12]) Given

the locations p := (X, Y ) ∈ E and q := (x, y) ∈ E at time

t of the vehicle and a demand, respectively, then the motion

of the vehicle towards the point (x, y + vT ), where

T (p,q) :=

√

(1 − v2)(X − x)2 + (Y − y)2

1 − v2
− v(Y − y)

1 − v2
,

minimizes the time taken by the vehicle to reach the demand.

Constant bearing control is illustrated in Fig. 2.

We now review several results on determining shortest

paths through sets of points.

A. The Euclidean Minimum Hamiltonian Path (EMHP)

Given a set of points in the plane, a Euclidean Hamiltonian

path is a path that visits each point exactly once. A Euclidean

C = (x, y + vT )

p = (X,Y )

q = (x, y)

W

(0, 0)

Fig. 2. Constant bearing control. The vehicle motion towards the point
C := (x, y + vT ) minimizes the time taken to reach the demand q.

minimum Hamiltonian path (EMHP) is a Euclidean Hamil-

tonian path that has minimum length. In this paper, we also

consider the problem of determining a constrained EMHP

which starts at a specified start point, visits a set of points

and terminates at a specified end point.

More specifically, the EMHP problem is as follows.

Given n static points placed in R
2, determine the

length of the shortest path which visits each point

exactly once.

An upper bound on the length of such a path for points in

a unit square was given by Few [13]. By mimicking the

technique of Few, we can extend the bound to the case of

points in a rectangular region, which is described in the

following lemma (cf. [11] for proof).

Lemma II.2 (EMHP length) Given n points in a 1 × h
rectangle in the plane, where h ∈ R>0, there exists a path

that starts from a unit length edge of the rectangle, passes

through each of the n points exactly once, and terminates on

the opposite unit length edge, having length upper bounded

by √
2hn + h + 5/2.

We will also require the following result on the length of a

path through a large number of points. Given a set Q of n
points in R

2, the Euclidean Traveling Salesperson Problem

(ETSP) is to determine the shortest tour, i.e., a closed path

that visits each point exactly once. Let ETSP(Q) denote

the length of the ETSP tour through Q. The following is the

classic result by Beardwood, Halton, and Hammersly [14].

Theorem II.3 (Asymptotic ETSP length, [14]) If a set Q
of n points are distributed independently and uniformly in a

compact region of area A, then there exists a constant βTSP

such that, almost surely,

lim
n→+∞

ETSP(Q)√
n

= βTSP

√
A.

The constant βTSP has been estimated numerically as

βTSP ≈ 0.7120 ± 0.0002, [15].

B. The Translational Minimum Hamiltonian Path (TMHP)

Next, we describe the TMHP problem which was proposed

and solved in [7]. This problem is posed as follows.
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Given initial coordinates; s of a start point, Q :=
{q1, . . . ,qn} of a set of points, and f of a finish

point, all translating with the same constant speed

v and in the same direction, determine a path that

starts at time zero from point s, visits all points in

the set Q exactly once and ends at the finish point,

and the length LT,v(s,Q, f) of which is minimum.

In what follows, we wish to determine the TMHP through

points which translate in the positive y direction. We also

assume the speed of the service vehicle to be normalized to

unity, and hence consider the speed of the points v ∈ ]0, 1[.
A solution for the TMHP problem is: (i) for v ∈ ]0, 1[, define

the map gv : R
2 → R

2 by

gv(x, y) =
( x√

1 − v2
,

y

1 − v2

)

.

(ii) Compute the EMHP that starts at gv(s), passes through

the set of points given by {gv(q1), . . . , gv(qn)} =: gv(Q)
and ends at gv(f). (iii) Move between any two demands using

constant bearing control. The following result is established.

Lemma II.4 (TMHP length, [7]) Let the initial coordi-

nates s = (xs, ys) and f = (xf , yf ), and the speed of the

points v ∈ ]0, 1[. The length of the TMHP is

LT,v(s,Q, f) = LE(gv(s), gv(Q), gv(f)) +
v(yf − ys)

1 − v2
,

where LE(gv(s), gv(Q), gv(f)) denotes the length of the

EMHP with starting point gv(s), passing through the set

of points {gv(q1), . . . , gv(qn)}, and ending at gv(f).

III. PROBLEM FORMULATION

We consider a single service vehicle that seeks to service

mobile demands that arrive via a spatio-temporal process

on a segment with length W along the x-axis, termed the

generator. The vehicle is modeled as a first-order integrator

with speed upper bounded by one. The demands arrive

uniformly distributed on the generator via a temporal Poisson

process with intensity λ > 0, and translate with constant

speed v ∈ ]0, 1[ along the positive y-axis, as shown in

Figure 3. We assume that once the vehicle reaches a demand,

the demand is served instantaneously. The vehicle is assumed

to have unlimited fuel and demand servicing capacity.

(X(t), Y (t))

v

W

(0, 0)

Fig. 3. The problem setup. The thick line segment is the generator of
mobile demands. The dark circle denotes a demand and the square denotes
the service vehicle.

We define the environment as E := [0, W ] × R≥0 ⊂ R
2,

and let p(t) = [X(t), Y (t)]T ∈ E denote the position of the

service vehicle at time t. Let Q(t) ⊂ E denote the set of all

demand locations at time t, and n(t) the cardinality of Q(t).
Servicing of a demand qi ∈ Q and removing it from the set

Q occurs when the service vehicle reaches the location of

the demand. A static feedback control policy for the system

is a map P : E × FIN(E) → R
2, where FIN(E) is the

set of finite subsets of E , assigning a commanded velocity

to the service vehicle as a function of the current state of

the system: ṗ(t) = P(p(t),Q(t)). Let Di denote the time

that the ith demand spends within the set Q, i.e., the delay

between the generation of the ith demand and the time it is

serviced. The policy P is stable if under its action,

lim sup
i→+∞

E [Di] < +∞,

i.e., the steady state expected delay is finite. Equiv-

alently, the policy P is stable if under its action,

lim supt→+∞ E [n(t)] < +∞, that is, if the vehicle is able

to service demands at a rate that is—on average—at least

as fast as the rate at which new demands arrive. In what

follows, our goal is to design stable policies for the system.

IV. A NECESSARY CONDITION FOR STABILITY

In this section, we provide a necessary condition on the

arrival rate for the existence of a stabilizing policy. We begin

by stating the main result of the section, with the remainder

of the section dedicated to its proof.

Theorem IV.1 (Necessary condition for stability) A nec-

essary condition for the existence of a stabilizing policy is

that

λ ≤ 4

vW
.

To prove Theorem IV.1, we begin by looking at the

distribution of demands in the service region.

Lemma IV.2 (Poisson point process) Suppose the genera-

tion of demands commences at time 0 and no demands are

serviced in the interval [0, t]. Let Q denote the set of all

demands in [0, W ]× [0, vt] at time t. Then, given a compact

region R of area A contained in [0, W ] × [0, vt],

P[|R ∩ Q| = n] =
e−λ̄A(λ̄A)n

n!
, where λ̄ := λ/(vW ).

Proof: [Sketch] This proof requires the calculation of

the probability that at time t, |R ∩ Q| = n, where R =
[ℓ, ℓ+∆ℓ]×[h, h+∆h] (that is, the probability that the region

R contains n points in Q). Since the generation process is

temporally Poisson and spatially uniform, this is equal to the

probability that the region [0, ∆ℓ]× [0, ∆h] contains n points

in Q. After some simplifications, we obtain that the result

is true for the above considered rectangular region. Finally,

since every measurable, compact region can be written as a

countable union of rectangles, the result is established.

Remark IV.3 (Uniformly distributed demands)

Lemma IV.2 shows us that the number of demands in

an unserviced region is Poisson distributed with rate
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λ/(vW ), and conditioned on this number, the demands are

distributed uniformly. �

We now establish a result on the expected time to travel

from a demand to its nearest neighbor.

Lemma IV.4 (Travel time bound) Consider the set Q of

demands in E at time t. Let Td be a random variable giving

the minimum amount of time required to travel to a demand

in Q from a vehicle position (X, Y ), selected a priori. Then

E [Td] ≥
1

2

√

vW

λ
.

Proof: Using Proposition II.1, we can write the travel

time T from an a priori vehicle position p := (X, Y ) to a

demand location q := (x, y) implicitly as

T (p,q)2 = (X − x)2 + ((Y − y) − vT (p,q))2. (1)

Thus, any demand in ST , where

ST := {(x, y) ∈ E : (X − x)2 + ((Y − vT ) − y)2 ≤ T 2},

can be reached from (X, Y ) in T time units. In general,

the area of ST satisfies |ST | ≤ πT 2. By Lemma IV.2 the

demands in an unserviced region are uniformly randomly

distributed with density λ̄ = λ/(vW ). Thus, for every

vehicle position p chosen before the generation of demands,

P[Td > T ] = P[|ST ∩ Q| = 0] ≥ e−λ̄|ST | ≥ e−λπT 2/(vW ).

Therefore,

E [Td] ≥
∫ +∞

0

P[Td > T ]dT ≥
∫ +∞

0

e−λπT 2/(vW )dT

=

√
π

2
√

λπ/(vW )
=

1

2

√

vW

λ
.

We can now prove Theorem IV.1.

Proof: [Proof of Theorem IV.1] A necessary condition

for the stability of any policy (see, for example [1]) is that

λE [T ] ≤ 1,

where E [T ] is the steady-state expected travel time between

demands i and i + 1. For every policy E [T ] ≥ E [Td] ≥
1
2

√

vW
λ . Thus a necessary condition for stability is that

λ
1

2

√

vW

λ
≤ 1 ⇔ λ ≤ 4

vW
.

V. THE TMHP-BASED POLICY AND ITS STABILITY

In this section, we present the TMHP-based policy for the

vehicle along with the sufficient condition for its stability.

The TMHP-based policy is summarized in Algorithm 1, and

an instance of the policy is illustrated in Fig. 4.

The TMHP-based policy gives the following result.

Algorithm 1: TMHP-based policy

Assumes: Service vehicle has initial position (X, Y ),
and all demands have lower y-coordinates.

if no outstanding demands in the environment then1

Move towards the generating line for a time interval2

of Y/(1 + v).
else3

Let V be a “virtual” demand located at (X, 0)4

translating with speed v in the positive y-direction.

Service all the outstanding demands by following a5

TMHP starting from (X, Y ), and terminating at

virtual demand V . Use the constant bearing control

to move between demands.

Repeat.6

W

(X, Y )

V

Fig. 4. The TMHP-based policy. The vehicle serves all outstanding
demands inside the shaded rectangular region R(X, Y ) as per the TMHP
that begins at (X, Y ) and terminates at the virtual demand V .

Theorem V.1 (Stability of TMHP-based policy) (i) The

TMHP-based policy is stable if

λ <
(1 − v2)3/2

2vW (1 + v)2
, and,

(ii) assuming that the TMHP-based policy is stable, the

steady state expected time spent by a demand in the environ-

ment is upper bounded by

5W

2
√

1 − v2

(

1

1/(1 + v) −
√

2Wvλ/(1 − v2)3/2

)

.

Proof: Let R(X, Y ) denote the region [0, W ]× [0, Y ]
defined by the position (X, Y ) of the service vehicle, as

shown in Fig. 4. Observe that at the end of every iteration of

this policy, all outstanding demands have their y-coordinates

less than or equal to that of the vehicle, and hence would be

contained in R(X, Y ). Let the vehicle be located at p(ti) =
(X(ti), Y (ti)) at time instant ti. If there are no outstanding

demands in R(X(ti), Y (ti)), then
Y (ti)
1+v is the distance that

the vehicle moves towards the generator. Thus, we have

Y (ti+1) = Y (ti) −
Y (ti)

1 + v
=

vY (ti)

1 + v
,

if there are no unserviced demands in R(X(ti), Y (ti))
at time ti. Otherwise, for any unserviced demands

{q1, . . . ,qni
} where ni ≥ 1, in R(X(ti), Y (ti)),

Y (ti+1) = vLT,v(p(ti), {q1, . . . ,qni
}, V (ti)),
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where LT,v(p(ti), {q1, . . . ,qni
}, V (ti)) is the time taken for

the vehicle as per the TMHP that begins at p(ti), serves all

ni demands and ends at the virtual demand V (ti). Since

the distribution of the demands inside R(X(ti), Y (ti)) is

spatially Poisson (cf. Lemma IV.2 from Section IV),

Y (ti+1) =
vY (ti)

1 + v
, w.p. e−λ̄A,

= vLT,v(p(ti), {q1}, V (ti)), w.p. (λ̄A)e−λ̄A,

= vLT,v(p(ti), {q1,q2}, V (ti)), w.p.
(λ̄A)2

2!
e−λ̄A,

and so on, where A = WY (ti) is the area of

R(X(ti), Y (ti)). We now seek an upper bound for the length

LT,v(p(ti), {q1, . . . ,qni
}, V (ti)) of the TMHP for which

we use the method from Section II-B. For ni = k ≥ 1,

invoking Lemma II.4 and writing Yi := Y (ti) and Qk :=
{q1, . . . ,qk},

LT,v(p,Qk, V ) = LE(gv(p), gv(Qk), gv(V )) − vYi

1 − v2

≤
√

2WYik

(1 − v2)3/2
+

Yi

1 + v
+

5W

2
√

1 − v2
,

where the second equality is due to yV (ti) = 0, and the

inequality is obtained using Lemma II.2. Thus, we have

E [Yi+1|Yi] ≤ v
Yi

1 + v
e−λ̄A+

v

∞
∑

k=1

(

√

2WYik

(1 − v2)3/2
+

Yi

1 + v
+

5W

2
√

1 − v2

) (λ̄A)k

k!
e−λ̄A,

where λ̄ = λ/vW from Lemma IV.2. Collecting the terms

with vYi/(1 + v) together, we obtain

E [Yi+1|Yi] ≤
vYi

1 + v

∞
∑

k=0

(λ̄A)k

k!
e−λ̄A+

∞
∑

k=1

(

√

2v2WYik

(1 − v2)3/2
+

5vW

2
√

1 − v2

)(λ̄A)k

k!
e−λ̄A

≤ vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

YiE
[√

ni|Yi

]

+
5vW

2
√

1 − v2

≤ vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

Yi

√

E [ni|Yi] +
5vW

2
√

1 − v2

=
vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

Yi

√

λWYi

vW
+

5vW

2
√

1 − v2

=
vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

λ

v
Yi +

5vW

2
√

1 − v2
,

where the inequality in the third step follows by applying

Jensen’s inequality to the conditional expectation and the

equality in the fourth step is due to the arrival process is

Poisson with rate λ and for a time interval Yi/v. Using the

law of iterated expectation, we have

E [Yi+1] = E [E [Yi+1|Yi]]

≤ v

1 + v
E [Yi] +

√

2vλW

(1 − v2)3/2
E [Yi] + v

5W

2
√

1 − v2
, (2)

which is a linear recurrence in E [Yi]. Thus, limi→+∞ E [Yi]
is finite if

v

1 + v
+

√

2Wvλ

(1 − v2)3/2
< 1 ⇔ λ <

(1 − v2)3/2

2Wv(1 + v)2
.

Thus, if λ satisfies the condition above, then expected

number of demands in the environment is finite and the

TMHP-based policy is stable.

The upper bound in part (ii) follows since the recurrence

Eq. (2) is linear.

A. Limiting Case of Low Speed Demands

In this section, we focus on the case when λ → +∞ and,

by the necessary stability condition in Theorem IV.1, v →
0+. Recall that for this case, the sufficient stability condition

for the TMHP-based policy is that λ < 1/(2vW ). This

differs by a factor of 8 from the policy independent necessary

stability condition of λ < 4/(vW ). By utilizing the tight

asymptotic expression for the length of the TSP path, given

in Theorem II.3, in place of the bound in Lemma II.2, we

can reduce this factor to approximately 2.

To begin, consider an iteration i of the TMHP-based

policy, and let Yi > 0 be the position of the service vehicle.

In the limit as v → 0+, the length of the TMHP at the

ith iteration equals the length of the corresponding static

EMHP as described in Lemma II.4. Further, in the limit

as λ → +∞, the number of outstanding demands in that

iteration ni → +∞, and hence the length of the EMHP tends

to the length of the ETSP through all outstanding demands

at the end of the iteration. Thus, applying Theorem II.3, the

position of the vehicle at the end of the iteration is given by

Yi+1 = vβTSP

√

niA = vβTSP

√

niYiW,

where A := YiW is the area of the region below the vehicle

at the ith iteration. Conditioned on Yi,

E [Yi+1] = vβTSPE
[√

WniYi

]

≤ vβTSP

√

WYiE [ni],

where we have applied Jensen’s inequality. Using

Lemma IV.2, E [ni] = WYiλ/(vW ) and thus

E [Yi+1|Yi] ≤ vβTSP

√

W 2Y 2
i

λ

vW
= βTSP

√
λvWYi.

Thus, we arrive at the following result.

Theorem V.2 (TMHP stability for low speeds) In the

limit as v → 0+, a sufficient condition for stability of the

TMHP-based policy is

λ <
1

β2
TSPvW

≈ 1.9726

vW
.
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VI. SIMULATIONS

In this section, we present a numerical study to deter-

mine stability of the TMHP-based policy. We numerically

determine the region of stability of the TMHP-based policy,

and compare it with the theoretical results from the previ-

ous sections. The linkern1 solver was used to generate

approximations to the TMHP at every iteration of the policy.

The linkern solver takes as an input an instance of the

Euclidean Traveling salesperson problem. To transform the

constrained EMHP problem into an ETSP, we replaced the

distance between the start and end points with a large

negative number, ensuring that this edge was included in

the linkern output. For a given value of (v, λ), we begin

with 1000 demands in the environment and determine the

vehicle’s average y coordinate at the end of the iteration. If

it exceeds the y coordinate at the beginning of the iteration,

then that particular data point of (v, λ) is classified as being

unstable; otherwise, it is stable.

The results of this numerical experiment are presented in

Figure 5. For the purpose of comparison, we overlay the

plots for the theoretical curves, which were presented in

Figure 1. We observe that the numerically obtained stability

boundary for the TMHP-based policy falls between the

necessary and the sufficient conditions for stability, and is

well approximated by the curve established by Theorem V.2

for almost the entire interval of ]0, 1[.
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Fig. 5. Numerically determined region of stability for the TMHP-based
policy. A lightly shaded (green-coloured) dot represents stability while a
darkly shaded (blue-coloured) dot represents instability. The uppermost
(thick solid) curve is the necessary condition for stability for any policy
as derived in Theorem IV.1. The lowest (dashed) curve is the sufficient
condition for stability of the TMHP-based policy as established by part (i)
of Theorem V.1. The broken curve between the two curves is the sufficient
stability condition of the TMHP-based policy in the low speed regime as
established in Theorem V.2. The environment width is W = 1.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced a vehicle routing problem in which a

service vehicle seeks to serve demands that arrive via a

Poisson process on a line segment and that translate with

a fixed speed in a direction perpendicular to the line. For the

existence of a stabilizing policy, we first derived a necessary

1The TSP solver linkern is freely available for academic research use
at http://www.tsp.gatech.edu/concorde.html.

condition on the arrival rate of the demands as a function

of the speed ratio between the demands and the vehicle, and

the length of the line segment. Then, we proposed a novel

service policy for the vehicle which involves servicing all the

outstanding demands as per a TMHP through the translating

demands. We derived a sufficient condition on the arrival rate

of the demands for stability of the TMHP-based policy. In the

limiting case of the relative speed tending to zero, we showed

that the necessary and the sufficient conditions for stability

are within a constant factor. In the companion paper [10], we

analyze the first-come-first-served (FCFS) policy and show

that in the regimes of high demand speeds, the policy is

stable for higher arrival rates than the TMHP-based policy.

Further, we show that in the high demand speed regime, the

FCFS is an optimal policy.

In future, we plan to address versions of the present

problem involving multiple service vehicles, and also with

non-uniform spatial arrival of the demands. This extension

has been completed for the placement problem.
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