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Abstract— A tape system is time-varying as tape winds from
one reel to the other. The variations in reel radii consist of two
components: the nominal reel radii change due to tape winding
and the reel eccentricities as a result of non-circular reels.
These variations introduce disturbances in the tape tension.
This paper presents a feedforward control that addresses the
time-varying reel radius to regulate the tension. The algorithm
is based on the fact that the change of the nominal radius is
slow and hence the nominal plant in two consecutive revolutions
can be considered as the same. The reel eccentricity disturbance
is then repetitive in these two revolutions. We investigate the
tension error in the previous revolution and calculate the com-
pensation input that should have cancelled it. The compensation
input is interpolated properly and then fed forward to the
system in the current revolution. A new compensation input
sequence is computed for the immediately following revolution.
This computation pattern continues until the end of the tape
winding process. Simulation results demonstrate and compare
the performance of the proposed algorithm with other recently
developed methods.

I. INTRODUCTION

High density digital tape information systems are widely
used in data centers for large volumes of data back-up storage
because of historical and economical reasons. One of the
main control objectives in tape systems is to increase as much
as possible the tape transport velocity while simultaneously
regulating the tension. Some work has been conducted on
tension controls in tape systems [1][4][5] where the plant is
assumed to be linear time-invariant (LTI). In [6], adaptive
control is investigated to reject tape tension error where the
disturbances are considered as either an input or an output
disturbance to a LTI system. In [8], the authors combine the
adaptive control algorithm with a gain scheduling algorithm
to address the time-varying plant due to nominal variations
in the radius.

Two feedforward control schemes in the discrete-time
domain are discussed in [7] to attenuate tension error caused
by reel eccentricities. The first algorithm introduces a time-
varying feedforward filter for the reference input. It can
achieve zero steady-state tension error when all the varying
components in the radius are known. The second algorithm
assumes the nominal reel radius is fixed and hence the
tension loop is purely periodic. The tension error caused by
unknown reel eccentricities in previous periods is investi-
gated to calculate the compensation input that should have
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cancelled it. This input is then fed forward to the system
in future periods. However, a real tape system is not purely
periodic since the nominal reel radius keeps changing when
the tape winds. Hence this method needs to be extended or
combined with other techniques to address both the time-
varying disturbances due to the slowly time-varying nominal
reel radius and the pseudo-periodic disturbances caused by
reel eccentricities.

In this paper, we propose a feedforward control to simul-
taneously take into account both the time-varying nominal
radius and the unknown reel eccentricities. Since the tape
is very thin, the variation in the nominal reel radius of two
consecutive revolutions is small. Hence the nominal plant can
be approximately considered as invariant during these two
periods and the reel eccentricities are then nearly repetitive.
We investigate the error in the previous revolution and
compute the compensation input that should have cancelled
it. This input is then fed forward to the current revolution
with some modification and the tension error of the current
revolution is then used to calculate the feedforward compen-
sation input for the immediately following revolution. Thus,
the compensation input is updated in every revolution for the
entire tape winding process.

The rest of this paper is organized as follows. Section
II reviews a prototypical tape system model, introduces the
decoupled tape tension loop that we use in this research,
and discusses the varying components in the reel radius.
Section III first briefly reviews a recently developed algo-
rithm [7] from which the proposed algorithm is extended;
then derives the latter algorithm that attenuates tension errors
caused by time-varying nominal radius and unknown reel
eccentricities. In Section IV, the control algorithm is applied
to the tension loop and simulation results and performance
comparisons with other algorithms are presented. Finally,
Section V summarizes the conclusions of this research and
highlights areas of future work.

II. TIME-VARYING TAPE TENSION LOOP

The popular lumped-parameter model of a tape system
is illustrated in Fig. 1 [1][2][3][5]. The tape winds from the
source reel (reel 1) to the take-up reel. Ji(t), ri(t), and ωi(t)
(i = 1, 2) are the inertia, radius, and angular velocity of each
reel, respectively. The unsupported tape between the two
tangential points on the reels is modeled by a parallel dashpot
and spring with damping coefficient D and spring constant
K, respectively. Each reel is driven by a DC motor with
motor friction viscosity coefficient βi and torque constant
Kti. The current applied to each motor is ui(t). When the
tape winds, both the reel radii ri and the reel rotating inertia
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Fig. 1. Lumped-parameter model of a tape system.

Ji change. Other parameters such as D and K might also
vary [1]. In this study, we aim at attenuating tension error
directly caused by the time-varying radii and consider other
parameters constant.

Define T (t) as the tape tension and Vi(t) as the tan-
gential velocity of the tape at each reel. Choose X =
[T (t), V1(t), V2(t)]> as the state and U = [u1(t), u2(t)]>

as the input for the system. With η = r2
1(t)

J1(t)
+ r2

2(t)
J2(t)

, a state-
space equation of the tape system is [1]

Ẋ(t) = A(t)X(t) + B(t)U(t),

with

A(t) =


−Dη −K+D β1

J1(t)
K−D β2

J2(t)

r2
1(t)

J1(t)
− β1

J1(t)
0

− r2
2(t)

J2(t)
0 − β2

J2(t)

 ,

and

B(t) =


−D r1(t)Kt1

J1(t)
D r2(t)Kt2

J2(t)

r1(t)Kt1
J1(t)

0

0 r2(t)Kt2
J2(t)

 .

At mid-pack, where the radii of both reels are equal, the
tension loop can be perfectly decoupled from the velocity
loop using the decoupling method discussed in [3]. The
transfer function of the decoupled single-reel tension loop
from the input current to the output tension at mid-pack is

GT =
2KtDrm(s + K

D )
Js2 + (β + 2Dr2

m)s + 2Kr2
m

,

where rm is the reel radius at mid-pack. To simulate the time-
varying tension loop in Matlab, we convert GT to a state-
space form with time-varying matrices AT (t) and BT (t).
Using the observability canonical realization, we have{

ẊT (t) = AT (t)XT (t) + BT u(t)
Y (t) = CX(t)

, (1)

AT (t) =

[
−β+2Dr(t)2

J 1

− 2Kr(t)2

J 0

]
,

BT (t) =

[
2KtDr(t)

J

2KtKr(t)
J

]
,

C =
[

1 0
]
.

The tension T is the first state and the second state is a
function of the difference between the tangential velocities
of the two reels. The current to the motor is the input. AT (t)
and BT (t) are functions of the reel radius r(t).

The variations in the time-varying radii consist of two
components: (a) the nominal change as a result of web
winding and (b) the reel eccentricities due to non-perfectly
circular reels, also known as reel runout. The nominal reel
radii, denoted as rni(t), are

rni(t) = ri(t0)∓
∫ t

t0

εωi(τ)
2π

dτ,

where ε is the tape thickness. Denoting reel eccentricities as
rri(t), the radii are

ri(t) = ri(t0)∓
∫ t

t0

εωi(τ)
2π

dτ + rri(t).

A basic full-state feedback Kf is applied to stabilize the
tension loop (Fig. 2). In this figure, Gcl is the closed tension
loop, Td is the desired tension value in steady state, Y
is the output tension, and R(t) is a time-varying filter for
the reference input to generate û that takes into account
the time-varying nominal radius. Cff is the feedforward
controller to generate the compensation input ũ to address
reel eccentricities. e−sTv is a delay to the output Y where
the delay constant Tv varies across revolutions. The input to
the system, u, is the sum of û and ũ. In this paper, we use
the same R(t) as in [7] and focus on designing Cff .

XTẊT Y

AT (t)

BT (t) C
Td

Kf

R(t)    +
∫

   +   +

ũ

uû

Cff

Gcl

e−sTv

Fig. 2. The full-state feedback Kf stabilizes the tension loop. Time-
varying R(t) takes into account the time-varying nominal radius and ũ is
the feedforward input to address reel eccentricities.

As shown in [7], for a tape system with parameters such
as those in Table I and the desired tension Td = 1 N, reel
runout on the order of 10−4 m causes tension error on the
order of 10−3 N. The frequency of the tension error is the
same as the varying rotating frequency and the magnitude
depends on the varying radius.

III. FEEDFORWARD CONTROL

A. Feedforward Controller to Generate û

Define {AT (ti), BT (ti), C} as the state matrices of the
system in Equation (1) at a specific time ti. The feedforward
controller to generate û at ti is [7]

R(ti) = Kfγ1(ti) + γ2(ti),
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TABLE I
TAPE SYSTEM PARAMETERS FOR SIMULATION

Parameter Label Value
tρ Tape density 1.6e3 kg/m3

ε Thickness of the tape 7.7e-6 m
KJ Tape pack inertia constant 20.14 kg/m2

Kt Motor torque constant 0.0189 N m/Amp
D Dashpot constant 0.9 N sec/m

r(t) Radius of the reel 0.014m to 0.028 m
rm Mid-pack radius of the reel 0.02389 m
J Inertia of the reel 3.05e-5 kg m2

K Spring constant 600 N/m
β Motor viscosity coefficient 5.9828e-5 N m sec/rad

where [
γ1(ti)
γ2(ti)

]
=

[
AT (ti) BT (ti)

C 0

]−1 [
0
1

]
,

γ1(ti) is the required state and γ2(ti) is the required coeffi-
cient of the reference input at steady state so that the tension
output reaches the desired value Td.

In the discrete-time domain, we can compute one reference
input filter Rk at each sampling step. If the state matrices are
known, this feedforward filter will lead to zero steady-state
tension error. In this study, the feedforward control

ûk = RkTd

addresses the known variations in the nominal reel radius rn.

B. Compensation Input ũ to Address Reel Runout
The effects from the unknown reel eccentricities on the

tension are attenuated by the compensation control ũ. Rep-
resent the discrete-time state-space form of the time-varying
tension loop in Equation (1) as{

Xk+1 = AkXk + Bkuk

Yk = CXk
, (2)

where Ak and Bk are the discrete-time state matrices at
step k [2]. For the closed tension loop {Āk, Bk, C}(Āk =
Ak − BkKf ), denote the desired output as yd, the output
error in Yk as Ỹk = yd − Yk, and the compensation input
needed to cancel Ỹk as ũk−1, then

ũk−1 =
1

CBk−1

Ỹk − C
k−2∑
j=1

k−1∏
i=j+1

ĀiBj ũj

 .

if CBk−1 is non-singular (see [7] for details).
When the nominal radius is fixed, the system is periodic.

Suppose the period is Np, then the compensation input for
revolution µ can be applied to revolution µ+1 to achieve the
desired output tension yd. Considering varying initial condi-
tions, two periods of tension error after the transient process
(starting at step k0) are used to compute the compensation
input series ũp(i)(i = 1, 2, · · · , 2Np). In [7], the complete
compensation input signal ũ for the entire winding process
then is constructed as:

ũk =


0, k − k0 ≤ 2Np

ũp(k−k0−2Np), 2Np < k− k0≤ 3Np

ũp

(
(mod k−k0

Np
) + Np

)
, k − k0 > 3Np

.

Thus, the same compensation input sequence repeats after
the first compensated period.

Simulation results show that when the nominal radius is
fixed, this algorithm reduces the tension error from an order
of 10−3 N to 10−6 N in magnitude. There are several issues
that this method should be extended to address. First, the
tape tension loop is purely periodic when the nominal radius
is fixed and ideally the steady-state tension error should be
zero. The residual error in the simulations exists because the
state matrices used to compute the compensation input are
the nominal state matrices that do no include the (unknown)
reel eccentricities in the radius. Thus the computed input is
not ideally accurate. Second, a real tape system is not purely
periodic as the nominal reel radius varies. This algorithm
should be extended to address the slowly time-varying period
of the reel runout disturbance.

Let m be the revolution index and n the step index in one
revolution. Define the pair (m,n) as the index of the sampled
nth step in the mth revolution; (m,n) may be in subscripts in
some equations to save space. Define the compensation input
for revolution m as ũ(m, :). Denoting the tension error at step
(m,n) as Ỹ (m,n), the additional input at step (m,n− 1)

ṽm,n−1=
1

CBm,n−1

̃Ym,n−C
n−2∑
j=1

n−1∏
i=j+1

Ām,iBm,j ṽm,j

 .

should have canceled Ỹ (m,n). If the system is periodic or
pseudo-periodic, applying ṽm,n−1 in addition to ũ(m,n−1)
to the n−1 step in revolution m+1 will attenuate the tension
error at step (m+1, n). Thus the compensation input for step
(m+1, n) is the sum of ũ(m,n−1) and ṽm,n−1. Computing
the additional input at every step in revolution m and then
forwarding ṽ(m, :) to revolution m + 1, we can reduce the
tension error in revolution m + 1 (Fig. 3).

︸︷︷︸

︸︷︷︸is computedṽ(m0, :)

 is applied
        is computedṽ(m0+1, :)

ṽ(m0, :)

ṽ(m0+2, :)
        is applied

           is computed
ṽ(m0+1, :)

︸︷︷︸

Revolution m0 Revolution (m0+1) Revolution (m0+2)

Fig. 3. The compensation input is updated every revolution.

In this figure, m0 is the index of the revolution where
the additional input sequence is computed for the first time.
No compensation input is applied in this revolution. The
additional input sequence ṽ(m0, :) computed from revolution
m0 is the compensation input ũ(m0 + 1, :) for revolution
m0+1 in which ṽ(m0+1, :) is calculated. Similarly, ṽ(m, :)
is computed when ũ(m, :) is applied to the system. Hence,
the compensation input ũ(m, :) is defined as

ũ(m,n) =

 0, m ≤ m0

ṽ(m− 1, n), m = m0 + 1
ũm−1,n + ṽm−1,n, m > m0 + 1

. (3)

1) Nominal Radius Fixed: If the nominal radius is fixed,
the system is purely periodic. If the tangential velocity of
the tape is constant, the angular velocity of the reel is fixed.
Then a sampling rate can be chosen so that the number of
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sampled points in every revolution is the same integer. The
algorithm discussed above achieves the ideal compensation
input sequence to cancel the periodic tension error after
computing ũ for a certain number of revolutions without
knowing the state matrices accurately. The tension error in
[7] can be eliminated.

2) Nominal Radius Varying: When the nominal radius is
time-varying, the system is not purely periodic and no fixed
sampling rate guarantees an integer number of sample points
for every rotation of 2π radians. In this case, we consider a
full revolution completed when the angular position of the
sampling point crosses over that of the first sampling point in
the same revolution. The angular position of the first sample
of revolution m relative to that in revolution m−1 is defined
as α0(m) as shown in Fig. 4. The angles are not drawn to
scale. For the first revolution, α0(1) is zero.

α0(2)

α
0 (3)

α
0 (4)

︸
︷
︷
︸

︸︷︷︸

x

︸︷︷
︸

:          sample of        revolution 
:          sample of        revolution
:          sample of        revolution

x
1st

2nd
3rd
4th

1st
1st
1st

1st:          sample of        revolution

Fig. 4. A revolution is completed when the angular position of a sampling
point crosses over that of the first sampling point in the same revolution.

Let θ(m,n) be the angle that the reel has rotated at the
nth step in the mth revolution. The angle θ is reset to zero
when a new revolution starts, i.e., θ(:, 1) is always zero.
Suppose the physical angular location on the reel at θ(m,n)
lies between the angular positions of steps ne and ne+1 in
the previous revolution m − 1. Instead of directly applying
the compensation input from Equation (3) to the system, we
linearly interpolate ũ(m,ne) and ũ(m,ne + 1) to generate
¯̃u(m,n), the compensation input at step (m,n). Specifically,

ne =
⌊

θm,n + α0(m)
2π/Nm−1

⌋
+ 1

and

¯̃um,n = ũm,ne
+(θm,n−θm−1,ne

)· ũm,ne+1−ũm,ne

2π/Nm−1
,

where Nm−1 is the total number of sampling points in
revolution m− 1 and b·c is the floor operator.

IV. SIMULATION RESULTS

In the simulations, the tension loop is implemented as in
Equation (1) with the parameter values listed Table I. Since
we aim at observing the system’s time-varying nature caused
by variations in reel radius r(t), the other parameters Kt, K,
D, β, and J are considered as fixed constants.

The matrices of the tension loop state equation (1) are

AT (t) =

[
−1.95 + 5.87× 104r(t)2 1

−3.9× 107r(t)2 0

]

and

BT (t) =

[
1.11× 103r(t)

7.39× 105r(t)

]
.

We freeze the parameters of the time-varying matrices at
every time step and convert the continuous-time model to the
discrete-time domain. The sampling rate is 12,000 Hz unless
otherwise noted. The state feedback Kf is designed to be
[−0.7766, 0.0109] to guarantee the stability of the tension
loop during the entire tape winding process. The desired
tension and velocity values are Td = 1 N and Vd = 4 m/sec,
respectively. The actual tangential velocity of the tape in
steady state is assumed to track Vd perfectly as a result of a
separate velocity control loop such as in [1].

The simulations use reel runout data from an actual tape
industry sample. The 48 discrete runout samples are linearly
interpolated as shown in Fig. 5. The compensation input ũ
is applied to the system at the 10th revolution. Some of
the simulation results are shown from 0.1 sec to avoid the
beginning part of the transient process so that more details
of the tension error in steady state can be seen.

0!8

!4

0

4

8x 10!5

Angular Position (rad)

R
ee

l R
un

ou
t (

m
)

!/2 2!! 3!/2

Interpolated Runout

Sampled Runout

Fig. 5. Runout interpolation.

A. Fixed Nominal Radius; Unknown Reel Runout

Fig. 6 shows the simulated tension error caused by reel
runout when the nominal radius is assumed constant. The
magnitude of the runout is on the order of 10−4 m and causes
tension error on the order of 10−3 N.

The algorithm in [7] uses the tension error in two rev-
olutions to compute the compensation control input for all
future periods. Assuming the nominal radius is fixed and
the system is purely periodic, the control scheme attenuates
the tension error by three orders of magnitude to 10−6 N
as shown in Fig. 7 (a). The non-zero steady-state tension
error is due to the inaccurate state matrices used to calculate
the compensation input. Since the reel runout is unknown,
only the nominal state matrices that do not include the reel
eccentricities in the radius are available for computation.
Thus, the periodic compensation input is not ideally accurate.

This insufficiency is addressed in the algorithm proposed
in this paper by calculating the compensation input from
the immediately preceding period for the entire process of
tape winding. As shown in Fig. 7 (b), the tension error
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Fig. 6. The nominal radius is fixed and the reel runout data is from an
actual industrial tape reel (Fig. 5). The tension error caused by the reel
runout is on the order of 10−3 N.
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Fig. 7. Nominal radius fixed (purely periodic system): (a) the compensation
input computed from tension errors in two revolutions reduces the error by
three orders of magnitude; (b) the compensation input is updated every
revolution based upon the tension error in the previous revolution, and the
steady-state tension error is effectively zero.

is eliminated by the compensation input that is updated
every revolution. The reference input filter R is fixed as the
nominal radius does not change and û is the same in both
cases. The difference in the compensation inputs ũ between
Fig. 7 (a) and (b) at steady-state is illustrated in Fig. 8. The
sampling rate in these simulations is chosen to be 12, 015 Hz
to guarantee an integer number of sampling points in every
revolution so that the periodicity of the system is maintained.

B. Time-varying Nominal Radius; Unknown Reel Runout

In this simulation, the nominal radius varies as in a real
tape system. Fig. 9 illustrates the simulated tension error
caused by reel runout on a source reel. As tape winds to the
take-up reel, the nominal radius of the source reel decreases.
Without the compensation input to take into account the reel
runout, the tension error is on the order of 10−3 N, similarly
as in Fig. 6. Here, the time-varying reference input filter
R addressing the known variation in the nominal radius is
updated at every time step.

The compensation sequence calculated from two revolu-
tions [7] reduces the tension error by one order of magnitude
in the first two seconds of the simulation when the change in
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Fig. 8. The difference in the compensation input ũ between the simulations
in Fig. 7 (a) and (b).
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Fig. 9. The nominal radius of the source reel decreases. The reel runout
data is from an actual industrial tape reel (Fig. 5). The tension error caused
by the reel runout is on the order of 10−3 N.

the nominal radius is relatively small, as shown in Fig. 10 (a).
However, as the nominal radius keeps decreasing, the tension
error increases as the system is more different than when the
ũ sequence is computed. Fig. 11 (a) illustrates the tension
error for a longer simulation duration (4 sec). When the
compensation input sequence is updated every revolution,
the tension error is reduced by two orders of magnitude to
10−5 all the time, as show in Fig. 10 (b) and Fig. 11 (b).
The difference in the compensation inputs ũ between the
simulations in Fig. 11 (a) and (b) is shown in Fig. 12.

C. Sampling Frequency

The performance of the proposed algorithm depends on the
sampling frequency of the system as shown in Table II. Temax

and Terms
are the infinity norm and the 2-norm of the tension

error Te in steady state, respectively. A higher sampling
frequency provides better performance while requiring more
computational power. The simulation results shown above
are achieved with a sampling frequency at 12, 000 Hz unless
otherwise noted.

V. CONCLUSIONS, DISCUSSION, AND FUTURE WORK

This paper proposes a feedforward control scheme to
regulate tension in a time-varying tape system where the
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Fig. 10. Nominal radius varying: (a) in the first 2 sec of simulations, the
compensation input reduces the tension error by 1 order of magnitude; (b)
the compensation input is updated every revolution, and the steady-state
tension error is reduced by 2 orders of magnitude.

0.1 2 40.99

0.995

1

1.005

Te
ns

io
n 

(N
)

2 3 4!2

0

2

4x 10!4

Time (sec)
(a)

Te
ns

io
n 

Er
ro

r
Zo

om
!i

n 
(N

)

0.1 2 40.99

0.995

1

1.005

2 3 4!2

!1

0

1

2x 10!5

Time (sec)
(b)

Fig. 11. Nominal radius varying: (a) the tension error gets larger with
the repeated compensation input sequence as tape winds; (b) the proposed
algorithm reduces the tension error from 10−3 N to 10−5 N.

variations in the reel radii are composed of nominal radii
changes and reel eccentricities. The variations in the nominal
radius are taken into account by a time-varying feedforward
filter to the tension reference input. The reel eccentricities
can be considered as nearly repetitive in two consecutive
revolutions if the change in the nominal radius is negligible
compared to the reel runout. The compensation input to
address reel eccentricities is then computed from the tension
error observed in the previous revolution and applied to
the current revolution. For more precise compensation, the
input computed from the previous revolution is interpolated
properly for application to the current revolution. The input
sequence is updated every revolution.

The algorithm is simulated in a tape tension loop using
“unknown” reel eccentricities obtained from a sample reel
from the tape industry. When the nominal radius is fixed
and the reel eccentricity is purely periodic, the updated
compensation input for each revolution shows superior per-
formance over using a repeating compensation input from
a previously developed method [7]. The tension error is
completely eliminated to numerical precision limits in the
steady state. When the nominal radius is time-varying, the
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Fig. 12. The difference in the compensation input ũ between the
simulations in Fig. 11 (a) and (b).

TABLE II
SAMPLING FREQUENCY AND ALGORITHM PERFORMANCE

Sampling Freq. (Hz) Temax (N) Terms (N)

2,667 8.7e-5 4.6e-5
4,000 4.6e-5 2.0e-5
8,000 1.6e-5 8.2e-6
12,000 5.7e-6 3.6e-6
30,000 4.5e-6 2.7e-6

algorithm attenuates the tension error by two orders of
magnitude.

We have developed and evaluated a feedforward control
scheme to simultaneously take into account unknown reel
eccentricities and time-varying nominal radii for the entire
tape winding process. One advantage of this algorithm is
that it is independent of the characteristics of the reel eccen-
tricity characteristics; the runout can be of any form. Future
work includes combining the controller developed here with
other controllers developed to address other issues in web-
winding systems (e.g., [1]) to yield an overall controller that
can effectively handle air entrainment, lateral motion, reel
eccentricities, and other issues.
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