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Abstract— The problem of recursive parameter estimation
with missing input/output data is studied in this paper. A
fictitious measurement noise model is presented for missing
data, and a noise-robust minimum component analysis based
algorithm is developed to recursively estimate parameters from
the new ‘noisy’ input/output data. Convergence properties of
the proposed algorithm are analyzed. The simulation results
verify the effectiveness of the proposed algorithm.

I. INTRODUCTION

System parameter estimation is an active research field

in signal processing, spectral analysis and modern control.

Many well developed methods have been proposed, such

as least squares (LS), stochastic gradients (SG), maximum

likelihood (ML), etc. A common premise for these methods

is that all the input and output data are available for use.

However, the real-life applications may be subject to various

forms of missing data. For instance, when an irregularly or

infrequently or multirate sampling scheme is used or sen-

sor failure happens, ‘missing’ measurements would appear.

Recently, networked control systems, whose control loops

are physically constructed on communication networks, has

attracted much interest [1], [2], [3]. In such systems, data

transmission often suffers from time delay or even loss,

which can be potentially modeled as data missing. In fact,

parameter estimation with missing data is a fundamental

challenge in practice, and has thus far received remarkable

attention.

Most current works consider only output missing, and

a widely used scheme is based on output estimation plus

parameter estimation. That is, the missing outputs are esti-

mated first, and then some classical methods like LS and

ML are applied on the reconstructed data set for parameter

estimation, see [4], [5], [6], [7], [8]. However, the problem

becomes more complicated when both inputs and outputs

are affected by missing values. In [9], a frequency domain

solution was developed by treating the missing data as

unknown parameters. Chen et. al. proposed an iterative least

squares (IRLS) based algorithm that minimizes lp norm

estimation errors [10]. An IRLS technique was also discussed

in [11], but it was developed from matrix manipulations. It

is noted that, in the case of missing data in both inputs and

outputs, 1) no recursive method has ever been proposed,

though recursion is crucial for most adaptive schemes in

filtering, prediction and control and 2) no effective method
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has been developed for parameter estimation subject to a

large amount of missing data.

The objective of this paper is to construct a recursive

parameter estimation algorithm capable of handling a great

deal of data loss. In our approach, the missing input/output

values are neatly modeled as the consequences of mea-

surement noises. It is known that minimum component

analysis (MCA) is strongly noise-robust when applied to

parameter estimation. Therefore, recursive MCA (RMCA) is

promisingly used to identify parameters from the available

input/output data.

The rest of the paper is organized as follows: In Section II,

we introduce the models and state the problem of interest.

Section III gives an RMCA based algorithm. A numerical

example is studied in Section IV to show the effectiveness

of the algorithm proposed. Finally, some concluding remarks

are offered in Section V.

II. PROBLEM FORMULATION

Let us begin by considering a deterministic linear discrete-

time system:

yo(t) =
B(z)

A(z)
uo(t). (1)

Here uo(t) and yo(t) represent the system input and output,

and A(z) and B(z) are two polynomials in z−1 (backshift

operator):

A(z) = 1+a1z−1 +a2z−2 + · · ·+anaz−na ,

B(z) = b0 +b1z−1 +b2z−2 +b3z−3 + · · ·+bnb
z−nb .

Assume that the orders na and nb are known. When mea-

sured, uo(t) and yo(t) are corrupted by additive noises w(t)
and v(t), respectively:

um(t) = uo(t)+w(t), (2)

ym(t) = yo(t)+ v(t). (3)

Suppose that some of the input and output measurements

will be missing randomly. At time instant t, the availability

of um(t) and ym(t) relies on the binary random variables γ(t)
and λ (t), respectively, that is,

u(t) = γ(t)um(t),

y(t) = λ (t)ym(t),

with

γ(t) =

{
1, if um(t) is available,
0, else if um(t) is unavailable,

λ (t) =

{
1, if ym(t) is available,
0, else if ym(t) is unavailable.
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Clearly, we have

u(t) = γ(t) [uo(t)+w(t)] , (4)

y(t) = λ (t) [yo(t)+ v(t)] . (5)

Define the parameter vector and regression vectors as fol-

lows:

θ = [ a1 a2 · · · ana b1 b2 · · · bnb
]T.

Note that θ is actually not unique. Any ρθ for some non-

zero and finite constant ρ would produce identical input

and output measurements. In other words, any identification

scheme cannot distinguish between θ and ρθ . Therefore,

without loss of generality, we fix the value of θ by imposing

the constraint: 1) θ Tθ = 1; 2) the first element of θ is

positive.

We make the following assumptions throughout the paper:

A1. The input sequence {uo(t)} is persistently excited, and

is a stationary ergodic random sequence.

A2. The sequences {γ(t)} and {λ (t)} are independent of

um(t) and ym(t), respectively, and mutually indepen-

dent.

A3. The probabilities of occurrence of missing data for

both inputs and outputs are equal. Let

P{γ(t),λ (t) = 1} = p,

P{γ(t),λ (t) = 0} = 1− p,

where p is known.

A4. The noise sequences {w(t)} and {v(t)} are white

Gaussian noises, and independent of uo(t) and yo(t),
respectively. Their variances are assumed known.

In what follows, we shall study how to recursively estimate

the parameter vector θ from the available inputs and outputs,

i.e., {u(t)} and {y(t)}.

III. MAIN RESULTS

This section models data missing and rebuilds the system

first, followed by RMCA based parameter estimation. A

summary of the final algorithm is provided in the end.

A. Data Missing Modeling and System Rebuilding

When missing data occurs, a ‘let-it-be’ strategy is adopted:

regard missing values as the counteracting effects of fictitious

measurement noises and just replace them by 0. Take the

input for example. At time instant t, if input missing happens,

i.e., γ(t) = 0, we suppose that the actual um(t) is counteracted

by a measurement noise with amplitude of −um(t). As a

result, we get u(t) = 0. This strategy is depicted in Fig. 1. It

can also be applied identically to output missing.

Mathematically, (4) and (5) can be rewritten as

u(t) = uo(t)+ω(t), (6)

y(t) = yo(t)+ν(t), (7)

Fig. 1: The fictitious noise model for data missing (The

empty circles represent missing data and the dashed-line

segments denote the fictitious measurement noises.)

where

ω(t) = [γ(t)−1]uo(t)+ γ(t)w(t)

= [γ(t)−1]um(t)+w(t),

ν(t) = [λ (t)−1]yo(t)+λ (t)v(t)

= [λ (t)−1]ym(t)+ v(t).

Note the similarity between (2)-(3) and (6)-(7). It indicates

that ω(t) and ν(t) can be treated as new measurement

noises in the considered system, which matches the ‘let-it-be’

strategy.

As will be seen later, it is necessary to unify Var{ω(t)}
and Var{ν(t)}. It is not difficult to derive that

Var{ω(t)} = (1− p)Var{um(t)}+Var{w(t)} , (8)

Var{ν(t)} = (1− p)Var{ym(t)}+Var{v(t)} . (9)

Let ε be the variance ratio:

ε =

√
Var{ω(t)}
Var{ν(t)} . (10)

Then it holds that,

Var{εν(t)} = Var{ω(t)} .

Multiplying both sides of the system (1) by ε leads to an

equivalent system:

εyo(t) =
εB(z)

A(z)
uo(t). (11)

Based on the new system (11), we define:

ϑ = [ a0 a1 · · · ana εb0 εb1 · · · εbnb
]T,

ψ(t) = [ −εy(t) −εy(t −1) · · · −εy(t −na)

u(t) u(t −1) · · · u(t −nb) ]T.

From ϑ , we can easily reach θ if ε is known. Thus it will be

our focus to estimate ϑ from the regression vectors ψ(t)s.

Before doing that, we need to design a numerical way to

calculate ε .

However, note that the theoretical value of ε cannot be

obtained directly, and it should be calculated a priori by
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sample averaging. Using the first r sample points, Var{ω(t)}
and Var{ν(t)} can be unbiasedly estimated:

V̂ar{ω(t)} =
1− p

p
· 1

r−1

r

∑
t=1

[
u(t)− 1

r

r

∑
t=1

u(t)

]2

+σ2
w, (12)

V̂ar{ν(t)} =
1− p

p
· 1

r−1

r

∑
t=1

[
y(t)− 1

r

r

∑
t=1

y(t)

]2

+σ2
v . (13)

Further, ε is estimated by

ε̂ =

√
V̂ar{ω(t)}
V̂ar{ν(t)}

. (14)

B. The Algorithm

MCA is a very useful approach to parameter estimation.

Huang, for the first time, proposes batch-wise MCA based

parameter estimation methods [12]. It is also shown in [12]

that the method is robust against input/output measurement

noises.

Consider the batch-wise case first. Collect all the regres-

sion vectors ψ(t) for r < t ≤ N. and calculate the empirical

mean vector of ψ(t)s:

ψ̄ =
1

N − r

N

∑
t=r+1

ψ(t).

The covariance matrix is then given by

R =
1

N − r−1

N

∑
t=r+1

[ψ(t)− ψ̄] [ψ(t)− ψ̄]T . (15)

Finally, eigendecompose R to obtain its eigenvalues and

eigenvectors. Denote q the minimum component (MC) of R,

i.e., the eigenvector associated to the minimum eigenvalue.

Actually q is the very estimate of ϑ , denoted by ϑ̂ . Dividing

the last nb elements of ϑ̂ by ε and combining them with the

first na elements give the estimate of θ , θ̂ . The above is the

basic procedures of MCA.

As pointed out in Theorem 5 of [12], for the system

(11) that has unified input/output measurement variances, ϑ̂
yielded by the batch-wise MCA is a consistent estimate of

ϑ .

For the above batch-wise MCA based parameter estima-

tion with missing input/output data, its recursive counterpart

is ready to be derived. We would update and eigendecompose

R when each new ψ(t) arrives.

Define

ψ̄(t) =
1

t

t

∑
i=1

ψ(t)

=
t −1

t
ψ̄(t −1)+

1

t
ψ(t), (16)

∆ψ̄(t) = ψ̄(t)− ψ̄(t −1)

= −1

t
ψ̄(t −1)+

1

t
ψ(t). (17)

Then from (15) it follows that

R(t) =
t −1

t
R(t −1)+

t −1

t
∆ψ̄(t)∆ψ̄T(t)

+
1

t
(ψ(t)− ψ̄(t))(ψ(t)− ψ̄(t))T , (18)

which is two rank-one modifications [13]. Suppose R(t) =
Q(t)Λ(t)QT(t), where Q(t) is the orthonormal eigenvector

matrix and Λ(t) is the diagonal eigenvalue matrix. With such

notation, (18) becomes

Q(t)tΛ(t)QT(t) = Q(t −1) [(t −1)Λ(t −1)

+α(t)αT(t) +β (t)β T(t)
]

QT(t −1),

where

α(t) =
√

t −1QT(t −1)∆ψ̄(t), (19)

β (t) = QT (t −1)(ψ(t)− ψ̄(t)) . (20)

Further by doing eigendecomposition

[
(t −1)Λ(t −1)+α(t)αT(t)+β (t)β T(t)

]

= V (t)D(t)V T(t),

we have

Q(t)tΛ(t)QT(t) = Q(t −1)V (t)D(t)V T(t)QT(t −1).

By direct observation, it is found that

Q(t) = Q(t −1)V (t), (21)

Λ(t) =
1

t
D(t). (22)

After each eigenpair, Q(t) and Λ(t), is obtained, we can

easily find the MC of R(t), q(t), which is also ϑ̂(t), the

estimate of ϑ at time instant t. With ε calculated a priori,

θ̂(t) can be obtained from ϑ̂(t).

The final algorithm is outlined as follows:

1: Collect u(t) and y(t) for 1 ≤ t ≤ r

2: Calculate an approximate ε [Equations (10) and (12)-

(14)]

3: Calculate ψ̄(r) and ∆ψ̄(r)
4: Initialize Q(0) and Λ(0)
5: for t = r +1 to N do

6: Get the regression vector ψ(t)
7: Calculate ψ̄(t) and ∆ψ̄(t) [Equations (16)(17)]

8: Update α(t) and β (t) [Equations (19)(20)]

9: Eigendecompose

[
(t −1)Λ(t −1)+α(t)αT(t)+β (t)β T(t)

]

to get V (t) and D(t)
10: Update Q(t) and Λ(t) [Equations(21)(22)]

11: Find the MC q(t) as ϑ̂(t)

12: Get θ̂(t) from ϑ̂(t)
13: end for
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C. Convergence Analysis

Convergence properties of the proposed algorithm are

presented in the following theorem.

Theorem 1: For the system described by (1), θ̂(t) con-

verges to θ as r → ∞ and t → ∞ (r ≪ t).

Proof: First, note that two facts hold:

1) V̂ar{ω(t)}→ Var{ω(t)}, V̂ar{ν(t)}→ Var{ν(t)}, and

ε̂ → ε as r → ∞;

2) R(t) → Var{ψ(t)} as t → ∞.

Define

ψa(t) = [ −εyo(t) −εyo(t −1) · · · −εyo(t −na)

uo(t) uo(t −1) · · · uo(t −nb) ]T,

ψb(t) = [ −λ (t)εyo(t) −λ (t −1)εyo(t −1) · · ·
−λ (t −na)εyo(t −na) γ(t)uo(t)

γ(t −1)uo(t −1) · · · γ(t −nb)uo(t −nb) ]T,

η(t) = [ −λ (t)εν(t) −λ (t −1)εν(t −1) · · ·
−λ (t −na)εν(t −na) γ(t)ω(t)

γ(t −1)ω(t −1) · · · γ(t −nb)ω(t −nb) ]T.

It is clear that

ψT
a (t)ϑ = 0, (23)

ψ(t) = ψb(t)+η(t) (24)

From (23), we have

ϑ TVar{ψa(t)}ϑ = 0. (25)

Also note that

Var{ψb(t)} = pVar{ψa(t)}. (26)

Let σ2 = ε2Var{ν(t)} = Var{ω(t)}. Then

Var{η(t)} = pσ2I,

where I is an identity matrix of dimension na + nb + 2.

Therefore, as r → ∞ and t → ∞, ϑ̂(t), which is equal to

the MC of Var{ψ(t)}, is given by

ϑ̂ T(t)R(t)ϑ̂(t) = ϑ̂ T(t)Var{ψ(t)}ϑ̂(t)

= ϑ̂ T(t)
[
Var{ψb(t)}+ pσ2I

]
ϑ̂(t)

= pϑ̂ T(t)Var{ψa(t)}ϑ̂(t)+ pσ2

≥ pσ2. (27)

By comparing (25) and (27), the equality holds if and only

if ϑ̂(t) = ϑ . This completes the proof.

Remark 1: In [10], an efficient algorithm was developed;

however, the availability probability p must be no less than

1/2 in order to ensure consistency. In our approach, as in

Theorem 1, no assumption is made about p. It follows that

the proposed algorithm is convergent as long as p > 0 and

N is large enough.

IV. SIMULATION STUDIES

Two numerical examples are given in this section to

evaluate the performance of the proposed algorithm.

Example 1: Consider the following dynamic system:

yo(t) =
1+0.2z−1 +0.5z−2

1−0.6z−1 +0.8z−2
uo(t),

for which the normalized parameter vector is θ =
[ 0.5513 −0.3308 0.4411 0.5513 0.1103 0.2757 ]T.

Here, {uo(t)} is taken as a white noise sequence with unit

variance. {uo(t)} and {yo(t)} are corrupted respectively by

white Gaussian noise sequences {w(t)} and {v(t)} with

variances 0.12. We assume that only 75% of both {uo(t)}
and {yo(t)} are available, i.e., p = 0.75.

The proposed algorithm is implemented to estimate the

parameters of the system. We select r as 500 to calculate

ε̂ . Then the estimation procedures begin at time instant 501.

Define the relative parameter estimation as

δ% =
(θ̂ −θ)T(θ̂ −θ)

θ Tθ
×100%

=
[
(θ̂ −θ)T(θ̂ −θ)

]
×100%.

Intermediate parameter estimates and corresponding relative

estimation errors are given in Table I. The parameter estima-

tion errors δ% versus t is shown in Fig. 2. From both it is

seen that δ% has a clearly decreasing tendency (in general).

This shows the effectiveness of the proposed algorithm.

Example 2: In practice, it is of paramount importance

to estimate parameters when there exists a large amount of

missing data. Consider the same system as in Example 1, and

suppose that p = 0.2 and N = 200,000, and take r = 50,000.

As p < 0.5, the method in [10] cannot work in this case. By

applying the approach in this paper, the parameter estimation

errors δ% versus t is illustrated in Fig. 3 and Table II. It

exhibits good estimation performance, though the values of

δ% fluctuate at early time due to such a small p. It is worth

mentioning that a large enough N is required for a small p.

V. CONCLUSION

This paper considers the problem of parameter estimation

in the presence of a large percentage of missing input/output

data. A recursive algorithm is proposed. In the approach, data

missing is assumed to result from fictitious measurement

noises. Meanwhile, MCA is known to be strongly robust

to noises and thus very suitable in solving the proposed

problem. Then an RMCA based estimation algorithm is pre-

sented, and its high effectiveness is illustrated by numerical

simulation.
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