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Abstract—We present a formal protocol for communication based
on modulating the relative motion between mobile agents. This

type of communication is typically dependent on context in that
a particular motion or gesture will indicate something related to
the current activity. The focus of this article is on enabling such
motion-based signaling between non-holonomic mobile agents
moving in R

2. A Control law that enables such signaling is
presented and analyzed. Properties of signals that are amenable
to such signaling are presented, as are error bounds to the
sensing of such motion by the agent receiving the signal. We
conclude with a presentation of potential applications and current
technological challenges towards enabling these applications.

I. INTRODUCTION

Gesturing is a common means for signaling for animals

and humans alike. Ranging from explicit hand gestures in

an effort to communicate with another individual across a

noisy hall, to the more subtle yet effective facial expressions,

gesturing is indeed an art form that most of us have learned

to use effectively. There are three important aspects to any

gesture: the ability to effect motion, the ability to perceive

motion and, the ability to comprehend an observed motion.

Mobile robots of today have the ability to move, and to sense

motion. Further, most have on-board computers and hence, the

ability to process sensed information. Thus, with appropriate

control laws, mobile robots should be capable of motion-based

communication. This article presents control laws that enable

motion-based information exchange between mobile robots.

There is considerable advantage to motion-based signaling.

One can avoid using wireless modes of signaling such as

802.11, and benefit from the stealth. This mode of signaling

can also be used by formations of agents to signal between

each other. Finally, by formalizing the information theory of

such signaling, we may gain useful insight into the limits of

our cognitive ability to communicate through gestures.

The actuation bandwidth of the electro-mechanical systems

that propel and control the motion of autonomous vehicles

tend to be in the range of tens of hertz, and this bandwidth

limits the data rate. Thus there are limitations on the types

of messages that can be transmitted by means of motions.

The expectation is that the proposed mode of communication

has applications in niche areas such as signaling through

formations and augmenting communications through existing

wireless networking technologies.

There is considerable interest today in the creating and

maintaining rigid formations of unmanned ground and aerial
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vehicles (see for instance [?][?][?][?].) A stable control law

for tracking a reference frame is presented in [?] based on

global positioning information. [?] tackles a similar problem

with a local coordinate frame. Trajectory tracking for non-

holonomic vehicles has been studied as well (for instance

[?][?][?][?].) Algorithms that enable wireless connectivity

between mobile autonomous agents by exploiting their mo-

bility have been studied as well (see for instance [?][?].) The

wireless connectivity of the agents enables information to be

exchanged between agents over the wireless medium, but the

motion of the agents in itself is not used to communicate

information. The distinguishing feature of our work is that

we use motion itself to communicate information between

agents. We extend the notion of static formations of robots,

to formations where the agents follow a signaling pattern

such that the relative motion they observe between each other

contains useful information. The participating agents can be

considered to be moving in dynamic formation. We present

control laws by which signaling patterns can be achieved and

observed by participating agents.

The sequel is organized as follows. We start out by describing

the notion of signaling using relative motion and formulate

the problem for non-holonomic robots moving in R
2. We

then discuss properties of signals that can be exchanged

given the constraints of the robotic motion. A control law is

presented and analyzed to achieve this signaling, and bounds

on the errors are computed. We present properties of viable

codebooks for signaling using relative motion. Simulations

and one detailed protocol are presented. We conclude by

presenting open challenges to bringing this idea into a full-

fledged technology that can be exploited by mobile robots.

II. SIGNALING USING RELATIVE MOTION IN R
2

Figure ?? shows two robot agents moving in the plane, with

R2 executing a motion that conveys information to R1. The

information is encoded in a simple function, r(s), and the

information is exchanged by having R1 measure the position

(ideally (s, r(s))) of R2 relative to its own position (s, 0).
Because R1 and R2 control their motions independently, each

will have its own local coordinate s1 and s2 recording its

location in the x-axis direction of the coordinate frame. In

general it will not be possible to exactly maintain s1 ≡ s2

throughout the signaling maneuver, and part of the challenge

in implementing this simple motion-based signaling protocol

is to ensure that |s1 − s2| remains small. We can suppose that

the parameter s1 is just the arclength along agent R1’s path

along the x-axis. Assume R1 moves with unit velocity, and

hence s1(t) = t. The agent R2 traces the path (s2, r(s2)),
with the goal of keeping |s2(t) − t| small. To the extent that
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this regulation can be done exactly, we have the speed of

R2 expressed by
√

1 + r′(s2)2. This provides the first of a

number of constraints on this type of motion-based signaling—

the slope of the function r(s) cannot be so large as to exceed

the velocity limits of R2.

It is also the case that any mismatch between s1(t) = t and

s2(t) will introduce the possibility of error in detecting the

transmitted function. While R2 transmits a message encoded

as (s2, r(s2)), R1 receives the message as (t, g(t)), where

g(t) = r(s2(t)). Hence, we shall want to choose encoding

functions r(·) with the property that |r(s) − r(s + ǫ)| is

uniformly small when ǫ is sufficiently small.

There will be several additional mild assumptions underlying

our discussion. Most relative distance sensors (sonar, ladar,

etc.) operate over prescribed ranges. Hence, we assume that

there are parameters dmin and dmax such that 0 < dmin <
r(s) < dmax over the range of interest 0 ≤ s ≤ L. We also

assume that there are no obstacles to the motion of the robot

in the plane.

Observed signal

2

1R1R

R 2

s 1

s 2

+X

+Y Tracking error

R

Fig. 1. Robot R2 is signaling to robot R1 by controlling its relative distance
with R1 in coordination with the path that R1 is traversing.

We now present a mathematical model for relative motion

signaling like the illustration of Figure ??.

A. A Non-holonomic Robot Model

Figure ?? shows a non-holonomic vehicle in the plane, with a

description of the coordinate system (x, y, θ). The wheels W1

and W2 are assumed not to have any slip with the ground,

and hence, this robot is constrained to instantaneously move

only in a direction perpendicular to the wheel axis. This non-

holonomic constraint is expressed by

ẋ sin θ − ẏ cos θ = 0

and the consequent equations of motion can be written as

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω

where (v, ω) represent, respectively, the velocity of the mid-

point of the robot and the angular velocity of the robot. The

pair (v, ω) serves as the control input to the robot. Such a

vehicle is commonly called a unicycle. A Dubins vehicle is a

unicycle that travels with a constant speed v = vc > 0 and

a constrained angular velocity ω satisfying (|ω|/vc) < κmax.

We define a Variable Speed Dubins Vehicle as a unicycle

d/2
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W
2

θ
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+x

+y

d/2

W

Fig. 2. A global coordinate system for a Dubins vehicle. The wheels W1

and W2 are separated by a distance d. The black dot represents the front of
the robot, and the robot, as shown in the figure, will be moving further out
in the first quadrant.

for which the control pair (v, ω) satisfy (a) v > 0, and, (b)

a curvature constraint (|ω|/v) < κmax, κmax > 0. It follows

from this definition that a Dubins vehicle as well as a Variable

Speed Dubins Vehicle have a minimum turn radius 1/κmax.

III. RELATIVE MOTION SIGNALING AND CONTROL

We start by analyzing the case of two Variable Speed Dubins

Vehicles in the plane attempting to signal to each other. As has

been shown in Figure ??, we constrain the receiver robot R1

to traverse a straight-line trajectory along the positive x-axis. It

is possible for R1 to follow a more general trajectory, but we

shall restrict our consideration to the straight-line trajectory

for this article. Since the planar curve that R2 describes in the

plane is sensed by R1 with respect to R1’s own trajectory, it

seems natural to parameterize the planar curve that R2 wishes

to signal by a variable that is representative of the path of R1.

We choose to use the path length s1 of R1 as the parameter

and hence C = C(s1, β(s1)) ∈ R
2. Let r(s1) represent the

distance between R1 and R2 when R1 has moved s1 along

its trajectory. Then, we can say that (s1, r(s1)) represents the

observation model of the observer R1.

We say that curve C is a feasible trajectory for a Variable

Speed Dubins Vehicle if there exists a control law pair (u, ω)
which can steer it along C with no error. We say that a finite

extent curve C is observable under an observation model if

one can reconstruct C perfectly after observing it using the

observation model for a finite duration. Figure ?? illustrates

curves that are and are not observable under an observation

model (s, r(s)).
Let ẋi = ui cos θi, ẏi = ui sin θi, θ̇i = ωi, i = 1, 2 represent

the kinematics of R1 and R2 respectively. Since R1 is traveling

along a straight line, ω1 = 0. We can now state the following

problem:

Problem 1. Given

1) R1 and R2 are Variable Speed Dubins Vehicles,

2) ω1 = 0, and R1 is moving along the +x-axis with v1 > 0,

3) a planar curve C, and,
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Fig. 3. Robot R1 moves to the right along the x-axis. Robot R2 moves
along a curve, with the tangent to the curve C2 subtending an angle θ2 with
the horizontal. This may also be interpreted as a relative angle of θ2 with
respect to the trajectory C1 of R1, for which θ1(t) ≡ 0 ∀t ≥ 0. Figure ??

illustrates this for R1 moving in a more general trajectory.

4) observer R1 with observation model (s1, r(s1)) ≡
(x1, r(x1)),

find

1) if C is a feasible trajectory for R2, and if so,

2) if C is observable to R1, and, if so,

3) control laws (v2, ω2) and (v1, ω1 = 0) such that the

observer can faithfully register C.

Such control laws R2 : (v2, ω2), R1 : (v1, 0) represent a

protocol for the signaling of the curve C by R2 to R1.

A. Properties and Requirements of C

The requirements of Problem ?? make it necessary for C to

satisfy a few properties. Clearly, for the observation model

(x1, r(x1)) to be identical to C, C should be representable

in a parametric form C ∼ (s, β(s)) where β(s) is a twice

differentiable function. We thus require β(s) to be a function

of s. In order for such a C to be feasible, the curvature K(C)
needs to be bounded by the largest curvature trajectory κmax

that a Variable Speed Dubins Vehicle can describe.

|K(C(s, β(s)))| =
|β′′(s)|

(1 + β′2)3/2
≤

2

d
(1)

where d is the distance between the wheels (Figure ??.) Figure

?? illustrates some of these constraints. As the relative posi-

tions of the two vehicles change over time, we are interested in

how the heading of vehicle R2 is changing with respect to the

heading of R1. Figure ?? illustrates this when R1 moves in a

straight line along the x-axis. Consider a curve parameterized

as C ≡ C(s, β(s)), with β(s) being twice differentiable. We

have |β′(s)| < +∞, which in turn implies the absolute slope

| tan θ2| = |β′(s)| < +∞ =⇒ θ2 ∈ [0, π/2) (see Figure ??.)

Figure ?? shows signaling by R2 to R1 when R1 moves along

a more general trajectory. The trajectory slope that R2 needs

to over lay on R1 in order to transmit a message is θ2−θ1, as

shown in the figure. For the case of R1 moving in a straight

line, θ1(t) ≡ 0. In general, our interest is in the relative slope;

since this article deals with the case that θ1(t) ≡ 0, we will

interchangeably use slope and relative slope.

Curve A
Curve B

x

r(x)

Fig. 4. Curve A is not representable as a single valued function r(x) and
hence, is not observable under the prescribed observation model. Curve B is
a function and hence observable. The feasibility needs to be independently
tested, based on the maximal curvature for this curve.

θ

R2

R1

C1

C2

2θ

1θ2θ

1

Fig. 5. Ci represents the trajectory of Ri. θi represents the tangent angle
to the trajectories Ci respectively at the corresponding Ri positions.

Before we conclude this section, we compute the time deriva-

tive for a parameterized curve C(s, β(s)) with respect to the

corresponding tangent angle θ2 in Figure ??:

tan θ2 =
dβ(s)

d(s)
=

dβ

ds

Λ(s) =
β′′(s)

(1 + β′2(s))2

dθ2

dt
=

ds

dt
Λ(s) (2)

We thus have a relation between the curvature of the planar

curve C and a desired control on the angular velocity of the

Variable Speed Dubins Vehicle in order to achieve trajectory

tracking of this planar curve. We will use this result for

signaling.

B. Control for Relative Motion Signaling

We now present a control law for signaling when R1 follows

a constant velocity zero curvature motion. The equations of

motion of R1 are augmented with an integrator for the path

length s1. The equations motion motion of R2 are augmented

with an integrator for the projected path length s2, projected

along the trajectory of R1. From Figure ??, the velocity of

R2 along s2 is v2 cos θ2. R1 moves along the positive x-axis

with (v1, ω1) = (vc > 0, 0), θ1(0) = 0 =⇒ θ1(t) ≡ 0. We

use a simple nonlinear proportional control law to regulate s2
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relative to s1 (??), and a regulator for the angular velocity

based on (??).

ẋ1 = vc , ẋ2 = v2 cos θ2 (3)

y1(t) ≡ 0 , ẏ2 = v2 sin θ2 (4)

θ1(t) ≡ 0 , θ̇2 = ω2 (5)

ṡ1 = v1 = vc , ṡ2 = v2 cos θ2 (6)

(v2, ω2) = (Kp(s1 − s2), v2Λ(s2)) (7)

Theorem ?? derives a bound on the projected tracking error

etrk(t) = s1(t) − s2(t) (Figure ??.) Since the curves we are

interested in are parameterized as C(s, β(s)), with β(s) being

twice differentiable, we have, from Section ??, that |θ2| ∈
[0, π/2). We denote the upper bound on |θ2| as θmax > 0.

Theorem III.1. Consider the system (??)-(??). Let ǫ >
0, Kp > 0. Let θmax represent an upper bound on the absolute

slope of a feasible and observable curve C(s, β(s)). Then, for

initial configurations of the two vehicles sufficiently close to

(0, 0) (for R1) and (0, β(0)) (for R2), the tracking error will

remain bounded and satisfy

|etrk(t)| <
v1

Kp cos θmax
+ ǫ ∀ t ≥ 0

Proof: Define a Lyapunov function V = e2
trk/2 so that

V̇ = etrkėtrk = −Kpe
2
trk cos θ2 + etrkv1. Clearly, V̇ > 0

for |etrk| < v1/(Kp cos θ2) ≤ v1/(Kp cos θmax), and V̇ ≤ 0
otherwise. Thus the tracking error stays bounded.

We now define as signaling error esig the error between the

desired signal (x1, β(x1)) and the observed signal.

esig =
√

(x2 − x1)2 + (y2 − y1)2 − β(s1) (8)

We now show that that for bounded tracking error, the sig-

naling error is uniformly bounded. In what follows, dmin > 0
represents the a minimum prescribed separation between two

signaling robots (Section ??.)

Theorem III.2. Consider system (??)-(??), with R2 tracking

a feasible curve C(s, β(s)) that has maximal relative slope

θmax ∈ [0, π/2). If ǫ > 0, δ1 > 0, Kp > 0, and,

v1

Kp cos θmax
+ ǫ ≤ etrk(0) ≤ δ1 < dmin,

then esig(t) is bounded for all t ≥ 0.

Proof: Since ‖x1 − x2‖ = ‖s1 − s2‖ = |etrk|, we use

Theorem ?? to write

|esig| =

∣

∣

∣

∣

√

e2
trk + β(x2)2 − β(x1)

∣

∣

∣

∣

≤

∣

∣

∣

∣

√

δ2
1 + β(x2)2 − β(x1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

β(x2)

√

1 +
δ2
1

β2(x2)
− β(x2 + δ1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

β(x2)

(

1 + O

(

δ2
1

β2(x2)

))

− β(x2 + δ1)

∣

∣

∣

∣

=

∣

∣

∣

∣

β(x2) − β(x2 + δ1) + β(x2)O

(

δ2
1

β2(x2)

)∣

∣

∣

∣

≤ |β(x2) − β(x2 + δ1)| +

max
x2

|β(x2)| ·

∣

∣

∣

∣

O

(

δ2
1

(minx2
β(x2))2

)
∣

∣

∣

∣

= |β(x2) − β(x2 + δ1)| +

max
x2

|β(x2)| ·

∣

∣

∣

∣

O

(

δ2
1

d2
min

)∣

∣

∣

∣

The last expression follows from the requirement that R1 and

R2 are separated by a minimum approach distance of dmin.

Also, maxx2 β(x2) < +∞ as C is twice differentiable. For

the same reason, β(s) is Lipschitz and hence

|β(x2) − β(x2 + δ1)| ≤ Lδ1

where L is the Lipschitz constant. Hence we have

|esig| ≤ Lδ1 + max
x2

|β(x2)| ·

∣

∣

∣

∣

O

(

δ2
1

d2
min

)
∣

∣

∣

∣

< +∞

for 0 < δ1 < dmin.

The error bounds derived so far are helpful in encoding and

decoding messages that R2 can transmit to R1. One can thus

derive a codebook of messages for communication, and this

is discussed in the following subsection.

C. Developing A Codebook for Signaling

We have already presented a few constraints on the nature of

the signals that can be transmitted: constraints from Section

??, and the effect of the sensor working range (dmin, dmax)
and the separation of R1 and R2. Sensor noise and the error

in trajectory detection due to tracking error can be used to

determine a codebook of symbols that can be transmitted

with zero error probability. If some error probability can be

tolerated, clearly the set will be larger.

For signals transmitted for a finite duration, one can de-

fine a measure for the distance between two curves. This

distance distinguishes one signal (message) in a codebook

from another. Let B represent a codebook of signals. The L2

norm is one possible choice of metric. Given two elements

(s, β1(s)), (s, β2(s)) ∈ B defined on a common interval

s ∈ [0, L], one can define the distance between the two

elements as

D((s, β1(s)), (s, β2(s))) ≡ ‖β1(s) − β2(s)‖2

=

√

∫ L

0

|β1(s) − β2(s)|
2 ds
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Based on the proof of Theorem ??, we define

Lmax = max
(s,β(s))∈B

|L| (9)

which represents the largest slope magnitude of all possible

slopes of signals in B.

Owing to the errors in tracking a curve in B, one needs to

determine a sufficient spread for the signals in B so that they

are distinguishable by R1, even with perfect observation (i.e.

negligible observation sensor noise.) The following represents

a conservative lower bound between the distance D(·, ·) be-

tween two signals C(s, β1(s)) and C(s, β2(s)):

‖β1(s) − β2(s)‖2 ≥

∥

∥

∥

∥

max
s∈[0,L]

|esig|

∥

∥

∥

∥

2

=

(

max
s∈[0,L]

|esig|

)

L
1

2

= Lmaxδ1L
1

2 [from Theorem ??]

Thus, if for all (s, βi(s)), (s, βj(s)) ∈ B, i 6= j,

D((s, βi(s)), (s, βj(s))) ≥ Lmaxδ1L
1

2 , (10)

then the receiver can identify a signal in the codebook B to

within O(δ2
1/d2

min) (Theorem ??) under perfect observation

and imperfect but bounded tracking control.

Example III.1. Consider a codebook B composed of sig-

nals from the sequence of curves (sn, βn(sn)) ≡ {(x, a +
b cos 2πnx)}, x ∈ [0, 1), n ∈ Z

+, and a, b ∈ R
+. Clearly

βn(sn) is twice differentiable. The elements of B need to

be feasible curves for R2 and observable curves by R1. In

order to ensure that (a) R2 does not bump into R1, and

(b) the R1 − R2 separation is always within an appropriate

sensor range for R1, we require elements of B to satisfy

dmax ≥ a ≥ dmin, b = min(a − dmin, dmax − a). The

curvature of the set of curves in B is given by

K((s, cos(2πnx))) = −
4π2n2b cos(2πnx)

(1 + 4π2n2b2 sin2(2πnx))
.

|K((s, cos(2πnx)))| is maximized for x = r/(2n), r ∈ Z, n 6=
0, and the maximal value is 4π2n2b. Since we need to satisfy

the feasibility condition for the Variable Speed Dubins Vehicle

to be able to track signals in B without error, the maximum

curvature is bounded by 2/d (d is the wheel separation), and

hence we have

4π2n2b ≤
2

d
=⇒ n2 ≤

1

2π2bd
=⇒ nmax =

⌊

√

1

2π2bd

⌋

(11)

Equation (??) gives us a bound nmax on n based on the

feasibility for a Variable Speed Dubins Vehicle to track a

desired curve from B. We now investigate the observability of

the curves in B. For any two elements (x, βp(x)), (x, βq(x)) ∈
B, p 6= q, p 6= 0, q 6= 0, we have

D((x, βp(x)), (x, βq(x))) = ‖ cos(2πpx) − cos(2πqx)‖2 = 1
(12)

The slope for the element q in B is dβq(s)/ds =
−b2πq sin(2πqx), and has a maximal value of 2bπq. From

Equation (??), we have Lmax = 2bπnmax. In Equation (??),

we need to determine a suitable value for δ1. This can be found

using Theorem ?? and nmax. We have θmax representing

the maximal slope angle for a signal, which in our case is

tan−1(maxq maxs β′
q(s)) = tan−1(2bπnmax).

δ1 >
v1

Kp cos(tan−1(2bπnmax))

Hence, from Equation (??), and the result (??), we have

D((x, βp(x)), (x, βq(x))) = 1 ≥ Lmaxδ1

=⇒ Kp ≥
2bπnmaxv1

cos(tan−1(2bπnmax))

We thus have determined a feasible and observable signal set

B, and the appropriate control law.

More work needs to be done towards developing a codebook

of messages that can be sent and understanding the effect of

sensor observation noise on the reliability of observation. We

are currently pursuing these notions as part of our current

research.

D. Simulations

Figure ?? shows a simulation run of the signaling problem

with R1 moving along a straight line trajectory. The corre-

sponding parameters are indicated in the plots. For these plots,

β(s) is chosen to be a Fourier cosine series. The question of

a useful basis for the set of functions β(s) is important. A

Fourier basis like the one used can capture a wide range of

signals. From our experience in the lab with approximations to

Variable Speed Dubins Vehicles indicates that setting constant

velocity profiles for each wheel of the Variable Speed Dubins

Vehicle, for a duration of time, yields better odometry than an

acceleration profile for the wheels. This in turn means that it

is preferable for the vehicles to track trajectories represented

by a sequence of constant curvature differentiable curves

(essentially a sequence of circular arcs and line segments.)

Developing an appropriate basis for such curves is one more

direction of future research.

E. A Protocol for Signaling

For such signaling to work, clearly R1 needs to know apriori

that R2 intends to signal a planar curve to it. There are various

ways in which this can be done. One way is to simply send

wireless data that sets up the trajectory of R1 as well as the

details regarding the starting of the transmission, the duration

of the transmission and the termination of the transmission.

But it is possible to complete this entire sequence purely

using motion. The following is one such purely motion based

protocol that can achieve this task:

1) Initiation In this phase, R2, from an arbitrary location

in the plane, approaches R1 and attempts to maintain a

constant distance and bearing from R1. R1 observes this

motion of R2 for a certain threshold of time, and assumes

that R2 wishes to signal information to R1 and prepares

for the reception in the next phase.

2) Synchronization R1 has recognized that R2 wishes to

signal information to it. R1 cooperates by choosing to
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Fig. 6. Simulation with v1 = 0.1m/s, ω1 = 0.0, Kp = 1.0,
β(s) = 0.1 cos(0.2s) + 0.1 cos(0.4s). The plot shows the desired curve,
as parameterized by the path of R1 (along the positive x-axis) and the actual
sensed curve by R1. It also shows the absolute error between the desired and
actual readings.
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Fig. 7. Simulation with v1 = 0.1m/s, ω1 = 0.0, Kp = 10.0,
β(s) = 0.1 cos(0.2s) + 0.1 cos(0.4s). The plot shows the desired curve,
as parameterized by the path of R1 (along the positive x-axis) and the actual
sensed curve by R1. It also shows the absolute error between the desired and
actual readings. There exists a small error all the way through; this is better
seen in Figure ??.

travel in a trajectory that is “easy” to signal to (for

instance, the straight line trajectory as discussed in the

previous section.)

3) Signaling R2 describes the planar curve using the control

law described in the previous section(or a similar control

law.)

4) Termination Once R2 has completed signaling the curve,

it continues to move parallel to R1 to signal the com-

pletion of the transmission. This motion continues for a

predetermined amount of time, beyond which the trans-

mission is deemed complete.

Such a protocol becomes necessary for the actual implemen-

tation of this means for signaling.

IV. CONCLUSIONS

We have presented a novel method of signaling information

between mobile autonomous agents. There are many open

questions in continuing this line of research. Control laws

based on the local information need to be developed for such

signaling to be implementable on robots in a distributed and

localized fashion. A formal protocol like the one described

in Section ?? needs to be put in place in order for agents

to successfully perform this signaling. We have presented a

method for developing a codebook for motion-based signaling.

Work needs to be done towards accounting for noisy obser-

vations by the sensors. The maximum achievable data rate

using motion-based signaling is an open question. We note

from our laboratory experience with mobile robots that closely

approximate Variable Speed Dubins Vehicles that the most

accurate odometry seems to be achieved when the trajectory

to be tracked is comprised of a sequence of constant curvature

segments rather than a trajectory with continuously varying

curvature. This implies that signaling a curve composed of

piecewise constant curvature segments may yield better signal

overlay. One might thus consider a representation of the signal

using a basis different from the Fourier basis. Finally, the

question of using this mode of signaling for Unmanned Aerial

Vehicles is still open.
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