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Abstract— This paper studies bifurcations and multiple so-
lutions of the optimal control problem for mobile robotic
systems. While the existence of multiple local solutions to
an optimization problem is not unexpected, the nature of
the solutions are such that a relatively rich and interesting
structure is present, which potentially could be exploited for
controls purposes. In particular, this paper studies a group
of unicycle-like autonomous mobile robots operating in a
2-dimensional obstacle-free environment. Each robot has a
predefined initial state and final state and the problem is to
find the optimal path between two states for every robot. The
path is optimized with respect to the control effort and the
deviation from a desired formation. The bifurcation parameter
is the relative weight given to penalizing the deviation from
the desired formation versus control effort. Numerically it is
shown that as this number varies, bifurcations of solutions are
obtained. Theoretic results of this paper relate to the symmetric
properties of these bifurcations and the number and existence of
multiple solutions for large and small values of the bifurcation
parameter. Understanding the existence and nature of multiple
solutions for optimization problems of this type is also of
practical importance due to the ubiquity of gradient-based
optimization methods where the search method will typically
converge to the nearest local optimum.

I. INTRODUCTION

Distributed systems with multiple agents have been the fo-

cus of many research efforts in recent years. The applications

of distributed systems are common: robotic underwater ve-

hicles [1], satellite clustering [2], electric power system [3],

search and rescue operations [4] etc.

The approaches to the multi-robotic formation control

problem are many and varied. Roughly, they can be cate-

gorized into three groups: leader-follower methods [5]–[7],

behavior-based methods [8]–[10] and virtual structure meth-

ods [11]–[13]. In the leader-follower methods, each robot has

at least one designated leader. Leaders can be some robots

in the group or virtual robots that represent pre-computed

trajectories supplied by a higher level planner. The other

robots are followers that try to maintain a specified relative

configuration to their leaders. Behavior-based methods draw

inspiration from biology. In nature, animals in a group can

combine their sensors to avoid their predators and search

sufficient food. The behavior of each robot is prescribed

and the final control is derived by weighting the relative
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importance of each behavior. The virtual structure methods

involve the maintenance of a geometric configuration during

robot movement using the idea that points in space should

maintain a fixed geometric relationship.

In this paper, the problem addressed is to control a

formation of robots moving along an optimal path between

an initial configuration and a final configuration. The path

is optimized with respect to a combination of the control

effort and the deviation from a desired formation. Using

standard methods from optimization, since each robot has

its own predefined initial state and final state, the procedure

to find the optimal path is to solve a boundary value problem

(“BVP”) for a set of second order ordinary differential

equations (“ODEs”).

The existence of multiple nontrivial solutions of BVPs

for nonlinear second order ODEs have been investigated by

many authors. For example, for

x′′ +a(t) f (x) = 0

x(0) = 0

x(1) = 0,

the properties of the solutions depend on the limiting behav-

ior of the function f (u). Erbe and Wang [14] studied the

existence of positive solutions of the equation with linear

boundary conditions. Also, if

f0 = lim
s→+0

f (s)

s

f∞ = lim
s→+∞

f (s)

s
,

they showed the existence of at least one positive solution

in two cases, superlinearity ( f0 = 0, f∞ = ∞) or sublinearity

( f0 = ∞, f∞ = 0). In [15], Erbe, Hu and Wang showed that

there were at least two positive solutions in the case of super-

linearity at one end (zero or infinity) and sublinearity at the

other end. Naito and Tanaka [16] and Ma and Thompson [17]

established precise condition concerning the behavior of the

ratio f (s)/s for the existence and nonexistence of solutions.

Their main results were that the BVP had at least k solutions

if the ratio f (s)/s crossed the k eigenvalues of the associ-

ated eigenvalue problem. For a class of systems of second

order ODEs, Marcos do Ó, Lorca and Ubilla [18] used

the fixed-point theorem of cone expansion/compression type,

the upper-lower solutions method and degree arguments to

study the existence. nonexistence, and multiplicity of positive

solutions of the BVP.

This paper first presents numerical results illustrating bi-

furcations and multiple solutions of the BVP associated with
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the optimal control problem. Then, it presents a theoretical

result relating to the existence of multiple solutions in the

limiting cases of small and large values of the bifurcation

parameter. Finally, it proves the existence of symmetric solu-

tions which guarantees that for any solution, a corresponding

symmetric solution exists. The practical benefit of this result

is that if a solution is found numerically, the symmetric

solution can be computed from that algebraically.

II. PROBLEM STATEMENT

We adopt a simplified version of the robotic unicycle as

a prototypical model. The simple kinematics of this kind of

robot are described by

ẋ = u1 (1)

ẏ = u2.

The problem is to find the controls ui1(t),ui2(t) for each

robot i which steer a formation of these robots from the start

configuration to its goal configuration, while maintaining

a rigid body formation at the beginning and end of the

trajectory and minimizing the global performance index

J =
∫ t f

0

n

∑
i=1

(

(ui1)
2 +(ui2)

2
)

+
n−1

∑
i=1

k
(

di −d
)2

dt

subject to the robotic kinematic constraints in Equation 1,

where n > 2 is the number of robots, di = ((xi − xi+1)
2 +

(yi−yi+1)
2)1/2 is the Euclidean distance from ith to (i+1)th

robots, d is the desired distance between two adjacent

robots, and k is a non-negative weighting constant. The

cost function minimizes a combination of the control effort

(first summation) and the deviation from a desired formation

(second summation).

Applying Pontryagin’s maximum principle to solve the

optimal control problem, we obtain the optimal inputs

ui1 =
1

2
pi1

ui2 =
1

2
pi2 ,

and equations of motion

ẋi =
1

2
pi1 (2)

ẏi =
1

2
pi2

ṗi1 =
2k (xi − xi−1)

(

di−1 −d
)

di−1
+

2k (xi − xi+1)
(

di −d
)

di

ṗi2 =
2k (yi − yi−1)

(

di−1 −d
)

di−1
+

2k (yi − yi+1)
(

di −d
)

di

.

Because they correspond to the robots at the end of the

formation, the last two equations in Equation 2 only have

the second term when i = 1 and they only have the first term

when i = n.

The cases considered in this paper are limited to the

boundary conditions

xi(0) = c+(i−1)d, (3)

xi(1) = 0,

yi(0) = 0,

yi(1) = c+(i−1)d,

where c is a constant. These boundary conditions correspond

to an initial formation with the robots arranged along the x-

axis starting with the first robot at at x = c with a distance

d between each robot and a final formation with the robots

arranged along the y-axis starting with the first robot at y = c

with a distance of d between each robot. It is important

to note that if the initial and final formations are not

parallel, then straight-line trajectories satisfying the boundary

conditions will not, in general, maintain the desired distance

between the robots.

III. BIFURCATION RESULTS

For a distributed system containing n robots, when the

weighting constant k is given, an optimal trajectory can be

obtained numerically by solving the equations of motion

given by Equation 2. The results in this paper were obtained

using the shooting method (see [19]).

A. Solutions for a five robot system

The figure on the left in Figure 1 illustrates three different

solutions that satisfy the equations of motion in Equation 2

and boundary conditions in Equation 3 for k = 24.5, c = 6

and d = 2 for a formation of five robots. Since the differences

among these trajectories are difficult to distinguish on such

a small graph, the figure on the right illustrates them for the

third (middle) robot with the difference magnified by a factor

of 10.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

y

x

0

2

4

6

8

10

0 2 4 6 8 10

y

x

Fig. 1. Optimal paths for the five robot system with k = 24.5.

Since k is a parameter in the differential equations, it

will clearly affect the solutions. In fact, as k is varied,

the nature and number of solutions changes. Section IV

shows that there is a unique solution when k is small

and in the limit as k approaches infinity, the number of

solutions also approaches infinity. In order to present the

relationship between the number of solutions and k, we

construct a bifurcation diagram as follows: since a straight
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line connecting end points is the optimal solution when k = 0,

we will designate that as a nominal trajectory. One measure

of the difference between solutions would be their deviation

from the straight line nominal solution at some specified

time. As long as the different solution are not intersecting at

that time, this would provide a measure of difference between

different solutions. In all the bifurcation diagram illustrated

subsequently, t = 0.25 (with t f = 1) is used. For different

formations and different type of robots, a different value of t

may be a better choice; however, for all the systems studied

in this paper, t = 0.25 appeared to adequately represent the

relationship among the solutions. Also, alternative measures

of differences between the solutions may, in general, be

superior, this simple choice appears to suffice for all the cases

considered in this paper.

The plots in Figure 2 illustrate this measure of the differ-

ence between solutions for each robot in the five robot system

as k is varied from 0 to 25. In these bifurcation diagrams,

the first robot is the one with the shortest trajectory, the

fifth robot is the one with the longest trajectory and they are

ordered sequentially. The bifurcation occurs near k = 16.5.

Observe that the bifurcation diagrams for robots 1 and 5 are

symmetric to each other about d = 0 axis and the bifurcation

diagrams for robots 2 and 4 are similarly symmetric (even

though each follows a trajectory with a different length).

Finally, the bifurcation diagram for robot 3 is symmetric to

itself about d = 0 axis.

A close analysis of the actual trajectories that the robots

follow illustrated in the figure on the right in Figure 1

reveals that the trajectories themselves are not symmetric

(the two trajectories with pronounced curves intersect, but

not at a point on the straight line solution). A measure that is

based upon the deviation from the nominal solution appears

to be necessary to determine the real symmetric nature of

the solutions. Section V contains the analysis that these

symmetries must, in fact, exist.

B. Solutions for a seven robot system

Figures 3 and 4 illustrate similar results for a seven robot

system. Figure 3 illustrates the trajectories when k = 24.5,

c = 4 and d = 2. Again, because the difference is hard to

distinguish in the small left figure, the right figure in Figure 3

illustrates the trajectory with the deviation from the nominal

trajectory for the fifth robot magnified by a factor of five.

Figure 4 illustrates the bifurcation diagrams for the solutions

versus k constructed in a manner identical to that of the

system of five robots. The first bifurcation occurs near k =
10.8, the second occurs near k = 16.1 and the third occurs

near k = 20.6. Observe that, similar to the five robot case,

the bifurcation diagrams for robots 1 and 7 are symmetric

to each other about d = 0 axis as is the bifurcation diagrams

for robots 2 and 6 and robots 3 and 5, and the bifurcation

diagram for robot 4 is symmetric to itself about d = 0 axis.

IV. ASYMPTOTIC ANALYSIS

In the two cases of very small k and very large k, we may

use an asymptotic expansion to investigate the effect of k on
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Fig. 2. Bifurcation diagrams for a five robot system.
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Fig. 3. Optimal paths for a seven robot system with k = 23.
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Fig. 4. Bifurcation diagrams for a 7-robotic system.

the number of solutions to the BVP. As will be shown, this

analysis is consistent with the existence of a unique solution

for small values of k and many solutions for very large k,

which is the pattern indicated in the numerical bifurcation

results that show an increased number of bifurcations and

an increased number of solutions as k gets large.

A. Small k

We use a standard perturbation method (see [20]) to solve

equations 2 for k ≪ 1. If we let

xi = xi,0 + kxi,1 + k2xi,2 + k3xi,3 + · · ·+ k jxi, j + · · · ,
yi = yi,0 + kyi,1 + k2yi,2 + k3yi,3 + · · ·+ k jyi, j + · · · ,

pi1 = pi1,0 + kpi1,1 + k2 pi1,2 + k3 pi1,3 + · · ·+ k j pi1, j + · · · ,
pi2 = pi2,0 + kpi2,1 + k2 pi2,2 + k3 pi2,3 + · · ·+ k j pi2, j + · · · ,

and substitute into the equations of motion (Equation 2), a

set of linear differential equations is obtained for each power

of the expansion parameter k. Space limitations prevent the

inclusion of the entire resulting equation, but we can consider

it term-by-term in powers of k.

Specifically, if z represents either x or y, then the

following table illustrates the resulting recursive structure

of the equations. Any entry that is zero corresponds to

a variable that is identically zero. Furthermore, as is the

typical case in an asymptotic expansion, any variable only

depends on lower order ones, which in this table correspond

to variables to the left of it. Specifically, we have
zi,0 zi,1 zi,2 · · · zi,m−1 zi,m · · ·
z1,0 z1,1 z1,2 · · · z1,m−1 z1,m · · ·
z2,0 0 z2,2 · · · z2,m−1 z2,m · · ·
z3,0 0 0 · · · z3,m−1 z3,m · · ·

...
...

...
. . .

...
... · · ·

zm,0 0 0 · · · 0 zm,m · · ·
...

...
...

. . .
...

... · · ·
zn−2,0 0 0 · · · −z3,m−1 −z3,m · · ·
zn−1,0 0 −z2,2 · · · −z2,m−1 −z2,m · · ·
zn,0 −z1,1 −z1,2 · · · −z1,m−1 −z1,m · · ·

where m is the smallest integer larger than or equal to
n
2
. So, if zi,i is known and since zi, j ( j > i) depends on

zi−1, j−2,zi−1, j−1,zi, j−2,zi, j−1,zi+1, j−2,zi+1, j−1, we can solve

them in the order of j = i+1, i+2, · · · .
In detail, the j = 0 (k0) terms gives the set of linear

equations

ẋi,0 =
1

2
pi1,0,

ẏi,0 =
1

2
pi2,0,

ṗi1,0 = 0,

ṗi2,0 = 0,

with boundary conditions

xi0(0) = x10(0)+(i−1)d

yi0(0) = 0

xi0(1) = 0

yi0(1) = y10(1)+(i−1)d,
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which have solutions

xi,0 = −xi,0(0)t + xi,0(0),

yi,0 = yi,0(1)t,

pi1,0 = −2xi,0(0),

pi2,0 = 2yi,0(1).

Naturally, these are straight lines, which is expected when

the only component of the cost function is the control effort

and the 0th order solution does not contain k.

In all cases (all powers of k and all robots), an analysis

of the resulting expansion shows that xi, j = −xn+1−i, j and

yi, j =−yn+1−i, j. Also, for 1 ≤ j < i ≤ n+1
2

, xi, j = 0 and yi, j =
0 (the higher order terms for the “outer” robots are zero up

to a certain order. Hence we only need to consider the cases

where 1 ≤ i ≤ n
2

and i ≤ j.

In the case where j = i = 1,

ẋ1,1 =
1

2
p11,1

ẏ1,1 =
1

2
p11,2

ṗ11,1 = 2d(t −1)

(

1−
1

√
2t2 −2t +1

)

ṗ12,1 = −2dt

(

1−
1

√
2t2 −2t +1

)

.

Since the right hand sides of the last two equations are

continuous and bounded functions of t on the interval I =
[0,1], they are integrable and the integrals are differentiable

(see [21]), which indicates the integrals are continuous.

Hence x1,1, y1,1 exist and are unique since the right hand

side of the p equations may be directly integrated twice to

obtain the x and y solutions. Since we integrate twice, there

are two undetermined constants, which can be determined

by the two zero boundary conditions.
When i = j and j > 1,

ẋi, j =
1

2
pi1, j

ẏi, j =
1

2
pi2, j

ṗi1, j = −2xi−1, j−1 +
2t

(

−yi−1, j−1 + t(xi−1, j−1 + yi−1, j−1)
)

(

2t2 −2t +1
)3/2

ṗi2, j = 2yi−1, j−1 +
2(t −1)

(

−yi−1, j−1 + t(xi−1, j−1 + yi−1, j−1)
)

(

2t2 −2t +1
)3/2

.

The right hand sides of the last two equations are the

sum of integrable functions or product of them, so they are

differentiable (see [21]). Similar to the argument for x1,1 and

y1,1, xi,i and yi,i therefore exist and unique.

Space limitations prevent the detailed inclusion of the

expressions for the off-diagonal terms. However, they have

the same essential structure that the right hand side of the

co-state equations is a linear combination of the lower order

solutions in the expansion. Since all the lower order solutions

are continuous and bounded functions of t, they may be

directly integrated to compute the actual solution.

Since all the terms in the expansion may be solved by

direction integration of functions that are continuous and

bounded, a solution for each term exists. Hence, for k ≪ 1,

this asymptotic analysis give a computable construction for

the solutions, and also indicates that the solution is unique.

In other words, for small k, only one solution exists.

B. Large k

For large k ( 1
k
≪ 1), a similar asymptotic expansion is

used to solve equations 2 but instead of k, ε = 1
k

is used as

the expansion parameter. Let

xi = xi,0 + εxi,1 + ε2xi,2 + ε3xi,3 + · · ·+ ε jxi, j + · · · ,
yi = yi,0 + εyi,1 + ε2yi,2 + ε3yi,3 + · · ·+ ε jyi, j + · · · ,

pi1 = pi1,0 + ε p1i,1 + ε2 p1i,2 + ε3 pi1,3 + · · ·+ ε j pi1, j + · · · ,
pi2 = pi2,0 + ε p2i,1 + ε2 p2i,2 + ε3 pi2,3 + · · ·+ ε j p2i, j + · · · .

We obtain the following equation for leading order of ε ,

ẋi,0 =
1

2
pi1,0

ẏi,0 =
1

2
pi2,0

0 =
2k

(

xi,0 − xi−1,0

)(

di−1,0 −d
)

di−1,0
+

2k
(

xi,0 − xi+1,0

)(

di,0 −d
)

di,0

0 =
2k

(

yi,0 − yi−1,0

)(

di−1,0 −d
)

di−1,0
+

2k
(

yi,0 − yi+1,0

)(

di,0 −d
)

di0
.

The last two equations may be simplified to

(xi,0 − xi−1,0)
2 +(yi,0 − yi−1,0)

2 = d
2
, (4)

which transparently shows that the limit for large k simply

requires that the distance constraint be exactly maintained.

Since the third and fourth equations are algebraic (as is

Equation 4), then the costates, p are unconstrained and hence

any path that maintains the desired distance between the

robots and satisfies the boundary conditions is a solution.

This makes intuitive sense: in the limit as k → ∞, the control

effort becomes negligible relative to the distance constraint.

Hence, in the limit of very large k, the asymptotic analysis

indicates that there is an infinite number of solutions. As long

as the separation distance is maintained and the boundary

conditions are satisfied, any path is optimal.

V. SYMMETRIES IN THE BIFURCATION

DIAGRAMS

This section proves that the symmetries found in

the numerically-constructed bifurcation diagrams must be

present. This is of practical value because it reduces the

computation time necessary in a search over multiple solu-

tions since a second solution can always be found from any

solution that is obtained (unless the solution is symmetric

with itself).

Suppose (x1,x2, · · · ,xn,y1,y2, · · · ,yn) is a solution of Equa-

tion 2 with the boundary conditions in Equation 3, and let

xi = xsi
+ xdi

,

yi = ysi
+ ydi

,
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where

xsi
= (c+(i−1)d)(1− t),

ysi
= (c+(i−1)d)t.

The subscripts s indicate a “straight-line” solution and

the subscripts d indicate the component of the solution

that is a “deviation” from the straight line. If v(t) =
(xd1

,yd1
, · · · ,xdn

,ydn
), then xdi

,ydi
, i = 1,2, · · · ,n, satisfy the

following equations with homogeneous boundary conditions:

−ẍdi
(t) = fi(v(t)), (5)

−ÿdi
(t) = gi(v(t)),

where f1 = h1, g1 = l1, fn = −hn−1, gn = −ln−1, and for

i = (2,3, · · · ,n−1)

fi = hi −hi−1,

gi = li − li−1

where, for all i = (1,2, · · · ,n)

hi =

(

d

di
−1

)

(

−d +dt + xdi
− xdi+1

)

,

li =

(

d

di
−1

)

(

−dt + ydi
− ydi+1

)

,

di =
(

(

−d +dt + xdi
− xdi+1

)2
+

(

−dt + ydi
− ydi+1

)2
)

1
2
.

The system (5), is equivalent to the system of integral

equations

xdi
=

∫ 1

0
G(t,s) fi(v(s))ds, (6)

ydi
=

∫ 1

0
G(t,s)gi(v(s))ds,

where G(t,s) is the Green’s function of the differential

operator −ü = 0 with homogeneous boundary conditions,

where u = xdi
or u = ydi

, and

G(t,s) =

{

t(1− s), t ≤ s

s(1− t), t > s
.

If Ai, Bi and F are maps such that

Aiv(t) = k

∫ 1

0
G(t,s) fi(v(s))ds,

Biv(t) = k

∫ 1

0
G(t,s)gi(v(s))ds,

Fv(t) = (A1(v)(t),B1(v)(t), · · · ,An(v)(t),Bn(v)(t),

then determining a solution to equation (6) is equivalent to

finding a fixed point to equation

Fv(t) = v(t). (7)

The following proposition proves that if a solution is

known, then the “opposite” deviation from the straight-line

solution is also a solution for the robot on the other side of

the formation.

Proposition 1: Suppose v(t) is a fixed point of equation 7.

Let

x̂dn+1−i
= −xdi

(8)

ŷdn+1−i
= −ydi

and v̂(t) = (x̂d1
, ŷd1

, · · · , x̂dn
, ŷdn

), then v̂(t) is also a fixed

point of equation 7
Proof: The proof is by direct substitution. Substituting

for the definition of the hat terms for each gives:

di =

√

(

−d +dt + xdi
− xdi+1

)2
+

(

−dt + ydi
− ydi+1

)2

=

√

(

−d +dt − x̂dn+1−i
+ x̂dn−i

)2
+

(

−dt − ŷdn+1−i
+ ŷdn−i

)2

=

√

(

−d +dt + x̂dn−i
− x̂dn−i+1

)2
+

(

−dt + ŷdn−i
− ŷdn−i+1

)2

= d̂n−i

hi =

(

d

di
−1

)

(

−d +dt + xdi
− xdi+1

)

=

(

d

d̂n−i

−1

)

(

−d +dt − x̂dn+1−i
+ x̂dn−i

)

=

(

d

d̂n−i

−1

)

(

−d +dt + x̂dn−i
− x̂dn−i+1

)

= ĥn−i

li =

(

d

di
−1

)

(

−dt +(yd)i − (yd)i+1

)

=

(

d

d̂n−i

−1

)

(

−dt − ŷdn+1−i
+ ŷdn−i

)

=

(

d

d̂n−i

−1

)

(

−dt + ŷdn−i
− ŷdn−i+1

)

= l̂n−i

and

f1 = h1 = ĥn−1 = − f̂n

g1 = l1 = l̂n−1 = −ĝn

fi = hi −hi−1 = ĥn−i − ĥn+1−i = − f̂n+1−i

gi = li − li−1 = l̂n−i − ĥn+1−i = −ĝn+1−i

fn = −hn−1 = −ĥ1 = − f̂1

gn = −ln−1 = −l̂1 = −ĝ1

which give us

fi = − f̂n+1−i,

gi = −ĝn+1−i.

for all i from 0 to n. Then

x̂di
= −xdn+1−i

= −
∫ 1

0
G(t,s) fn+1−ids =

∫ 1

0
G(t,s) f̂ids

ŷdi
= −ydn+1−i

= −
∫ 1

0
G(t,s)gn+1−ids =

∫ 1

0
G(t,s)ĝids.

Hence v̂(t) = (x̂d1
, ŷd1

, · · · , x̂dn
, ŷdn

) is a solution of equa-

tion 7.

Equation 8 gives an algebraic expression for the symmetric

solutions, which is useful because the theorem proves they

satisfy the boundary value problems and hence reduces the

computational burden of determining additional solutions.

Note that the relationship is not simply the opposite deviation

from the straight line solution, but is the opposite deviation

from the straight line for a different robot.
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VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper considers the optimal control problem for a

formation of multiple robots. The trajectory of each robot

is optimized with respect to a combination of the control

effort and the deviation from a desired formation, which in

this paper is simply a formation that maintains a specified

distance between adjacent robots. The paper first presents

numerical results illustrating the structure of bifurcations and

multiple solutions of the BVP associated with the optimal

control problem. Then it shows that an asymptotic analysis

indicates that there is a unique solution when k is small and

in the limit as k approaches infinity, the number of solutions

also approaches infinity. Then, it presents a theoretical result

relating to the existence of symmetric solutions. It guarantees

that for any solution, a corresponding symmetric solution

exists. The practical benefit is that if a solution found

numerically, the symmetric solution can be computed from

that algebraically. Also, if a gradient-based search method

is used, understanding of the structure of the relationship

among multiple solutions is necessary to find the desired

result. Finding multiple solutions may be desirable if the

cost function does not include all the optimization criteria;

for example, if obstacles are present but not accounted for

in the cost function.

B. Future work

Future work is directed in several areas. The results

are likely to be much more general than the particular

case presented in this paper. Determining the most general

classes of robots and formations that maintain the symmetry

properties of the results and similar bifurcation structure is

of interest. Also, the asymptotic analysis is only of any use

for the limiting values for k. Determining conditions for the

existence of a bifurcation for any value of k, similar to that

for initial value problems, would be useful.
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