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Abstract— This article tackles the problem of estimating the
domain of attraction of a Lur’e system, that is the feedback
interconnection of a linear time-invariant system with a memo-
ryless static operator. When the dimension of the system is large,
numerical approaches based on simulations become prohibitive
from a computational point of view. On the other hand, classical
analytical techniques based on Lyapunov functions provide
conservative estimates because they usually consider quadratic
Lyapunov functions. Another limit is given by the fact that they
deal with contractively invariant sets, which are sets where the
derivative of the Lyapunov function along the trajectories is
negative. Methods to reduce their conservativeness are still a
challenging subject of research and desirable for many practical
applications. In this paper, we try to combine the information
given by more Lyapunov functions together in order to enlarge
the estimate of the domain of attraction. The novelty of our
approach lies in the fact that the sets we are considering are
invariant but not necessarily contractively invariant. We assume
that an estimate of the attraction domain is already known.
In order to show that a set is part of the attraction domain,
it is sufficient to prove that all the trajectories starting from
it reach the current estimate in a finite time. This concept
provides a method to iteratively improve the attraction domain
estimate using different Lyapunov functions without limiting
the analysis to contractively invariant sets. After developing a
general theory, we only resort to the use of quadratic Lyapunov
functions because of the computational appeal given by LMI
solvers.

I. I

In this work, we focus on an important class of nonlinear

models given by the feedback interconnection of a linear

time-invariant system G with a nonlinear block N (see

Figure 1). Models of this kind are known in the literature

N

G

Fig. 1. A Lur’e system
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as Lur’e systems [1] and a large number of real systems

have this structure. Recent examples are provided by Atomic

Force Microscopes [2],[3] and other Microelectromechanical

systems [4], [5], [6]. Many studies targeted the problem of

“absolute stability”, where the global asymptotic stability of

the origin is sought with respect to a class of nonlinear

operators, and thus providing a robust notion of stability.

Classical results include the Popov (see [7]) and the circle

criteria (see [8] and [9]) that provide sufficient conditions

for global asymptotic stability when the nonlinearity is

restricted to be time-invariant and time varying respectively.

A relatively new approach involving only input-output maps

is given by the Integral Quadratic Constraint (IQC) methods

pioneered in [10]. In this approach, a quadratic constraint

is used to characterize the nonlinearity playing the role of

the sector condition used in the other classical absolute

stability criteria. Since the sector relations can be derived

as special IQC conditions, such an approach provides a

powerful unifying theoretical framework. Furthermore, it

provides the powerful capability of seamlessly integrating

different characterizations of the nonlinearity, as well. When

an equilibrium is not globally asymptotically stable, it is

important for many practical issues to estimate its domain

of attraction. Indeed, the domain of attraction represents

the region of perturbations on the equilibrium which the

system can absorb. Estimating a domain of attraction is a

difficult problem to solve even from a numerical point of

view, especially when the phase space has a large dimension.

Any approach based on simulation techniques would require

a large number of systematic simulations with different initial

conditions. An analytical, but more conservative method to

estimate the domain of attraction is provided by the LaSalle

theorem [11], [12] which relies on the knowledge of a

Lyapunov function. Since both the circle and the Popov

criteria rely on the construction of a Lyapunov function in

order to prove global asymptotic stability, the same criteria

can be suitably modified in order to obtain local results

assuming that the nonlinearity satisfies local properties only

[11]. Consequentely, an estimate of the attraction domain

can be accomplished exploiting the Lyapunov function pro-

vided by these criteria in combination with the LaSalle

theorem. In order to reduce the conservativeness of this

approach, in [13] an optimization technique based on LMI’s

is proposed. It is based on the computation of the largest

contractively invariant ellipsoid of a fixed shape containing

the equilibrium. We remind that an ellipsoid is contractively

invariant if the derivative of its related quadratic form is

negative along the system trajectories. The authors also prove

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA02.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4007



that the convex hull of contractively invariant ellipsoids

is an invariant contractive set contained in the domain of

attraction.

In this paper, we propose a technique to improve the estimate

of attraction domains. LMI’s are a powerful tool to obtain

a quadratic Lyapunov function which proves local stability

of an equilibrium. However, in some situations, contrac-

tively invariant ellipsoids and their convex hull provide a

conservative estimate of the attraction domain. This is due

to the strong requirement of “contractive invariance”: the

ellipsoid must be an invariant set and also the derivative of

the Lyapunov function along the contained trajectories must

be strictly negative. Conversely, we assume that an estimate

of the attraction domain is already known. In order to show

that a set is part of the attraction domain, it is sufficient

to prove that all the trajectories starting from it reach the

current estimate in a finite time. This concept provides a

method to iteratively improve the attraction domain estimate

without limiting the analysis to contractively invariant sets.

In the paper we formalize this intuitive idea developing

adequate theoretical tools in order to handle positively in-

variant sets. After developing a general theory, we only

resort to the use of quadratic Lyapunov functions because

of the computational appeal given by LMI solvers. We also

introduce the concept of Biased Local Quadratic Constraint

as a technical instrument to describe a nonlinearity. It is

a general formulation of many quadratic constraints which

are used to express conditions in many stability criteria

(Circle, Popov, Zames-Falb). A more general relaxation of

the Integral Quadratic Constraints (IQC’s) introduced by

[10] could have been pursued. However this is beyond the

main objectives of this short article. The paper is structured

as follows: in Section III the problem is formulated; in

Section IV some preliminary results are illustrated; Section V

contains the general theoretical results; Section VI combines

the theory with LMI’s and BLQC’s as practical tools to

construct Lyapunov functions; finally Section VII shows the

utility and limits of our techniques through two numerical

examples, providing also a comparison with other techniques

in the literature.

II. D  N

Definition 1: Given a space X with a metric d, we extend

the definition of the metric to include the concept of distance

between a point x ∈ X and a set A ⊂ X in the following way

d(x, A) := inf{d(x, y)|y ∈ A}. (1)

Definition 2: Given a metric space X with a metric d and

a set A ⊆ X, we define the neighborhood of A with radius ǫ

as

I(A, ǫ) := {x ∈ X|d(x, A) < ǫ}. (2)

Consider a dynamical system S described by an initial

condition problem

ẋ = f (t, x)

x(t0) = x0
(3)

with f : ℜ × ℜn → ℜn “regular enough” in order to

guarantee the uniqueness of solutions. Let x(t) := φ(t, t0, x0)

be the trajectory related to the initial condition (t0, x0).

Definition 3: We say that A is an Positively Invariant (PI)

set for S if and only if, for all t > t0 and for all x0 ∈ A

φ(t, t0, x0) ∈ A for all t > T.

Definition 4: We say that A is an attracting set for S if,

for any ǫ > 0, there exist a δ = δ(ǫ) and a T = T (ǫ) such

that

x(t0) ∈ I(A, δ) implies x(t) ∈ I(A, ǫ) for all t > T. (4)

Definition 5: We say that A is an attractor if it is an

attracting set that does not contain any other proper attracting

subset.

Definition 6: Given an attracting set A, we define its

domain of attraction as

D(A) := {x0 ∈ ℜn|
∀ǫ > 0∃T = T (ǫ, x0), t > T implies φ(t, t0, x0) ∈ I(A, ǫ)}
Definition 7: Let P be a strictly positive n× n matrix and

let H be a real nonnegative value. We define

EP(H) ≔
{

x ∈ Rn : xT Px ≤ H
}

.

Definition 8: Given a scalar function V : ℜn → ℜ we

define

ΩV (H) ≔ {x ∈ Rn : V(x) ≤ H} .
Definition 9: Given a constant matrix Σ ≥ 0, we define

the quadratic form σ : Rn × Rn → R

σ(y, u) =

(

y

u

)∗
Σ

(

y

u

)

.

We say that a nonlinearity Ξ(·) satisfies the Biased Local

Quadratic Constraint (BLQC) defined by σ with bias M > 0,

if and only if

σ(y(t), ξ(t)) + M ≥ 0 for all t > 0 (5)

for any signals y(t), ξ(t) ∈ L2e, where ξ(t) = Ξ(y(t)). We also

use the notation Ξ ∈ BLQC(σ,M) and say that the matrix Σ

is the multiplier of the BLQC.

III. P 

Let us consider a Lur’e system as depicted in Figure 1.

Assume that the linear system G is proper with transfer func-

tion G(s) and that the nonlinear block N can be described by

a possibly time-varying operator Ξ. The differential equation

representing such a feedback interconnection is symbolically

expressed by

y = G(d/dt) Ξ(t, y(·)) (6)

where y is the output of the system. Assume that the origin

is a stable equilibrium for the system. The problem we are

considering is to find an estimate of its attraction domain.
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IV. P 

This section introduces some technical results needed to

derive the main contributions of the paper. The following

lemma provides a bound for the scalar output y = Cx of a

dynamical system when the state x belongs to the ellipsoid

EP(H).

Lemma 4.1: Let us consider a positive symmetric matrix

P, then it holds that

max
x∈EP(H)

|Cx| =
√

HCP−1CT (7)

Proof: The lemma is a trivial result of projective

geometry.

The following lemma is a technical result which will be

exploited in the following section.

Lemma 4.2: Assume that V : ℜn → ℜ is a continuous

function and that ΩV (H) is a compact set for any H. Then,

for any ǫ > 0 there exists Hǫ > H such that x ∈ ΩV (Hǫ)

implies that

d(x,ΩV (Hǫ)) < ǫ (8)

Proof: By contradiction there exists ǫ > 0 such that

for any Hǫ > H it is possible to find a x ∈ ΩV (Hǫ) with

d(x,ΩV (Hǫ)) ≥ ǫ. Consider the sequence Hn = H + 1/n and

the related sequence xn such that

d(x,ΩV (H)) ≥ ǫ (9)

Since ΩV (H+1) is a compact set, there exists a subsequence

xkn
converging to x̂ ∈ ΩV (H + 1). By the continuity of V we

have that

V(x̂) = lim
n→+∞

V(xkn
) ≤ lim

n→+∞

(

H +
1

kn

)

= H (10)

implying that x̂ ∈ ΩV (H) On the other hand we have

0 = d(x̂, x̂) = lim
n→+∞

d(xkn
, x̂) ≥ lim inf

n→+∞
d(xkn

,ΩV (H)) ≥ ǫ > 0

(11)

which is a contradiction.

V. M T R

The following theorem employs a scalar function V , de-

fined on the state space, in order to detect positively invariant

and attracting sets giving an estimate of their domain of

attraction.

Theorem 5.1: Consider a dynamical system as in (3) and

a scalar function V : ℜn →ℜ,V ∈ C1(ℜ). Assume that

x(t) ∈ ΩV (H)\ΩV (H) implies V̇(x(t)) < 0 (12)

for some H > H and that ΩV (H) is compact for every H <

H < H. Then

• ΩV (H) is positively invariant

• ΩV (H) is an attracting set

• ΩV (H) ⊆ D(ΩV (H)).

Proof: First, let us prove that ΩV (H) is positively invari-

ant. Fix ǫ > 0 and consider x0 ∈ ΩV (H). By contradiction,

there exists t3 such that H < V(x(t3)) := H∗ < H. Consider

t1 := sup{t|0 < t < t3,V(x(t)) ≤ H} (13)

t2 := inf{t|t1 < t < t3,V(x(t)) ≥ H∗} , t1. (14)

ΩV (H)

ΩV (H)

Fig. 2. An intuitive representation of a “contractive shell” in the phase
space

Since V(x(t)) is a continuous function the sets are not empty

and the definitions make sense. Note also that t1 < t < t2
implies H < V(x(t)) < H∗. By the mean value theorem, we

have that

0 < V(x(t2)) − V(x(t1)) =

∫ t2

t1

V̇(x(t))dt = V̇(x(t̂))(t2 − t1)

(15)

for some t1 < t̂ < t2, but this is a contradiction since V̇(x(t̂)) <

0.

Now, let us prove that any trajectory with x0 ∈ ΩV (H) is

attracted to ΩV (H). Given ǫ > 0, it is always possible to find

Hǫ > H such that

x ∈ ΩV (Hǫ)⇒ d(x,ΩV (H)) < ǫ. (16)

Given x0 ∈ ΩV (H), there exists t > 0 such that x(t) ∈ ΩV (Hǫ).

Assume again by contradiction that it does not exist. This

means that V(x(t)) > Hǫ for all t. Then we have

dV/dt ≤ −r := min{V̇(x(t))|Hǫ ≤ V(x(t)) ≤ H} < 0. (17)

Integrating both sides, we find a contradiction, since V(x(t))

should diverge to −∞. Therefore there exists t > 0 such

that x(t) ∈ ΩV (Hǫ). The fact that EP(H) is an attracting set

follows from the positively invariance of EP(Hǫ).

The most important property required from V is to have

a negative time derivative on the set ΩV (H)\ΩV (H) which

can be interpreted as a “shell” in the phase space. Then,

Theorem 5.1 intuitively states that such a shell is “contrac-

tive” in the sense that all trajectories in it approach its inner

surface {x : V(x) = H}. A graphical representation of this

intuition is given in Figure 2. Note that Theorem 5.1 also

provides a generalization of the classical Lyapunov theorem

for asymtpotical stability when H = 0, V(x) > 0 for any

x , 0.

The following theorem provides a method to include level

sets described by a scalar function V2 into the attraction

domain of attracting sets described by a different scalar

function V1.
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ΩV2
(H2)

ΩV2
(H

2
)

ΩV1
(H

1
)

Fig. 3. An intuitive phase space representation of Theorem 5.2. The gray
area represents the region where V̇1 is negative

Theorem 5.2: Consider a dynamical system as in (3) and

two scalar functions V1,V2 : ℜn → ℜ,Vi ∈ C1(ℜ). Assume

that

• x(t) ∈ ΩV2
(H2)\ΩV2

(H2) implies V̇2(x(t)) < 0

• x(t) ∈ ΩV2
(H2)\ΩV1

(H1) implies V̇1(x(t)) < 0

• ΩV1
(H1) is an attracting set

for some H2 > H2, H1. Then

ΩV2
(H2) ⊆ D(ΩV1

(H1)). (18)

Proof: Given H2 and ǫ2 > 0, from Lemma 5.1 we

know that any solution x(t) with initial condition in ΩV2
(H2)

reaches the positively invariant set ΩV2
(H2 + ǫ2) at a time t1.

By the continuity of V̇1(x(t)) and Lemma 4.2 it is possible

to choose ǫ2 small enough, such that V̇1(x(t)) < 0 for any

x(t) ∈ ΩV2
(H2 + ǫ2)\ΩV1

(H1). Now let us prove that x(t) is

attracted by ΩV1
(H1). By contradiction, assume that x(t) is

not attracted by ΩV1
(H1). Thus, there is a ǫ1 > 0 such that

d(x(t),ΩV1
(H1)) ≥ ǫ1 for any t implying that V(x(t)) > H1

for any t. Since ΩV2
(H2 + ǫ2) is a positively invariant set we

have that V̇(x(t)) < 0 for any t > t1. Consider the relation

V(x(t)) − V(x(t1)) = (19)

=

∫ t

t1

V̇(x(t))dt = V̇(x(t̂))(t − t1) < η(t − t1). (20)

This is a contradiction because it implies that V(x(t)) diverges

to −∞.

Theorem 5.2 provides a method to enlarge the attraction

domain estimate of the attracting set ΩV1
(H1) using level

sets of the different Lyapunov function V2. This is possible,

according to the theorem hypothesis, when the contractive

shell ΩV2
(H2)\ΩV2

(H2) has its inner surface contained in a

region where V̇1 is negative. An intuitive graphical represen-

tation is provided in Figure 3. It is important to stress that

the set ΩV2
(H2) is not required to be contractively invariant

in order to be added to the estimate of attraction domain.

VI. LMI’  BLQC’     

In this section we exploit BLQC’s and LMI’s as practical

tools to find attracting sets and estimate their domains. We

show the following results.

Theorem 6.1: Let S be the Lur’e system described by (6).

Let G(s) be a strictly proper transfer function and let

(A, B,C, 0) be a minimal realization of G(s) with state x ∈ Rn.

Suppose that, for any y such that y2 < Y2, Ξ satisfies the

BLQC given by the quadratic form σ

σ(y, ξ) =

(

y

ξ

)T (

Q S

S T R.

) (

y

ξ

)

≥ −M. (21)

Assume that there exists a solution (P, r) to the following

LMI
[

AT P + PA +CT QC + rP PB +CT S

BT P + S T C R

]

< 0 (22)

with P ∈ Rn×n, P = PT , P > 0, r ∈ R+ and define

H :=
M

r
H :=

Y2

CP−1CT
. (23)

If there exists H such that H < H < H , then the set EP(H)

is a positively invariant set for S. Moreover EP(H) is an

attracting set and EP(H) is contained in its attraction domain.

Proof: Define the Lyapunov function

V(x) = xT Px. (24)

The derivative of V(x(t)) along any trajectory satisfies

dV/dt = xT AT Px + xT PAx + ξT BT Px + xT PBξ = (25)

= xT AT Px + xT PAx + ξT BT Px + xT PBξ+ (26)

+ xT CT QCx + 2xT CT S ξ + ξT Rξ − σ(y, ξ) ≤
(27)

≤ −rxT Px − σ(y, ξ) (28)

Observe that the hypothesis of Theorem 5.1 are satisfied, so

the assertion is proven.

The following theorem is the main contribution of the paper

providing an iterative technique to enlarge the estimate of a

domain of attraction using N different scalar functions.

Theorem 6.2: Let S be the Lur’e system described by (6).

Let G(s) be a strictly proper transfer function and let

(A, B,C, 0) be a minimal realization of G(s) with state x ∈
R

n. Suppose that, for i ∈ {1, 2, ...,N}, y(t)2 < Y2
i

implies

Ξ ∈ BLQC(σi,Mi) where

σi(y, ξ) =

(

y

ξ

)T (

Qi S i

S T
i

Ri.

) (

y

ξ

)

≥ −Mi (29)

and Yi < Yi+1 for i = {i = 1, ...,N − 1}. Assume that there

exist solutions (Pi, ri) to the LMI’s
[

AT Pi + PiA +CT QiC + rPi PiB +CT S i

BT Pi + S T
i

C Ri

]

< 0 (30)

with Pi ∈ Rn×n, Pi = PT
i

, Pi > 0, ri ∈ R+ and define

Hi :=
Mi

ri

Hi :=
Y2

i

CP−1
i

CT
. (31)
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Then, if H
i+1CP−1

i+1
CT < Y2

i
,

EPN
(HN) ⊆ D(EP1

(H1)). (32)

for any HN < HN .

Proof: Consider the Lyapunov functions

Vi(x) = xT Pix (33)

and compute their derivatives along their trajectories

dVi/dt = xT AT Pix + xT PiAx + ξT BT Pix + xT PiBξ =

= xT AT Pix + xT PiAx + ξT BT Pix + xT PiBξ+

+ xT CT QiCx + 2xT CT S iξ + ξ
T Riξ − σ(y, ξ) ≤

≤ −rix
T Pix − σi(y, ξ)

Observe that the hypothesis of Theorem 5.2 are satisfied for

any set of parameters with contiguous indexes (i, i+1). Thus,

the assertion is proven.

VII. N 

A. Step by step application of Theorem 5.2

This example has the objective to exemplify the basic ideas

behind Theorem 5.2 following a step by step procedure. We

will use the Nyquist plot and the circle criterion as tools

to help the intuitive reasoning. Consider a physical system

modeled by the transfer function

ẋ =

(

0 −50

1 1

)

+

(

−10

10

)

u (34)

y = (0 1)x (35)

and assume a saturation on the actuators

u = satL(v) := min{|v|, L}sgn(v) (36)

with saturation level L = 5 and a nonlinear static controller

of the form

v = K1y + K3y3. (37)

with K1 = 1.31 and K3 = 3. A controller as (37) can be

useful in situations where it is important to obtain local

performances in the neighborhood of the equilibrium (v ≃
K1y) and at the same time it is desirable to have a prompter

response when the system state is far from it. The linear

transfer function G(s) is not stable so it is not possible to

globally stabilize if because of the input saturation. We want

to obtain an estimate of the attraction domain using the

criterion proposed in the previous section. The Nyquist plot

of (34) is depicted in Figure 4. We can use the circle criterion

in order to find an estimate of the domain of attraction. As it

is shown in Figure 4 the sector S1 := (α1, β1) = (0.17, 4.85)

is a stability sector for the system. It can be verified that

0 ≤ K3 ≤ 3 implies n(y) := satL(v(y)) ∈ S1 for |y| < L/α1 =

Y1 ≃ 29.411. In the BLQC formulation the sector condition

of the circle criterion is equivalent to n(y) ∈ BLQC(σ1, 0)

with multiplier

Σ1 =

(

−α1β1 −(α1 + β1)

−(α1 + β1) −1

)

. (38)
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p
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)

Fig. 4. The Nyquist plot of the linear transfer function (34) (black) and
the circles associated to the sectors S 1 (green), S 2 (red) and S 3 (blue) as
in example A.
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Fig. 5. Attraction Domain Estimates.

A standard way to estimate the domain of attraction is given

by the LaSalle theorem exploiting the quadratic Lyapunov

function provided by the circle criterion (see the green

ellipsoid in Figure 5). It is possible to obtain a better estimate

of the attraction domain. We note that n(y) ∈ BLQC(σ2,M2)

where the BLQC multiplier is

Σ2 =

(

−α2β2 −(α2 + β2)

−(α2 + β2) −1

)

. (39)

for α2 = 0.13, β = 2.44, M2 = 11.7 and for any |y| < L/α2 =:

Y2 ≃ 38.461. Solving the associated LMI’s we obtain a

Lyapunov function V2 = xT P2x which allows to conclude

that eventually |y(t)| < Y2 ≃ 29.39 < Y1 if x belongs to an

ellipsoid EP2
(H2). Thus, EP2

(H2) (the larger red ellipsoid in

Figure 5) is in the attraction domain. The same procedure can

be repeated a third time noting that n(y) ∈ BLQC(σ3,M3) for

α3 = 0.1238, β = 2.00, M2 = 13.992 for |y| < L/α3 =: Y3 ≃
40.38. In an analogous way we find that y(t) is eventually

bounded by Y3 ≃ 38.34. Then the ellipsoid EP3
(H3) (the

larger blue ellipsoid in Figure 5) is in the attraction domain.
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B. Contractively invariance vs. combined Lyapunov func-

tions

In [13] a technique to estimate attraction domains is

described. Such a technique estimates attraction domains us-

ing contractively invariant ellipsoids. The following example

demonstrates that the adoption of contractively invariant el-

lipsoids can be a limiting choice in some situations. Consider

the following system (which admits a Lur’e representation)

ẋ =

(

−ρ 1

−1 −ρ

)

+

(

−1

0

)

u (40)

y = (0 1)x (41)

u = −n(y) = −y2(y2
+ 2)

(y2 + 1)2
y (42)

with ρ > 0. Using the Lyapunov function (which is not

quadratic)

V(x) = x2
1 + x2

2 +
x4

2

x2
2
+ 1

(43)

we can prove that the origin of the system is globally

asymptotically stable for any positive ρ. However, for ρ <

ρCI ≃ 0.204, it can be proved that there exists a positive

value X2 > 0 such that any contractively invariant ellipsoid

must lie in the strip |x2| ≤ X2. Thus, the approach in [13]

can not establish global asymptotical stability. Conversely,

we can show that the technique presented in this paper (for

N = 2) can prove that the domain of attraction is ℜ2 even

for values of ρ > ρI ≃ 0.11.

1) Computational part:

Consider Theorem 6.2 with

M1 = 0, α1 = 1, β1 = 1.67, Y1 = 1.4,

M2 = 0.09, α2 = 1.6, β2 = 2, Y2 = +∞, (44)

Σi =

(

−αiβi −(αi + βi)

−(αi + βi) −1

)

, (45)

and solve the associated LMI’s. The solutions we found for

ρ = 0.11 using the Scilab Lmi solver are

P1 =

(

0.2384 0.0022

0.0022 0.5568

)

,P2 =

(

0.2187 0.0084

0.0084 0.6131

)

. (46)

Since the hypothesis are verified, the set EP2
(H2), for any

H2 < H2 = +∞, is in the attraction domain of the attracting

set EP1
(0) = {0}. This is equivalent to global asymptotic

stability for the origin.

VIII. C

In this paper, we have developed a technique to reduce

the conservativeness of attraction domain estimates in Lur’e

systems. The novelty of our approach lies in the fact that

the sets we are considering are invariant but not necessarily

contractively invariant as in other criteria. A comparison of

our method with other results in the literature is presented

using numerical examples.
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