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Abstract— The paper deals with the linear-quadratic control
problem for a time-varying partial differential equation model
of a catalytic fixed-bed reactor. The classical Riccati equation
approach, for time-varying infinite-dimensional systems, is
extended to cover the two-time scale property of the fixed-
bed reactor. Dynamical properties of the linearized model
are analyzed by using the concept of evolution systems. An
optimal LQ-feedback is computed via the solution of a matrix
Riccati partial differential equation. Numerical simulations are
performed to show the performance of the designed controller
on the fixed-bed reactor.

Index Terms— Fixed bed reactor, infinite dimensional time-
varying system, linear quadratic optimal control, catalyst de-
activation.

I. Introduction

Catalytic fixed-bed reactors are the most widely used reactor

type for gas phase reactants and play an important role

in chemical industries. Interesting control problems arise

due to nonlinear and distributed behavior [1]. The process

considered in this work is a catalytic hydrotreating reactor.

hydrotreating is the conventional means for removing

sulfur from petroleum fractions. A schematic diagram of

this reactor is shown in Fig.1. The hydrotreating catalyst

deactivates during the operation for a variety of reasons

(e.g., poisoning by impurities in feed, formation of coke

on catalyst surface, and so forth). Deactivation of catalyst

results in time-varying reaction rate. Then this system will

behave as a time-varying infinite dimensional system. The

control objective is to maintain the reactor’s temperature

and concentration at desired setpoint during the reactor’s

operation.

Linear-Quadratic (LQ) optimal control plays an important

role in the control literature. Solution of the LQ-optimal

control problem for infinite dimensional systems can be

obtained by solving an operator Riccati equation (see e.g.

[2]). Spectral factorization which is based on frequency-

domain description is an alternative method for solving the
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Fig. 1. Schematic diagram of Fixed-Bed reactor

LQ problem (see [3] and [4]).

In this paper, the Linear Quadratic (LQ) optimal control

problem is studied for a model of catalytic fixed-bed reactor

using its nonlinear infinite dimensional Hilbert state space

description. Recently, the same problem was studied in [5]

for a time-varying plug flow reactor by using the known

Riccati equation approach. The convective terms in the

model equations of a plug flow reactor have identical

coefficients, while in the present case (i.e fixed-bed reactor)

the coefficients of the convective terms are not necessarily

identical. The objective of this work is to extend the Riccati

equation approach into this framework and apply it to the

case of a time varying fixed bed reactor.

II. Model description

The dynamics of a fixed-bed reactor can be described by

partial differential equations derived from mass and en-

ergy balances. To model the reactor, a plug-flow pseudo-

homogeneous model is considered. Moreover, we consider a
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one-spatial dimension model where there are no gradients in

the radial direction.

A. Mathematical model

The process considered in this work is a fixed bed hydrotreat-

ing reactor with catalyst deactivation. In the simplified sys-

tem considered here, a lumped reaction kinetics equation was

assumed and has the following form (see [6]):

rA = k(t)e(−
E

RT )Cn1

A Cn2

H (1)

Under above mentioned assumptions, the dynamics of the

process are described by the following energy and mass

balance partial differential equations (PDE’s).

ǫ
∂CA

∂t
= −ν

∂CA

∂z
− ρBk(t)e−

E
RT Cn1

A Cn2

H (2)

∂T

∂t
= −ν

∂T

∂z
+

ρB∆Hr

ρCp

k(t)e−
E

RT Cn1

A Cn2

H (3)

with the boundary conditions given, for t ≥ 0, by:

CA(0, t) = CA,in,
T (0, t) = Tin,

(4)

The initial conditions are assumed to be given , for 0 ≤ z ≤
l, by

CA(z, 0) = CA0(z),
T (z, 0) = T0(z)

(5)

In the equations above, CA, T, ǫ, ρB , ρ, Cp, E, CH ,∆Hr, ν
denote the reactant concentration, the temperature, the

porosity of the reactor packing, the catalyst density, the

fluid density, the activation energy, the enthalpy of reaction,

and the superficial velocity respectively. In addition, t, z
and l denote the time and space independent variables, and

the length of the reactor, respectively. T0 and CA0 denote

the initial temperature and reactant concentration profiles,

respectively, such that T0(0) = Tin and CA0(0) = CA,in.

k is the pre-exponential factor. Catalysts lose their activity

with time and as a result this coefficient varies with time.

Generally k is a function of time and operating conditions;

but here we assume that the operating conditions are

maintained in narrow ranges.Then k is only a function of

time and is assumed to be given by:

k = k0 + k1e
−αt (6)

The above expression for kinetics of naphtha hydrotreating

reaction is in agreement with the observations that after a

rapid initial deactivation of hydrotreating catalyst there is a

slow deactivation phase and finally a stabilization of catalyst

activity phase.

The corresponding steady-state equations of the PDE model

(2) are given by the following ordinary differential equations:











νss
∂CAss

∂z
= −ρBk0e

− E
RTss Cn1

AssC
n2

H

νss
∂Tss

∂z
= ρB∆Hr

ρCp
k0e

− E
RTss Cn1

AssC
n2

H

Tss(0) = Tin, CAss(0) = CA,in.

(7)

B. Dimensionless model

Let us consider the following state transformation:

θ1 =
T − Tin

Tin

, θ2 =
CA,in − CA

CA,in

(8)

Then we obtain the following equivalent representation of

the model.

∂θ1

∂t
= −ν

∂θ1

∂z
+

(

h0 + h1e
−αt

)

(1 − θ2)
n1 e

µθ1
1+θ1 (9)

∂θ2

∂t
= −

ν

ǫ

∂θ2

∂z
+

(

l0 + l1e
−αt

)

(1 − θ2)
n1 e

µθ1
1+θ1 (10)

with the boundary conditions:

θ1(0, t) = 0, θ2(0, t) = 0 (11)

where:

µ =
E

RTin

, l0,1 =
ρB

ǫ
k0,1C

n2

H Cn1

Ain
e−µ, (12)

h0,1 =
ρB(−∆H)

ρCpTin
k0,1C

n2

H Cn1

Ain
e−µ (13)

C. Infinite-dimensional linearized model

Let us denote by θss and uss the dimensionless profile of

the model (9)-(10) at the operating point. Let us consider

the following state definition:

x(t) = θ(t) − θss (14)

and new input u(t) = ν(t) − νss. Then the linearization of

the system (9)-(10) around its operating profile leads to the

following linear time-varying infinite-dimensional system

on the Hilbert space H := L2(0, l) × L2(0, l).











ẋ(t) = A(t)x(t) + Bu(t),

x(0) = x0 ∈ H,

y(t) = Cx(t).

(15)

where {A(t)}t≥0 is the family of linear operators defined on

their domains:

D(A(t)) := x ∈ H : x is a.c. ,
dx

dz
∈ H and x(0) = 0 (16)

(where a.c means that x is absolutely continuous) by

A(t) = V.
d.

dz
+ M(t, z).I (17)
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where V and M are given by:

V :=

[

v1 0
0 v2

]

(18)

where

v1 = −νss, v2 = −
νss

ǫ
(19)

M(t, z) :=

[

m11(t, z) m12(t, z)
m21(t, z) m22(t, z)

]

(20)

where the functions mij are given by:

m11 = µ(h0 + h1e
−αt)

(1 − θ2ss)
n1

(1 + θ1ss)2
e

µθ1ss
1+θ1ss ,

m12 = −n1(h0 + h1e
−αt)(1 − θ2ss)

n1−1e
µθ1ss
1+θ1ss ,

m21 = µ(l0 + l1e
−αt)

(1 − θ2ss)
n1

(1 + θ1ss)2
e

µθ1ss
1+θ1ss ,

m22 = −n1(l0 + l1e
−αt)(1 − θ2ss)

n1−1e
µθ1ss
1+θ1ss .

The operator B = B0.I ∈ L(L2(0, l), H) is the linear

bounded operator where:

B0 =

[

B1

B2

]

, (21)

B1 =
∂θ1,ss

∂z
, B2 =

1

ǫ

∂θ2,ss

∂z

III. Trajectory and stability analysis

This section is devoted to the trajectory and the exponential

stability of the linearized fixed-bed reactor model described

in the previous section. The following theorem shows the

existence and uniqueness of an evolution systems generated

by the family of operators {A(t)}0≤t≤T , for any T > 0.

Theorem 1: Let T > 0. Consider the family of operators

{A(t)}0≤t≤T given by (17) . Then, there exists a unique

evolution system UA(·, ·) : {(t, s) ∈ R2 : s ≤ t ≤ T} such

that

∂

∂t
UA(t, s)x = A(t)UA(t, s)x,

∀x ∈ D(A(t)), 0 ≤ s ≤ t ≤ T.

Moreover, there are constants M ≥ 1 and ω such that

‖UA(t, s)‖ ≤ Meω(t−s), 0 ≤ s ≤ t ≤ T.

Proof: First it can shown by using the perturbation theorem

(see [7, Theorem 2.3, p. 132] ) that A(t) is a stable familty

of operator in the sense of [7, Definition 2.1, p. 130]. The

rest of the proof is based on [7, Theorem 4.8, p. 145] and it

suffices to validate its assumptions. �

Now we are in a position to state a theorem on the

exponential stability of the linearized model.

Theorem 2: Consider the family of operators {A(t)}t≥0 as

in Theorem 1. Then {A(t)}t≥0 generates an exponentially

stable evolution system.

Proof: In order to prove the exponential stability, it suffices

to use the Lyapunov approach : See [8].

IV. Optimal Control Design

This section deals with the computation of an LQ-optimal

feedback operator for the linearized fixed-bed reactor by

using the corresponding operator Riccati equation. First let

us define an output function y(.) given by

y(t) = Cx(t)

and

C = C0I, C0 :=
[

w1 w2

]

(22)

where w1, w2 : [0, l] → R are continuous functions. These

functions can be interpreted as weighting factors for esti-

mates of the distance between the initial model state and

the chosen equilibrium profile. Now let us consider the LQ-

optimal control problem: for any initial state x0 ∈ H , find

a square integrable control uo ∈ L2[[0,∞);L2(0, l)] which

minimizes the cost functional

J(x0, u) =

∫ ∞

0

(〈Cx(t), PCx(t)〉+ 〈u(t), Ru(t)〉)dt (23)

where P = P0.I ∈ L(Y ) is a positive operator and R =
R0.I ∈ L(U) is a self-adjoint, coercive operator in L(U),
where P0 and R0 are two positive functions. The solution

of this problem can be obtained by finding the positive

self-adjoint operator Q0 ∈ L(H) which solves the operator

Riccati differential equation,viz.

[Q̇ + A∗Q + QA + C∗PC − QBR−1B∗Q]x = 0 (24)

for all x ∈ D(A), where Q0(D(A)) ⊂ D(A∗).

It is known that for an infinite-dimensional state-space

system of the form (15) and the cost function (23) such that

the following conditions hold:

(i) There exists an evolution system generated by A(t) such

that UA(s, s)x = x,∀x ∈ D(A(t)), 0 ≤ s ≤ t ≤ T and

∂

∂t
UA(t, s)x = A(t)UA(t, s)x,

(ii) (A, B) is C-stabilizable.

Then the Riccati equation (24) has a nonnegative bounded

solution Q. This solution is minimal among all nonnegative

bounded solutions of (24): see e.g. [9, Theorem 5.2, p.507].
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The following lemma is an immediate consequence

Theorems 1 and 2:

Lemma 1: Consider the linearized catalytic fixed-bed reac-

tor model (15), with control operator B given by (21) and

observation operator given by (22). Then the corresponding

operator Riccati equation (24) has a nonnegative bounded

solution Qo and for any initial state x0 ∈ H , the quadratic

cost (23) is minimized by the unique control uo given on

t ≥ 0 by

uo(t) = −R−1
0 B∗Qox(t).

Now we are in a position to state the main theorem of

this section, which gives an expression of the optimal state

feedback in term of the solution of a matrix Riccati partial

differential equation:

Theorem 3: Let us consider the linear model (15). Assume

that V is given by (18). Let us consider P0 a positive

matrix and R0 a self-adjoint coercive matrix such that Φ :=
diag(φ1, φ2) is the solution of the matrix Riccati partial

differential equation:

∂Φ

∂t
= −V

∂Φ

∂z
+ M∗Φ + ΦM

+C∗
0P0C0 − ΦB0R

−1
0 B∗

0Φ, (25)

Φ(t, l) = 0, t ∈ [0,∞]

Then Q0 := Φ(t, z)I is the unique self-adjoint nonnegative

solution of the operator Riccati differential equation. More-

over, the optimal control is given by ([10])

uo(t, z) = −R−1
0 B1φ1(t, z)x1(t, z)−R−1

0 B2φ2(t, z)x2(t, z)
(26)

Proof: It is assumed that Φ is diagonal, then V commutes

with Φ and since

−
d.

dz
ΦI + Φ

d.

dz
=

dΦ

dz
I (27)

Then the operator Riccati equation can be written as follows:

∂Φ

∂t
= −V

dΦ

dz
+ M∗Φ + ΦM + C∗

0P0C0 − ΦB0R
−1
0 B∗

0Φ

Comment 1: Let us assume that M,V,B,C are given by

(20), (18), (21), (22), respectively. The matrix Riccati partial

differential equation (25) can be written as three set of partial

differential and algebraic equations given as follows (see [11,

Comment 3.1] and [12, Comment 3.1]):






























∂φ1

∂t
= −ν1

dφ1

dz
+ 2m11φ1 + c̄11 − b̄11φ

2
1,

∂φ2

∂t
= −ν2

dφ2

dz
+ 2m22φ2 + c̄22 − b̄22φ

2
2,

0 = m21φ2 + φ1m12 + c̄12 − φ1b̄12φ2,

φ1(l) = 0,

φ2(l) = 0

(28)

TABLE I

MODEL PARAMETERS

Parameter Values

ǫ 0.4
ρB 700
CH 587.4437
n1 1.12
n2 0.85
E 81000
R 8.314
CA0 0.419344
CAin 0.419344
T0 523
Tin 523
ρ 2.7
Cp 147.49

∆H 101.3× 103

α 0.005
k1 1.2384
k2 2.8896
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s
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o
l/
m

3
)

Fig. 2. Steady State Concentration Profile

where the functions mij , c̄ij and b̄ij are the entries of the

matrices M, C∗
0P0C0 and B0R

−1
0 B∗

0 , respectively. In the

equations above, we have two unknown functions φ1, φ2,

then we cannot solve the set of equations; however, it can

be solved if we complete the number of unknown functions

from the entries of the matrices P0 and R0 (we need one

more function).

V. Numerical Simulations

To show the control performance of the closed-loop system,

the formulated LQ controller is used for a hydrotreating

reactor. Model parameters are given in Table I. Using the

nominal operating condition,

u = 8.333 × 10−4m/s

and the model given in Eqs. (2), the stationary state was

computed, see Figs (2)-(3).

2473



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
520

525

530

535

540

545

550

555

560

565

z(m)

T
s
s
(k

)

Fig. 3. Steady State Temperature Profile

Fig. 4. LQ-Feedback function φ1

With the choice of weighting functions w1(z) = 1, w2(z) =
1, the LQ-feedback controller was computed using the lin-

earized model, Eq. (15). Linearization was performed around

the steady state profile. A total of 50 discretization points

were used as the spatial locations where the outputs are

measured. The LQ feedback functions that results from

solving the system of Eq. (28) are given in Figs. (4)-(5).

The optimal control given by equation (26) is a distribution

of the fluid flow velocity along the axis of the reactor.

Although manipulation of the fluid velocity at a large number

of points gives the best achievable control performance, it is

not practical for real operation. Then we approximate the

optimal spatial distribution of the manipulated variable by

averaging its value as follows:

usub(t) =
1

L

∫ L

0

uo(t, z)dz (29)

Using the equation (29) as input variable, the closed loop

response of the system from an initial state that is not the

stationary state is computed. The closed loop temperature

Fig. 5. LQ-Feedback function φ2

Fig. 6. Closed-loop temperature distribution

and concentration responses are shown in Figures (6)-(7)

respectively. It can be observed that the state converges to

the desired equilibrium profile.

The trajectory of the manipulated variable, usub(t), is shown

in Figure (8).

VI. Concluding Remarks

In this paper, the linear quadratic optimal control problem

has been studied for a fixed bed hydrotreating reactor with

catalyst deactivation. An LQ-control feedback has been

computed by using an operator Riccati differential equation,

whose solution can be obtained via a related matrix Riccati

partial differential equation.

The computed control algorithm has been applied to the

linear model of the system and it is shown that the regulation

can be achieved quickly.
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Fig. 7. Closed-loop concentration distribution
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Fig. 8. Manipulated variable
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