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Abstract—In this paper, we present an alternative and new
interpretation of the Nyquist criterion in terms of Bode plots of
the plant and the controller. This result gives a nonparametric
characterization of the frequency response of arbitrary order
stabilizing controllers. The result shows that the frequency
response of any stabilizing controller must satisfy constraints
on its magnitude, phase, and rate of change of phase at certain
frequencies that are imposed by the frequency response of the
inverse plant.

I. INTRODUCTION

The Nyquist criterion [1] provides a powerful test for

closed-loop stability in terms of open-loop measured data.

When applied to a plant-controller pair however, it requires

the testing of the combined transfer function. This is not

convenient in some synthesis and design problems, where

explicit conditions are required on the controller to be

designed, in terms of given plant data. In this paper, we

develop new criteria for controller design to precisely address

and fix the above problems.

We are motivated by the following question: Given only

the frequency response of the plant as available data, is it

possible to derive, without constructing an identified transfer

function model of the plant, conditions on the frequency

response of an arbitrary order controller for it to qualify as

a stabilizing controller? In this paper, we develop nonpara-

metric conditions on an arbitrary order stabilizing controller

in terms of its frequency response. Such a characterization

is done by interpreting the Nyquist criterion via separate

Bode plots of the plant and the controllers. This result shows

that the frequency response of the inverse plant imposes

constraints on the magnitude, phase and rate of change

of phase of the controller at certain frequencies. We also

show that such conditions can easily be extended to meet

performance requirements such as gain and phase margin

specifications.

These results reflect the resurgence of classical control

ideas in control theory with a “modern twist”. In this general

philosophy, we should mention the related works of Hara [2],

Ikeda [3], [4] and Jayasuriya [5]. In Hara [2] a frequency

dependent version of the KYP Lemma is developed and

used for synthesis. Ikeda [3], [4] advocates a model free
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approach to design. In Jayasuriya [5] a Quantitative Feedback

Theory (QFT) approach to design is discussed, wherein

robustness bounds are imposed at various frequencies that

are relevant to loop shaping. It will be seen that the new

methods developed here also involve various frequencies

where specific conditions must hold.

II. NOTATION AND PRELIMINARIES

Let us begin by considering a finite dimensional rational

proper plant G with p+ open right half plane (RHP) poles,

in a unity feedback configuration as shown in Fig. 1.

+
−

G

Fig. 1. A unity feedback system

Let G(jω) be the frequency response of the plant and

let ωi, i = 0, 1, 2, · · · , k + 1 with ω0 = 0 and ωk+1 = ∞
denote the frequencies where the Nyquist plot of G(s) cuts

the negative real axis of the complex plane. In other words,

these frequencies are the solutions of the following equation:

6 G(jω) = nπ, for n = ±1,±3,±5, · · · . (1)

Define the set

Ω = {ω0, ω1, · · · , ωk, ωk+1} (2)

where

0 =: ω0 < ω1 < ω2 < · · · < ωk < ωk+1 := ∞ (3)

and ω0 and ωk+1 are included only if they satisfy the above

angle condition. Introduce the corresponding sequence of

integers

{i0, i1, i2, · · · , ik, ik+1} (4)

where

it = 0, if |G(jωt)| < 1 (5)

and otherwise,

it =















































+1, if
d

dω
6 G(jω)

∣

∣

∣

∣

ω=ωt

> 0

0, if
d

dω
6 G(jω)

∣

∣

∣

∣

ω=ωt

= 0

−1, if
d

dω
6 G(jω)

∣

∣

∣

∣

ω=ωt

< 0

(6)
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for t = 0, 1, 2, · · · , k + 1.

Remark 1 It is easy to see that Nyquist plot of G(s) at s =
jωt cuts the negative real axis when (1) holds and it cuts the

negative real axis to the left of −1+ j0 when |G(jωt)| > 1.
The conditions in (6) along with the condition |G(jωt)| > 1
indicate that it = +1 when the Nyquist plot cuts the negative

real axis to the left of −1+j0 downward, corresponding to a

counterclockwise encirclement, and it = −1 when the plot

cuts the negative real axis to the left of −1 + j0 upward,

corresponding to a clockwise encirclement of −1 + j0.

III. A BODE EQUIVALENT OF THE NYQUIST CRITERION

We first assume that the plant G has no imaginary axis

poles. We assume as usual that the Nyquist contour shown

in the Figure 2 is traversed in the clockwise direction, that

is with ω increasing.

Lemma 1 Under the assumption that the plant G has no

imaginary axis poles, let N be the number of counterclock-

wise encirclements of −1 + j0 by the Nyquist plot of G(s).
Then

N = i0 +

k
∑

t=1

2it + i∞ =: i(G). (7)

Proof: Consider the negative real axis cuts of the

Nyquist plot of G(s). The number of counterclockwise en-

circlements of −1+j0 is equal to the net count of downward

cuts of the plot G(jω) which occur on the negative real axis

to the left of −1 + j0. Furthermore, such a cut must satisfy

the following two conditions:

|G(jωk)| > 1 (8)

and
d

dω
6 G(jω)

∣

∣

∣

∣

ω=ωk

> 0 (9)

For ω ∈ (−∞,∞), the G(jω) plot passes through these

points, twice whereas G(j0) and G(j∞) can only induce

one cut, positive or negative. Therefore, the expression of

i(G) in (10) is nothing but a number of net counterclock

encirclements around the point −1+ j0 by the Nyquist plot.

Using this lemma, we can now state the condition for

stability of the feedback system.

Theorem 1 Under the assumption that the plant has no

imaginary axis poles, the unity feedback system in Fig. 1 is

stable iff

i(G) = p+ (10)

where p+ is the number of open RHP poles of the plant G.

Proof: From the Nyquist criterion, the feedback system

is stable iff the complex plane plot of G(jω) produces p+

net counterclockwise encirclements around the point −1+j0
and therefore the theorem is evident from Lemma 1.

We now consider the case when the plant G has one or

more poles at the origin. This addresses the class of systems

with one of more integrators that are required for a system

to track a step or ramp.

A. Plants with Poles at the Origin

Let m0 be the number of poles at the origin, and let i0
denote the corresponding number of encirclements in the

counterclockwise direction of the Nyquist plot of G(s). Note
that here

G(0+) 6= G(j0+). (11)

As typically done in Nyquist theory, we use right indentation

of the Nyquist Γ-contour when the contour approaches

imaginary axis poles (see Fig. 2).

Γ - Contour

Fig. 2. Γ - Contour for Nyquist plot

Since the cases when the plant has odd and even numbers

of poles at the origin are quite different, we separately state

the results.

1) m0 is odd: For the case of a plant with an odd

number of poles at the origin, the Nyquist plot starts from

the negative or positive imaginary axis as ω increases from

zero, depending upon the values of m0. Furthermore, the

Nyquist plot turns 180o clockwise for every pole at the

origin. The first clockwise half circle is located in the LHP

or RHP depending upon the sign of G(0+). For simplicity,

let us consider the case when m0 = 1. If G(0+) < 0, the
clockwise half circle is located in the LHP and it results in

a negative real axis cut to the left of −1 + j0. Since this

cut is upward, we have i0 = −1. On the other hand, the

clockwise half circle is located in the RHP for G(0+) > 0
and this results in no negative real axis cut, that is, i0 = 0.
From such considerations, we derive the following general

formulas: For m0 odd,

i0 =























−

(

m0 − 1

2

)

if (−1)
m0−1

2 G(0+) > 0

−

(

m0 + 1

2

)

if (−1)
m0+1

2 G(0+) > 0

(12)

2) m0 is even: For the case of a plant with an even

number of poles at the origin, the Nyquist plot begins

from the negative or positive real axis as ω increases from

zero, depending upon the value of m0. With considerations

similar to the previous case we derive the following general
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conditions: For m0 even,

i0 =























−
(m0

2
− 1

)

if (−1)
m0
2

−1G(0+) > 0 and

d

dω
6 G(jω)

∣

∣

∣

∣

ω=0+

> 0

−
(m0

2

)

otherwise

(13)

B. Plants with Poles on the Imaginary Axis

Let the denominator of the plant transfer function be

(s2 + u2
1)

m1(s2 + u2
2)

m2 · · · (s2 + u2
k)mk (14)

that is, the plant has mi pairs of poles at ±jui for i =
1, 2, · · · , k. We now define integer quantities ji for j =
1, 2, · · · , k which denote the number of corresponding coun-

terclockwise encirclements by the Nyquist plot of the point

−1 + j0 as follows. The verification of these is left to the

reader and is based on arguments outlined in the previous

cases.

• G(ju−
i ) is complex and mi is odd,

ji =

{

−(mi − 1) if 6 G(ju−
i ) ∈ (0, π)

−(mi + 1) if 6 G(ju−
i ) ∈ (π, 2π)

(15)

• G(ju−
i ) is complex and mi is even,

ji = −mi (16)

• G(ju−
i ) is real and mi is odd,

ji =















−(mi − 1) if G(ju−
i ) > 0 and

d

dω
6 G(jω)

∣

∣

∣

∣

ω=u
+

i

> 0

−(mi + 1) otherwise

(17)

• G(ju−
i ) is real and mi is even,

ji =























−mi if G(ju−
i ) > 0 or





G(ju−
i ) < 0 and

d

dω
6 G(jω)

∣

∣

∣

∣

ω=u
+

i

> 0





−(mi + 2) otherwise
(18)

Theorem 1 can now be restated without restrictions on the

location of poles of the plant.

Theorem 2 The unity feedback system in Fig. 1 is stable

iff

i(G) := i0 +

l
∑

k=1

2ik + i∞ +

k
∑

r=1

jr = p+ (19)

where p+ is the number of open RHP poles of the plant G.

IV. ARBITRARY ORDER CONTROLLERS

We now consider a finite dimensional rational proper

controller with frequency response C(jω) and with c+ RHP

poles and ask when it can stabilize a finite dimensional

rational, proper plant with frequency response P (jω).
Define the set of distinct nonnegative frequencies

Ω+(φ) := {ω0, ω1, · · · , ωl, ωl+1} (20)

with

0 =: ω0 < ω1 < · · · < ωl < ωl+1 := ∞ (21)

satisfying the phase condition

6 C(jω) = 6 P−1(jω) ± nπ, n = ±1,±3,±5,±7, · · · .
(22)

and the magnitude condition

|C(jωk)| > |P−1(jωk)|. (23)

Note that these are the frequencies where the Nyquist plot

of P (s)C(s) intersects the negative real axis to the left of

−1 + j0.
For the case when P (s)C(s) has no imaginary axis poles,

we introduce the integers ik for k = 0, 1, · · · , l + 1:

ik =















































+1, if
d

dω
6 C(jω)

∣

∣

∣

∣

ω=ωk

>
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=ωk

0, if
d

dω
6 C(jω)

∣

∣

∣

∣

ω=ωk

=
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=ωk

−1, if
d

dω
6 C(jω)

∣

∣

∣

∣

ω=ωk

<
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=ωk

This is obtained by replacing G(jω) by P (jω)C(jω) in (6).

Consider the first condition

d

dω
6 P (jω)C(jω)

∣

∣

∣

∣

ω=ωk

> 0 (24)

which is equivalent to

d

dω
6 P (jω)

∣

∣

∣

∣

ω=ωk

+
d

dω
6 C(jω)

∣

∣

∣

∣

ω=ωk

> 0 (25)

or

d

dω
6 C(jω)

∣

∣

∣

∣

ω=ωk

> −
d

dω
6 P (jω)

∣

∣

∣

∣

ω=ωk

=
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=ωk

(26)

Similarly, we can also restate (12) - (18) in terms of the

controller.

A. Plants with Poles at the Origin

Let m0 be the number of poles at the origin, and i0 the

corresponding number of encirclements in the counterclock-

wise direction of −1+ j0 by the Nyquist plot of P (s)C(s).
Note that

P (0+)C(0+) 6= P (j0+)C(j0+). (27)

Similar to the previous section, we can derive the follow-

ing:
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1) m0 is odd:

i0 =







































−

(

m0 − 1

2

)

if (−1)
m0−1

2 sgn[C(0+)] = sgn[P (0+)]

−

(

m0 + 1

2

)

if (−1)
m0+1

2 sgn[C(0+)] = −sgn[P (0+)]
(28)

2) m0 is even:

i0 =































−
(m0

2
− 1

)

if (−1)
m0
2

−1sgn[P (0+)] = sgn[C(0+)]
and d

dω
6 C(jω)

∣

∣

ω=0+ > d
dω

6 P−1(jω)
∣

∣

ω=0+

−
(m0

2

)

otherwise

(29)

B. Plants with Poles on the Imaginary Axis

Let the denominator of the plant transfer function be

(s2 + u2
1)

m1(s2 + u2
2)

m2 · · · (s2 + u2
k)mk . (30)

Such an expression is equivalent that the plant has mi pairs

of poles at ±jui for i = 1, 2, · · · , k. Define integer quantities
ji for j = 1, 2, · · · , k as follows.

• P (ju−
i )C(ju−

i ) is complex and mi is odd,

– if 6 P−1(ju−
i ) < 6 C(ju−

i ) < 6 P−1(ju−
i ) + π

ji = −(mi − 1), (31)

– if 6 P−1(ju−
i )+π < 6 C(ju−

i ) < 6 P−1(ju−
i )+2π

ji = −(mi + 1). (32)

• P (ju−
i )C(ju−

i ) is complex and mi is even,

ji = −mi (33)

• G(ju−
i ) is real and mi is odd,

– if





sgn[P (ju−
i )] = sgn[C(ju−

i )] and
d

dω
6 C(jω)

∣

∣

∣

∣

ω=u
+

i

<
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=u
+

i





ji = −(mi − 1), (34)

– otherwise

ji = −(mi + 1). (35)

• G(ju−
i ) is real and mi is even,

– if sgn[P (ju−
i )] = sgn[C(ju−

i )] or





sgn[P (ju−
i )] = −sgn[C(ju−

i )] and
d

dω
6 C(jω)

∣

∣

∣

∣

ω=u
+

i

>
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=u
+

i





ji = −mi, (36)

– otherwise

ji = −(mi + 2). (37)

Define

i(C) := i0 +

l
∑

k=1

2ik + i∞ +

k
∑

r=1

jr. (38)

Theorem 3 The controller C stabilizes the plant P if and

only if

i(C) = p+ + c+. (39)

V. PERFORMANCE MEASURES

The performance of a controller is often determined by the

closed-loop stability margins it provides. The gain margin

is such a performance measure. To compute it, define the

distinct frequencies:
{

u : 6 C(ju) = 6 P−1(ju) ± nπ, n = 1, 3, 5, · · ·
}

= {u1, u2, · · · , um} (40)

and

Ω(φ) := {u0, u1, · · · , um, um+1} (41)

where u0 = 0 and um+1 = ∞. Let us denote magnitudes

measured in decibels as:

C(ω)db := 20 log10 |C(jω)| (42)

P−1(ω)db := 20 log10 |P
−1(jω)|. (43)

Define

Ω+(φ) :=
{

ωk ∈ Ω(φ) : C(ωk)db > P−1(ωk)db

}

(44)

Ω−(φ) :=
{

ωk ∈ Ω(φ) : C(ωk)db < P−1(ωk)db

}

.(45)

The upper (lower) gain margin is the smallest increase

(decrease) in gain measured in decibels that destabilizes the

closed-loop.

Theorem 4 If C is a stabilizing controller, the upper gain

margin denoted K+
db is:

K+
db = min

ωk∈Ω+(φ)

{

C(ωk)db − P−1(ωk)db

}

. (46)

The lower gain margin denoted K−
db is:

K−
db = min

uk∈Ω−(φ)

{

P−1(uk)db − C(uk)db

}

. (47)

The phase margin is also an important performance measure.

To compute it, introduce the distinct frequencies vi:

Ω(g) =
{

v : |C(jv)| = |P−1(jv)|
}

= {v1, v2, · · · , vm} . (48)

Similarly, we also define

Ω+(g) :=
{

vk ∈ Ω(g) : 6 C(jvk) > 6 P−1(jvk) + nπ
}

Ω−(g) :=
{

vk ∈ Ω(g) : 6 C(jvk) < 6 P−1(jvk) + nπ
}

.

The positive (negative) phase margin Φ+ (Φ−) is the mini-

mum phase decrease (increase) that destabilizes the loop.

Theorem 5 If C is a stabilizing controller, the positive

phase margin is

Φ+ = min
n odd

min
vk∈Ω+(g)

{

6 C(jvk) − 6 P−1(jvk) − nπ
}

.

(49)
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The negative phase margin is

Φ− = min
n odd

min
vk∈Ω−(g)

{

6 P−1(juk) − 6 C(juk) + nπ
}

.

(50)

The proofs of Theorems 4 and 5 follow from interpreting the

Nyquist criterion in terms of the Bode magnitude and phase

conditions.

In the next section, we illustrate the usefulness of Theo-

rems 3-5 for controller design.

VI. EXAMPLES

Example 1 Consider a plant with 4 RHP poles and known

frequency response P (jω) as shown in Fig. 3.
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∠P
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Fig. 3. Frequency response of the plant considered (Example 1)

Let us examine the conditions for a stable controller to

stabilize the given plant. From the frequency response data

given, we have

6 P−1(jω)
∣

∣

ω=0
= 0 and 6 P−1(jω)

∣

∣

ω=∞
=

π

2
.

Consider the following conditions:

(1) 6 C(j0) = ±nπ for any integer n and

|C(j0)| > |P−1(j0)|,
(2) 6 C(j∞) = (1 ± 2n)π/2 and |C(j∞)| >
|P−1(j∞)|,
(3)

|C(jωk)| > |P−1(jωk)| (51)

and

d

dω
6 C(jω)

∣

∣

∣

∣

ω=ωk

>
d

dω
6 P−1(jω)

∣

∣

∣

∣

ω=ωk

. (52)

In order to achieve i(C) = 4, the frequency response of a

stabilizing controller must satisfy the following:

A. conditions (1) and (2) are satisfied and condition

(3) is satisfied at one frequency or

B. conditions (1) and (2) are violated and (3) is

satisfied at two frequencies.

Since the magnitude of P−1(jω) is unbounded as ω tends to

∞ and the controller is proper it follows that i∞ = 0. Thus

i0 must also be zero in order to generate an even number

of encirclements. It is also easy to see that a constant gain

cannot stabilize the plant. This is because the phase of a

constant gain (zero angle) can only intersect the phase of

P−1(jω) only once at a nonzero frequency.

We can apply a similar consideration for a first order

controller. If a controller is stable and minimum phase, then

the maximum number of positive phase crossover frequen-

cies is 3. Of these, only one contributes counterclockwise

encirclement and therefore, the required i(C) = 4 cannot be

attained.

We now consider verifying stabilizability by a given

controller using the above arguments.

Suppose the controller to be tested is

C(s) =

15.7091s4 + 6.8889s3 + 83.8916s2 + 171.2964s + 62.5847

s4 + 4.2909s3 − 2.1069s2 − 7.1366s− 0.4308

which has one RHP pole. Since

d

dω
[6 C(jω)]ω=0 <

d

dω

[

6 P−1(jω)
]

ω=0
,

we have i0 = −1. Similarly, we have i∞ = 0. From Fig. 4,

i(C) = −1 + 2(1) + 2(0) + 2(1) + 2(0) + 2(1) + 0 = 5

and

p+ + c+ = 4 + 1 = 5.

Thus closed-loop system is stable.
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Fig. 4. No poles on the imaginary axis (Example 1)

Example 2 Consider a plant with 3 poles at the origin and

the test PID controller is

C(s) =
39.88s2 + 50s + 49.71

s
.

The poles of the open-loop plant are {0, 0, 0,−5,−2± j4}.
It is easy to see that m0 = 3 + 1 = 4 (even) and

P (0+)C(0+) > 0. Thus, from the condition in (29)

i0 = −
(m0

2

)

= −
4

2
= −2.
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Now let us observe Fig. 5. Since |C(∞)| < |P−1(∞)|, i∞ =
0. Therefore,

i(C) = i0 + 2i1 + i∞ = −2 + 2(1) + 0 = 0

and

p+ + c+ = 0 + 0 = 0.

We conclude that the closed-loop system is stable.
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Fig. 5. Poles at the origin (Example 2)

The following example illustrates the gain and phase

margin computations.

Example 3 Consider a plant with 2 RHP poles and let the

frequency response of the system P (jω) be known. Consider
the test controller

C(s) =
36s− 12

s + 9
.

Since C(0) < P−1(0) and C(∞) < P−1(∞), we have

i0 = i∞ = 0. From Fig. 6, we have

i(C) = 0 + 2(1) + 0 = 2

and

p+ + c+ = 2 + 0 = 2

and the closed-loop system is stable. The gain and phase

margins are shown in Fig. 6 and by the combined Bode

plots in Fig. 7.

VII. CONCLUDING REMARKS

In this paper we have presented an alternative to the

traditional Nyquist criterion which may be useful for both

synthesis and analysis of controllers. The result is an ana-

lytic version of the Nyquist criterion which provides useful

insight and design information based on the plant frequency

response data, which is shown to impose constraints on

the magnitude, phase and rate of change of phase of any

proposed stabilizing controller. We believe that these prelim-

inary results are promising tools to develop analytical design

methods based on measured data and these are presently

under study.
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Fig. 6. Illustrating gain and phase margins (Example 3)
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