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Abstract— A method to estimate the dynamics of clusters is
presented. An existing static clustering method, which makes
use of a Hamiltonian function, is exploited in the dynamic case,
when the points to cluster do not remain in fixed positions but
move with unknown dynamics. The time is discretised and the
static algorithm is applied to each time-instant. While identify-
ing each cluster, the algorithm also performs the computation
of the moments of the cluster. By estimating the dynamics
of the moments an approximate estimation of the dynamics
of the cluster is obtained. An illustrative example shows the
performance of the method.

I. INTRODUCTION

In many scientific and engineering studies the practice of

clustering data is very common when there is the need of

dividing a set of measurements into subgroups with the aim

of possibly deduct common features for measurements be-

longing to the same group. For instance, in the Hertzsprung-

Russell diagram used in astronomy, which classifies the star

according to their color and magnitude, the cluster of the

white dwarfs corresponds to a possible stage of the evolution

of a star. Many other applications such as pattern recognition,

data analysis, image processing and market research may

require (or take advantage from) a clustering of data (for a

survey on the applications see, for instance, [1] and [2]).

Usually, the data to be clustered are represented by points

in a given space and in most of cases the clustering algo-

rithms perform the classification on the basis of the geometric

displacements of the points. In this respect, the clustering

algorithm turns out to be easier if the number of cluster

is known as an input data. If this number is not known,

the algorithm has to perform the so-called cluster validation

problem [3], [4].

In a recent publication [5] a novel clustering algorithm,

exploiting the idea of a level function associated to the mea-

surements, was described and shown to perform successfully

in some static scenarios without the a priori knowledge of

the total number of clusters, thus solving also the cluster

validation problem. In the particular application considered

therein, the measurements points were corresponding to the

This work has been partially supported by the SEAS DTC project
“Dynamic Set Recognition”.

D. Casagrande is with the Dipartimento di Ingegneria Elettrica, Gestio-
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position of objects in the two-dimensional space and in a

particular time-instant. In this paper the result is extended to

the dynamic case, namely when the points to be clustered

move on the two-dimensional space. The aim is not only to

divide the data points into subgroups with similar features,

but also to estimate the dynamics of each group.

The first goal is achieved1 by defining a clustering func-

tion, to be regarded as a level function, and identifying a

cluster as the set of points internal to the same connected

region belonging to a level set2. The boundary of the

connected region is the trajectory of a Hamiltonian system,

the Hamiltonian function of which is the clustering function.

Once the connected region is identified, the notion of mo-

ments of a two-dimensional region (see [7] and the references

cited therein) is applied to it in order to estimate important

features of the associated cluster such as its size and its centre

of mass.

In the dynamic version of the algorithm the displacement

of the data points is sampled at time-instants multiple of a

sampling time and for each time-instant the static method is

applied. This process generates a sequence of values of the

quantities represented by the moments, e.g. the coordinates of

the centre of mass, each of which can be treated as the output

signal of an autoregressive (AR) system. Finally, to estimate

the parameters of the AR system and to predict the future

outputs, standard methods from the system identification

theory can be used.

The paper is organized as follows. In Section II the main

notation is introduced while the static solution to the cluste-

ring problem is presented in details in Section III. Section IV

describes how the static method can be exploited to estimate

the dynamics of the clusters. The results of a simulation are

reported and discussed in Section V. Conclusions and future

developments are finally drawn in Section VI.

II. NOTATION

The notation used throughout the paper is explained when

introduced. Nevertheless, to provide the reader with a quick

reference, the most used symbols are here summarised.

P denotes the set of data points to cluster,

N denotes the cardinality of P ,

D denotes a cluster (Di has the same meaning),

R denotes a connected region of the level set (Ri, G, F
and Gi have the same meaning),

S denotes the boundary of a connected region of the level

set.

1For a description of the clustering based on the level set method, see [5].
2A similar approach is followed in [6].
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Fig. 1. A possible configuration for P = {ξ1, . . . , ξ10}. The three regions
R1, R2 and R3 (the contour of which are S1, S2 and S3 respectively)
identify three clusters: D1 = {ξ1}, D2 = {ξ2, ξ3, ξ4, ξ5, ξ6} and D3 =

{ξ7, ξ8, ξ9, ξ10}.

III. OVERVIEW ON THE STATIC ALGORITHM

Suppose that the set of points to be clustered is P ,
{ξ1, . . . ξN} ⊂ R

2, where N ∈ N. The method presented

in [5] solves at the same time both the problem of finding

the total number K of clusters and that of partitioning P into

D1, . . . ,DK , such that P =
⋃K

j=1 Dj and3 Dj1 ∩Dj2 = ∅ if

j1 6= j2. The method can briefly be described as follows.

• A clustering function H : R
2 → R is chosen on the

basis of which a Hamiltonian system is defined. In particular,

one can assign to each point ξi, i = 1, . . . , N a function

Hi : R
2 → R and define the clustering function as

H(ξ) =
N

∑

i=1

Hi(ξ) . (1)

• A reference level Hr is selected and each connected

region Rj of the level set of H with respect to Hr implicitly

identifies the j-th cluster. More precisely (see Figure 1) Dj ⊂
Rj , j = 1, . . . , K , where the Rj’s are connected and such

that
K
⋃

i=1

Ri = {ξ ∈ R
2 : H(ξ) > Hr} . (2)

Note that the value of K depends on the value of Hr; hence

the cluster validation problem mentioned in the Introduction

is transformed into the determination of the optimal value of

Hr.

• To explicitly find the level line Sj associated to Rj ,

which solves the clustering problem, the clustering function

H is regarded as a Hamiltonian function and the correspon-

ding Hamiltonian system is considered. In fact, denoting with

x and y the coordinates of ξ, i.e. (x, y) = ξ, the level line

3In some applications, cluster evolution and cluster dynamics are studied
assuming that two (or more) clusters which may overlap are kept separated.
On the contrary, here we are interested in merging together overlapping
clusters; this approach fits best with the final example of merging clouds of
water vapor.

Sj corresponds to the trajectory of the system










ẋ = ∂H
∂y

f(x, y) , x(0) = x ,

ẏ = −∂H
∂x

f(x, y) , y(0) = y ,

(3)

where f(x, y) is any continuous function and the initial

condition (x̄, ȳ) is such that (x, y) ∈ Sj (and, obviously,

H(x̄, ȳ) = Hr). Easy computations yield

Ḣ =
∂H

∂x
ẋ +

∂H

∂y
ẏ = 0 (4)

which means that H(x(t), y(t)) ≡ Hr, for t > 0. Therefore

the trajectory of system (3) lies on Sj .

Remark 1: The knowledge of an initial condition ξ such

that H(ξ) = Hr is not necessary. As shown in [5], to steer in

finite time any initial condition to a level line it is sufficient

to modify system (3) as follows:


















ẋ = f(x, y)

(

∂H
∂y

−
∂H

∂x
(H − Hr)

1/3

)

,

ẏ = −f(x, y)

(

∂H
∂x

+
∂H

∂y
(H − Hr)

1/3

)

.

(5)

Note, in fact, that the additional term vanishes when H =
Hr. ♦

Remark 2: When implementing the method in the practi-

ce, solutions to system (3), or (5), are found using standard

algorithms for numerical integration. ♦

IV. THE DISCRETE-TIME DYNAMIC ALGORITHM

The algorithm described in the previous section can be

exploited to predict the motion of the clusters in the follo-

wing way. Suppose that the points to be clustered do not

remain in fixed positions but move. Obviously, due to the

motion of the points, the set of regions changes in time. It

may happen, for instance, that the same point is clustered at

time τk1
in Rj1 while at time τk2

> τk1
, due to its motion,

it is clustered in Rj2 6= Rj1 . In addition, the detection of

all the points in all time-instants is not guaranteed; it may

happen, for instance, that a point disappears, namely that it

is detected up to the instant τk1
but not from τk1+1 onwards;

analogously a point may appear at time τk2
, which was not

detected for τk < τk2
. Therefore, in general, the set P of the

points to cluster and its cardinality N are functions of time,

i.e. P = P(τk) and N = N(τk). Moreover, for τk1
6= τk2

,

N(τk1
)

⋃

i=1

Ri(τk1
) 6=

N(τk2
)

⋃

i=1

Ri(τk2
) .

Consider now two consecutive time-instants, say τk1
and

τk2
= τk1

+ T , and a region G ∈ {R1(τk2
), . . . ,RN2

(τk2
)}.

The first problem addressed in the paper is the following.

Q1. Is it possible to associate G to one of the regions

F ∈ {R1(τk1
), . . . ,RN1

(τk1
)} in such a way that G is likely

to be the evolution of F?

5429



We show that this is possible, provided that the velocities

of the points admits an upper bound, that the sampling period

T is chosen accordingly and that the notion of evolution is

properly defined. An interesting consequence of this result is

that from the application of the static method to a sequence

one can build a sequence of clusters G1, G2, . . . such that

G0 ∈ {R1(τk1
), . . . ,RN(τk1

)(τk1
)} ,

G1 ∈ {R1(τk1
+ T ), . . . ,RN(τk1

+T )(τk1
+ T )} ,

...
...

GK ∈ {R1(τk1
+ KT ), . . . ,RN(τk1

+KT )(τk1
+ KT )} ,

and Gi is the evolution of Gi−1, for i = 2, . . . , K . This leads

to the following natural question.

Q2. Given a sequence of evolving clusters G1,G2, . . .GK

is it possible to predict how the sequence continues, namely

how GK+1 is expected to be?

We show that the least square error method [8] can be

used to estimate the dynamical model of the evolution of

the clusters, thus answering positively to question Q1 and

Q2. However, to provide a solution to the problems posed

by Q1 and Q2, we first need to give a quantitative description

of the clusters, beyond their implicit definition (3). To this

purpose we use the notion of moments [7].

Definition 1: For a function F (x, y) : R
2 → R the

moment of order p + q, with p and q integers and such that

p + q > 0, is defined as

mpq(F ) =

∫ ∞

−∞

∫ ∞

−∞

xpyqF (x, y)dxdy . ♦ (6)

Consider, now, the region R containing the cluster D. The

index function of R is:

FR(x, y) ,

{

1 , if (x, y) ∈ R ,

0 , otherwise .
(7)

From (6) and (7) it is easy to relate the moments of order 0

and 1 to the position and the size of R. In fact

• the moment of order 0 of FR is the area of R:

m00(FR) =

∫∫

R

dξ ,

• the position of the center of mass4 of R, can be obtained

from the moments of order 0 and 1. Denoting by xR

and yR its coordinates, we have

xR =
m10(FR)

m00(FR)
and yR =

m01(FR)

m00(FR)
.

Thus the size (area) and the position (displacement of the

centre of mass) of the cluster can be quantified by using the

moments of order 0 and 1. A further step is the quantitative

description of the shape of the cluster, what can be done, in

the first approximation, with the help of the notion of image

ellipse and principal axes [7].

4This, in general, does not coincide with the center of mass of D.

*

x

y

R

x
R

y
R

Fig. 2. A connected region R ⊂ R
2 (shaded region) can be approximated

by an ellipse (dashed line) having the same semiaxes of the image ellipse
of R and the same centre of mass of R (asterisk) and oriented according
to the principal axes of R.

Definition 2: The image ellipse of a region R is the

elliptical disk having the same moments of order 0 and 2 of

R and such that its major and minor axes lie along the x and,

respectively, y axes of a Cartesian system of coordinates. ♦

Definition 3: The principal axes of a region R are the

pair of straight lines along which there are the minimum

and maximum inertia moments of R. ♦

In the following α(R) and β(R) denote the major and,

respectively, the minor semi-axis of the image ellipse; am(R)
and aM (R) denote the principal axes of R, am(R) being

associated to the minimum inertia moment of R.

The meaning of Definitions 2 and 3 is that the best

approximation of the shape of a connected region R, up to

the moments of order 2, is given by an ellipse (see Figure 2)

which has the same centre of mass of R and such that its

major semi-axis is equal to α and lies along aM (R).

The geometric quantities introduced with Definitions 2

and 3 can be obtained from the moments of order 2 of R
computed with respect to its centre of mass, which are called

the central moments.

Definition 4: For a function F (x, y) : R
2 → R, the

central moment of order p+ q, with p+ q > 2, is defined as:

µpq(F ) =

∫ ∞

−∞

∫ ∞

−∞

x
p
T y

q
T F (xT , yT )dxdy ,

where xT = x − xR and yT = y − yR. ♦

The moments of order 2 of FR are related to the dimen-

sions of the image ellipse by the following equalities:

α(R) =

(

2 (µ20(FR) + µ02(FR) + ∆(FR))

µ00(FR)

)1/2

,

β(R) =

(

2 (µ20(FR) + µ02(FR) − ∆(FR))

µ00(FR)

)1/2

,

where ∆(FR) =
√

(µ20(FR) − µ02(FR))2 + 4(µ11(FR))2.

Moreover (see [7]) the orientation of am and aM can also

be deducted.
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A. Computation of the moments

One of the main advantages of defining the clustering on

the basis of the trajectories of system (3) is that the moments

of any order of FR can be computed by integrating Equation

(3). In fact, by using Green’s theorem a double integral over

a region correspond to a line integral over its boundary.

Theorem 1 (Green’s): Let S be a positively oriented, pie-

cewise smooth, simple closed curve in R
2 and let R be the

region bounded by S. If L and M are functions of x and y

defined on an open region containing R and with continuous

partial derivatives there, then
∫∫

R

(

∂M

∂x
−

∂L

∂y

)

dxdy =

∫

S

(Ldx + Mdy) . ♦

By applying Theorem 1 to Equation (6) with, for instance,
∂M

∂x
= xpyq and L = 0 one obtains

∫∫

R

xpyqdxdy =

∫

S

1

p + 1
xp+1yqdy , (8)

where the term on the right hand side is an integral along

a (closed) trajectory S corresponding to one of the level

lines of the clustering function H . From Equation (8) the

dynamics of the value of the moments on the time-scale of

the Hamiltonian system (3) can be obtained. In particular,

the differential equations

ṁ00 = xẏ , (9)

ṁ10 =
1

2
x2ẏ , (10)

ṁ01 = xyẏ , (11)

ṁ20 =
1

3
x3ẏ , (12)

ṁ11 =
1

2
x2yẏ , (13)

ṁ02 = xy2ẏ , (14)

with mij(0) = 0, are such that mij(t̂) = mij(FR), where t̂

is the period of the orbit of system (3) along S .

Remark 3: The differential equations (9)-(14) do not de-

scribe the dynamics of the moments on the time-scale of

the motion of the points ξ’s but only the variation of their

value on the time-scale of the Hamiltonian system (3), the

trajectory of which is the level line S .

Remark 4: The right-hand side term in Equations (9) is a

basis for the non-integrable differential forms of order one

in the variables x and y. Analogously, the right-hand side

terms in Equations (10)-(11) and in Equations (12)-(14) are

a basis for the space of non-integrable differential forms of

order two and three, respectively. The same set of equations,

which define all the possible non-holonomic systems of order

one, two and three, respectively, is considered (for different

scopes) in other works available in the literature (see, for

example, [9]).

B. The sequence of clusters

From their definition, it is clear that moments provide

a quantitative description of the dimension, the position,

the orientation and the shape of the regions containing the

clusters5. More precisely, by computing the moments we

construct a map M such that each region R is mapped into

a point M(R) = mR , (m00, m10, m01, µ20, µ11, µ02) ∈
R

6. This can be used to construct a sequence of clusters,

each of which is the evolution of the previous one. In fact,

if the sampling period T is chosen small with respect to the

velocities of the measurement points, reasonably a cluster D
and the region R surrounding it experience small changes

between a sampling time-instant and the following one. As

a consequence, the images of the two regions, through M,

are not too far one from the other. This behaviour can be

described more precisely in the following way. Consider a

region F ∈ {R1(τk1
), . . . ,RN1

(τk1
)} and an ellipsoid in

R
6 having the centre of mass in mF and the semi-axis of

which are the coordinates of a vector d = (d1, . . . , d6) ∈ R
6,

namely the set

Ed(F) =

{

(z1, . . . , z6) ∈ R
6 :

6
∑

i=1

(zi − mF ,i)
2

d2
i

6 1

}

,

where mF ,i denotes the i-th component of mF .

Definition 5: A cluster G ∈ {R1(τk2
), . . . ,RN2

(τk2
)} is

the one-step Ed-evolution of F , what is denoted by G ∼Ed

F , if G ∈ Ed(F). ♦

With the help of Definition 5 the generic K-steps evolution

from G0 ∈ {R1(τk0
), . . . ,RN0

(τk0
)} can be defined as the

sequence {Gk}k∈{1,...,K} such that, for i = 1, . . . , K , Gi ∈
{R1(τk0

+ iT ), . . . ,RNi
(τk0

+ iT )} and Gi ∼Ed
Gi−1.

Remark 5: Definition 5 allows the possibility that two or

more regions are the Ed-evolution of F . Such an occur-

rence, which prevents from having a uniquely determined

K-step evolution, can be limited if the di’s are small; in

this case, in fact it is likely that only one region G ∈
{R1(τk2

), . . . ,RN2
(τk2

)} belongs to Ed(F). However, even

when the di’s are very small, two or more different regions

might belong to Ed. In this case, if there are no other

criteria, the regions are equivalent and one of them can be

picked randomly to continue the sequence. Another criterion

necessary to construct a meaningful sequence is that of

requiring that the value of the di’s is not too small, otherwise

no G ∈ {R1(τk2
), . . . ,RN2

(τk2
)} belongs to Ed(F) and the

sequence is made just by F .

Remark 6: Definition 5 is given in the case of six mo-

ments but in many practical cases, as the one considered

in Section V, it is sufficient to limit the analysis to the

projection of Ed onto R
2 given by d2 and d3. In this case Gi

is the evolution of Gi−1 if the centre of mass of Gi belongs

to an ellipse (in R
2) centred in the centre of mass of Gi−1.

C. Estimation of the dynamics

Each sequence {Gk}k∈N generates a sequence of values

for each moment up to order 2, namely

ν(0), ν(1), . . . , ν(k), ν(k + 1), . . . , (15)

5Other kind of metrics to describe clusters can be found in [10].
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Fig. 3. An infrared image taken from the satellite and representing the
presence of water (white clouds). The closed lines represent the regions,
namely the result of the clustering method on the sampled measurements.
The cloud to be tracked is the first region on the right.

where ν can be m00, m10, m01, µ20, µ11 or µ02. Regarding

this sequence as the output of an autoregressive process,

ν(t) + b1ν(t − 1) + . . . + bnν(t − n) = 0 ,

standard techniques from system identification [8] can be

used to estimate both the order of the difference equation n

and the vector of parameters b = (b1, . . . , bn)⊤ which gives

the best fit of the sequence {ν(k)}k∈N.

V. SIMULATIONS

To test the performance of the method presented in the

previous sections, a real scenario has been considered: the

prediction of the motion of a hurricane based on the data

provided by images taken from the satellite. The sampling

time T is half an hour, in comparison with which the

computational time is negligible. Each image is a greyscale

image and has 720 × 480 pixels. To ease the computational

load a spatial sampling of each image has been performed

reducing the size to 72 × 48 pixels. Finally, the white level

associated to each pixel is compared with a threshold and

the measurements set P is made of all the pixels having

a white level larger than the threshold. Figure 3 shows the

first image6 of a stream where the level lines corresponding

to each cluster are detected. The cloud the motion of which

we want to track is the first region on the right. To provide

the reader with an idea of how a sequence of regions corre-

sponding to the clusters can be obtained from a sequence of

images, the result of the application of the static method to

nine images equally spaced in time is reported in Figure 4.

The clustering technique described in Section IV has been

applied to a a sequence of 288 images (six days), using the

first 48 (one day) to estimate the model and the last 240 to

validate it. In particular, we report the results concerning the

estimation of the dynamics of xR.

This values have been applied to predict the motion of the

cloud in the subsequent five days with four different values

6This image and the ones appearing in the following have been taken
from the website http://www.goes-arch.noaa.gov.
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Fig. 5. Four plots corresponding to four different prediction horizons. The
average absolute relative error is plotted for all difference equations (from
order 2 to order 10). A difference equation of order 2 is the one minimising
the error.
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Fig. 6. The trajectory of the centre of mass estimated over a 12 step
horizon (dashed bold line) together with the true trajectory (solid line).

of the prediction horizon, namely half an hour (1 step), three

hours (6 steps), six hours (12 steps) and twelve hours (24
steps). Results are reported in Figure 5. It can be noted that

the best approximation is a difference equation of order two.

By using the model of order two both for the dynamics of

xR and for yR the trajectory of the centre of mass has been

estimated. Results corresponding to a prediction horizon of

length 12 are reported in Figure 6 where the true trajectory

is also plotted. On Figure 7 the same trajectory has been

plotted over the image corresponding to the last position of

the trajectory.

VI. CONCLUSIONS

The idea presented in this paper is a promising first step

in the study of the dynamics of two-dimensional regions and

clusters of points. The application of the developed method

to the problem of predicting the motion of a hurricane

has provided interesting results. Different applications and

a generalization of the method to the case of n-dimensional

clusters will be the subjects for further investigation. Other
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Fig. 4. A set of images and the corresponding clusters. The chronological order is from the left to the right and from the top to the bottom. The length
of the time-interval between one image and the following one is two hours.
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Fig. 7. The same trajectory of Figure 6 plotted over the image correspon-
ding to the last position of the centre of mass.

interesting improvements to pursue may concern different

models for estimating the discrete dynamics (instead of

the autoregressive one used herein) or the extension of the

method to the situations in which the regions for which the

moments are computed are not simply connected.
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