
Upper Bound Mixed H2/H∞ Control and Integrated Design for

Collocated Structural Systems

Mona Meisami-Azad†‡, Javad Mohammadpour†, and Karolos M. Grigoriadis†

Abstract— The present paper addresses the mixed H2/H∞

norm analysis and feedback control design problem for struc-
tural systems with collocated actuators and sensors. The mixed
norm formulation provides a trade-off measure of a system
performance and robustness in the presence of uncertainties
in the system model. First, we develop an explicit upper
bound expression for the mixed H2/H∞ norm of collocated
structural systems and an explicit parametrization of output
feedback control gains to guarantee such bounds. The results
offer computationally efficient solutions for system analysis and
multi-objective controller design that are especially suitable
for large-scale collocated systems where traditional analysis
and design methods fail. The second part of the paper uses
the proposed bounds to address the simultaneous design of
structural damping parameters and feedback control gains
for optimized closed-loop mixed-norm performance. A linear
matrix inequality (LMI) formulation is provided for the inte-
grated damping and control gain optimization. Structural con-
trol design numerical examples are presented to demonstrate
the advantages and computational efficiency of the proposed
bounds and the integrated design approach.

I. INTRODUCTION

H∞ controllers are robust with respect to external distur-

bances, since they use no statistical information; however,

they are conservative. The mixed H2/H∞ approach is an

attempt to mitigate this problem by taking advantage of

the non-uniqueness of the H∞ controllers to improve other

aspects of the closed-loop system, such as the average perfor-

mance. The mixed H2/H∞ designs seek to minimize the H2

norm of a transfer matrix of the closed-loop system while

simultaneously maintaining a constraint on the H∞ norm.

There has been some past work addressing the problem of

mixed H2/H∞ control design for flexible structures [2],

[3], [5], [6], [10], [12]. The corresponding methods follow

computationally demanding approaches based on Lyapunov

and Riccati equations.

Collocated direct velocity feedback (DVF) control is con-

sidered an attractive approach for active structural vibration

isolation due to its simplicity of implementation and inherent

robustness. Closed-loop stability and robustness to modeling

uncertainty is a desirable outcome of the dissipative nature of

collocated DVF [4]. Despite the popularity of DVF control,

the selection of appropriate DVF control gains to satisfy

closed-loop system performance specifications is a challeng-

ing problem. A main reason is that the corresponding control

design formulation represents a static output feedback control
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design that is inherently an extremely difficult computational

problem in its generality [11].

It is known that the overall system performance for

closed-loop system can be significantly improved if the

design process of the open-loop system parameters and

the controller is integrated. The integrated design strategy

corresponds to a simultaneous optimization of the design

parameters of both the plant and the controller to satisfy

desired design specifications and to optimize the performance

of the closed-loop system. Past research work has verified

that the integrated strategy provides closed-loop systems with

improved performance compared to the sequential method

of design. However, often the integrated plant/controller

design optimization problem results in a complex nonlinear

nonconvex optimization problem that does not guarantee

convergence to the global optimum of the design variables.

This makes the integrated design strategy computationally

very challenging. The interested reader is referred to [7],

[8] for a literature review and thorough discussion on the

integrated design methods in structural systems.

In this paper, we first address the analysis and synthesis

problems for mixed H2/H∞ control of collocated structural

systems leading to a computationally efficient approach.

First, we propose an upper bound on the mixed H2/H∞

norm of such systems, and subsequently we derive an explicit

formula for the mixed H2/H∞ output feedback control gain

of such systems. Next, we use the results of the first part to

present an effective and computationally tractable approach

to integrate the structural and control design in collocated

structural systems using a mixed H2/H∞ norm closed-loop

performance criterion. The objective is to determine the

optimal values of the damping parameters of the structure

and to simultaneously design optimal output feedback gains

such that an upper bound of the closed-loop system H2 norm

is minimized subject to an upper bound on the H∞ norm

from the disturbance input signals to the desired outputs.

II. PLANT FORMULATION AND PRELIMINARIES

Consider a structural system with collocated sensors and

actuators with velocity measurement in a vector second-order

form represented by

Mq̈(t) + Dq̇(t) + Kq(t) = F (u(t) + w(t))

z(t) = FT q̇(t) (1)

y(t) = FT q̇(t)

where q(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
m, z(t) ∈ R

m

are the vectors representing displacements, control input,
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external disturbance input, and performance output, respec-

tively. Also, y(t) represents the measured output vector. The

matrices F ∈ R
n×m, M > 0, K > 0, and D > 0 represent

the input distribution matrix with full column rank, mass

matrix, stiffness matrix and damping matrix, respectively.

If we assume that xT (t) =
[

qT (t) q̇T (t)
]

, then the state-

space representation of the system (1) will be

ẋ(t) = Ax + B(u(t) + w(t))

z(t) = Cx(t) (2)

where

A =

[

0 I
−M−1K −M−1D

]

, B =

[

0
M−1F

]

, C =

[

0
F

]T

(3)

It can be readily shown that the above system is an externally

symmetric system, i.e., assuming u(t) = 0, the transfer

function from W (s) to Z(s) given by G(s) = sFT (Ms2 +
Ds + K)−1F is symmetric.

In the following, we present two lemmas that represent

LMI-based formulations for the H∞ and H2 norm of the

system (2).

Lemma 1: (Bounded Real Lemma [1]) A stable system

(2) with u(t) = 0 has an H∞ norm from w(t) to z(t) less

than or equal to γ if and only if there exists a symmetric

matrix P > 0 such that the following LMI holds.




AT P + PA PB CT

BT P −γI 0
C 0 −γI



 ≤ 0. (4)

Lemma 2: (H2 performance specification [9]) Suppose

that the system (2) with u(t) = 0 is asymptotically stable,

and let G(s) = C(sI − A)−1B denote its transfer function.

Then the following statements are equivalent:

i) ‖G‖2 ≤ η
ii) There exists a symmetric matrix P > 0 such that

[

PA + AT P PB
BT P −I

]

≤ 0 (5)

[

P CT

C Z

]

≥ 0 (6)

trace(Z) ≤ η2. (7)

The next lemma will be useful in the proofs of the main

results of the paper.

Lemma 3: [9] Consider matrices Γ and Λ such that Γ has

full column rank, and Λ is symmetric positive definite. Then

Λ ≥ ΓΓT if and only if λmax(ΓT Λ−1Γ) ≤ 1.

III. AN EXPLICIT EXPRESSION FOR THE MIXED H2/H∞

NORM OF THE COLLOCATED STRUCTURAL SYSTEM

As discussed earlier in this paper, the mixed H2/H∞

problem addresses the minimization of an H2 norm criterion,

subject to an H∞ norm constraint. In this section we propose

an explicit upper bound on the mixed H2/H∞ norm of

the collocated structural systems represented by (1). The

following theorem provides such an explicit bound avoiding

the need of burdensome computations.

Theorem 1: Consider the unforced system in (1), i.e.,

u(t) = 0. For any given γ ≥ γbound = λmax(FT D−1F ), an

upper bound ηbound on the H2 norm of the system, while

the H∞ norm satisfies the condition ‖Gzw‖∞ ≤ γ, can be

computed from the following expression

sηbound =
[λmax(FT D−1F )]

1

2

√
2

[trace(FT M−1F )]
1

2 (8)

if γ ≥ 1. Otherwise, for γ < 1, an upper bound on the mixed

H2/H∞ norm of the system is determined from

ηbound = [max(δ, σ) × trace(FT M−1F )]
1

2 (9)

where

δ =
1

2
λmax(FT D−1F )

σ =
λmax(FT D−1F )

γ + [γ2 − λ2
max(FT D−1F )]1/2

. (10)

Proof. Let us consider the following Lyapunov matrix

P = α

[

K 0
0 M

]

(11)

where α is a positive scalar. To determine a bound on the

mixed H2/H∞ norm of the system (2), the LMIs (4)-(7)

should be satisfied simultaneously. To this end, we fix a

prescribed level of H∞ performance to be γ, and the H2

norm of the system is sought such that LMIs (4)-(7) hold.

Substituting the state-space matrices (3) into the LMI (4) and

using the Lyapunov matrix (11) results in





−2αD αF F
αFT −γI 0
FT 0 −γI



 ≤ 0. (12)

Making use of the Schur complement formula yields

α2 + 1

γ
FFT − 2αD ≤ 0 (13)

which can be rewritten as

α2 + 1

2αγ
D− 1

2 FFT D− 1

2 ≤ In

where In is the n × n identity matrix. The latter inequality

implies that

0 ≤ 1

γ
λmax(D− 1

2 FFT D− 1

2 ) ≤ 2α

α2 + 1
≤ 1. (14)

Taking into account the fact that λi(AB) = λi(BA) for all

nonzero eigenvalues and any pair of matrices A and B of

compatible dimensions, we obtain that

λmax(FT D−1F ) ≤ γ (15)
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which provides an upper bound on the H∞ norm of the

collocated structural systems [7]. In addition, assuming β =
1

γ λmax(FT D−1F ), inequality (14) results in

1

α
≥ β

1 +
√

1 − β2
. (16)

It is noted that inequality (15) implies that 0 < β ≤ 1, and

hence (16) always results in real values.

Now, substituting the state -space matrices (3) into the

LMI (5) by taking (11) into account results in
[

−2αD αF
αFT −I

]

≤ 0. (17)

Applying the Schur complement formula to (17) and using

Lemma 3 yields

1

α
≥ 1

2
λmax(FT D−1F ). (18)

In order to satisfy both inequalities (16) and (18), 1

α must

be chosen to be greater than the maximum of the right hand

sides of the inequalities (16) and (18), which results in a

bound on α. Finally, inequalities (6) and (7) together result

in the bound (9). The upper bound (9) can be simplified

further. Note that if (13) holds, then the following inequality

holds as well.

FFT ≤ 2γ

α
D.

Applying Lemma 3 to the latter inequality, it is easy to obtain

the following inequality

1

α
≥ 1

2γ
λmax(FT D−1F ). (19)

Since inequality (18) holds, condition (19) will hold if γ ≥ 1.

This is equivalent to the condition that δ ≥ σ in (10). Hence,

for γ ≥ 1 the mixed H2/H∞ norm bound is simplified to

the H2 norm bound as given in (8), and this completes the

proof. ¤

IV. EXPLICIT CHARACTERIZATION OF THE MIXED

H2/H∞ CONTROLLERS

Consider the controlled vector second-order system rep-

resented by (1). The collocated mixed H2/H∞ control

synthesis problem is to design a symmetric static feedback

gain G such that the output feedback control law

u(t) = −Gy(t) (20)

renders the closed-loop system stable and

‖Tzw‖∞ ≤ γg (21)

‖Tzw‖2 ≤ ηg (22)

where γg and ηg are given scalars, and Tzw represents the

closed-loop transfer function mapping w(t) to z(t).
The equations of the closed-loop system of the plant (1)

and the controller (20) read

Mq̈ + (D + FGFT )q̇ + Kq = Fw

z = FT q̇. (23)

The following result provides an explicit expression for the

output feedback controller gain that guarantees the H∞ and

H2 norms of the closed-loop to be less than given bounds

γg and ηg , respectively.

Theorem 2: Consider the vector second-order system (1).

For any given positive scalars γg and ηg there exists a sym-

metric output feedback control law (20) that guarantees the

closed-loop H∞ norm to be less than γg and the H2 norm to

be less than ηg . Assuming α ≥ αg = 1

η2
g
trace(FT M−1F ),

one of the following holds:

(i) If F is square and invertible, then G can be selected as
{

G ≥ α2

g+1

2αgγg
I − F−1DF−T γg ≤ 1 + 1

α2
g

G ≥ αg

2
I − F−1DF−T otherwise

(24)

(ii) If FFT is singular, then G can be selected as
{

G ≥ α2

g+1

2αgγg
I − F †DF †T

+ Ω if γg ≤ 1 + 1

α2
g

G ≥ αg

2
I − F †DF †T

+ Ω otherwise
(25)

where Ω = (F †DF⊥T

)(F⊥DF⊥T

)−1(F⊥DF †T

).

Proof. Considering the Lyapunov matrix (11), inequalities

(6) and (7) together yield

α ≥ αg =
1

η2
g

trace(FT M−1F ).

Then, substituting the closed-loop system matrices deter-

mined from (1) in BRL (4), we obtain

−2αg(D + FGFT ) +
α2

g + 1

γg
FFT ≤ 0. (26)

If F is invertible, the inequality (26) implies that

G ≥
α2

g + 1

2αgγg
I − F−1DF−T . (27)

The control gain given in (27) is the one that guarantees

the H∞ norm of the closed-loop system to be less than γg .

Substituting the closed-loop system matrices into LMI (5)

results in
[

−2αg(D + FGFT ) αgF
αgF

T −I

]

≤ 0. (28)

Applying the Schur complement formula to (28) leads to

−2αg(D + FGFT ) + α2
gFFT ≤ 0. (29)

If F−1 exists, then we have

G ≥ αg

2
I − F−1DF−1

T

(30)

which is the feedback control gain that guarantees the H2

norm of the closed-loop system to be less than ηg . To design

a static feedback controller (20) such that the closed-loop

system satisfies both (21) and (22), the controller gain G
must satisfy both inequalities obtained in (27) and (30).

It is noted that if
α2

g+1

2αgγg
>

αg

2
, then the control gain

associated with mixed H2/H∞ specification becomes the
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one associated with the H∞ specification. Otherwise, the

control gain associated with the H2 specification is chosen

as the mixed H2/H∞ control gain, and this results in (24).

For the case that FFT is not invertible, consider the

following transformation matrix

N =

[

F †

F⊥

]

. (31)

Pre- and post- multiplying the left hand side of (28) by N
and NT , respectively, we obtain

[

H + F †DF †T − αg

2
I F †DF⊥T

F⊥DF †T

F⊥DF⊥T

]

≥ 0. (32)

Applying Schur complement formula to (32) results in the

following inequality

H ≥ αg

2
I−F †DF †T

+(F †DF⊥T

)(F⊥DF⊥T

)−1(F⊥DF †T

)

which is the output feedback control gain associated with

the H2 specification. Using the transformation (31), the

inequality (26) leads to
[

H + F †DF †T − α2

g+1

2αgγg
I F †DF⊥T

F⊥DF †T

F⊥DF⊥T

]

≥ 0. (33)

Applying Schur complement formula to (33) results in the

following inequality

H ≥
α2

g + 1

2αgγg
I − Ω

which is the output feedback control gain associated with the

H∞ specification. Above discussion along with the similar

lines as explained in the proof of (24) results in the explicit

feedback control gain (25). More details on the intermediate

steps of the proof can be found in [7]. ¤

V. INTEGRATED DAMPING PARAMETER AND CONTROL

DESIGN FOR MIXED H2/H∞ SPECIFICATION

Consider the following vector second-order representation

of a structural system with collocated actuators and sensors

Mq̈(t) + Dq̇(t) + Kq(t) = Fu(t) + Ew(t)

y(t) = FT q̇(t)

z(t) = ET q̇(t) (34)

where q(t), u(t), w(t), y(t), z(t) are as defined before. We

consider the integrated design problem of simultaneously

designing the damping parameters and the output feedback

control gain of the collocated structural system obtained

from the closed-loop interconnection of the plant (34) and

the control law (20) that satisfies a mixed H2/H∞ norm

closed-loop specification. For lumped parameter systems, the

damping matrix D can be expressed in terms of the elemental

damping coefficients as follows

D =
l

∑

i=1

ciTi (35)

where ci denotes the viscous damping constant of the ith
damper and Ti represents the distribution matrix of the cor-

responding damper in the structural system. The distribution

matrices Ti are known symmetric matrices with elements 0, 1
and −1 that define the structural connectivity of the damping

elements in the structure. Our objective is to formulate the

mixed H2/H∞ integrated damping parameter and control

gain design problems as LMI optimization problems.

Practical structural system design specifications impose

upper bound constraints on the values of the damping co-

efficients, that is

0 ≤ ci ≤ ci max , i = 1, . . . , l (36)

Also, often an upper bound on the total available damping

resources is enforced, that is

l
∑

i=1

ci ≤ ccap. (37)

Another constraint that is needed in the proposed output

feedback control design is a bound on the norm of the

feedback gain matrix. This restriction is placed to constrain

the amount of control effort required by the controller. For

this purpose, we include the following constraint in the

integrated design problem.

‖G‖ ≤ gbound (38)

We assume that ci max, ccap and gbound are given scalar

bounds determined by the physical constraints of the design

problem.

Using the above formulation, the solution of the integrated

design of the damping parameters and the output feedback

controller to satisfy closed-loop mixed H2/H∞ specifica-

tions is obtained from the following result.

Theorem 3: Consider the collocated structural system (34)

with the damping distribution (35). For a given positive scalar

γ, the optimum damping coefficients ci and the controller

gain G that minimize the H2 norm bound of the closed-

loop system of the collocated structural system (34) and the

output feedback controller (20) and result in an upper bound

γ on the closed-loop H∞ norm, i.e., ‖Gzw‖∞ ≤ γ, can be

obtained by solving the following LMI optimization problem

with respect to α, G, Z, and ci:

{

minci,α,Z,G µ2

subject to (40a) − (40g)
(39)

where the LMI constraints are as follows.

−2(
l

∑

i=1

ciTi + FGFT ) + αEET ≤ 0 (40a)

[

αM E
ET Z

]

≥ 0 (40b)





l
∑

i=1

ciTi + FGFT − α
2γ EET E

ET 2αγ



 ≥ 0 (40c)

trace(Z) ≤ µ2 (40d)
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0 ≤ ci ≤ ci max , i = 1, . . . , l (40e)

l
∑

i=1

ci ≤ ccap (40f)

‖G‖ ≤ gbound (40g)

Proof. Using the Lyapunov matrix P as in (11) and sub-

stituting it into the H2 and H∞ inequality conditions along

with the appropriate application of the Schur complement

formula results in the LMIs of Theorem 3. ¤

Remark 1: The total number of unknown parameters in

the LMI optimization problem of Theorem 3 is m(m+1)+
l + 1 that correspond to the independent elements of the

symmetric feedback gain matrix G, the damping constants

ci, the parameter α, and the positive definite matrix Z. It is

also noted that the total number of LMI constraints is l + 6.

Remark 2: The control gain matrix norm bound condition

in (40g) can be written in an LMI form as follows
[

g2
boundI GT

G I

]

≥ 0 (41)

Remark 3: Following similar lines as above, the results of

Theorem 3 can be used to minimize the available damping

resources ccap or the control gain norm gbound subject to a

given bound on the H∞ and the H2 norm of the closed-loop

system. For example, minimization of the control gain norm

gbound subject to a given bound γ of the H∞ norm and µ
of the H2 norm of the closed-loop system can be achieved

by solving the following LMI optimization problem.
{

minci,G gbound

subject to (40a) − (40g)
(42)

VI. NUMERICAL EXAMPLES

In this section, we validate and compare our proposed

bound on the mixed H2/H∞ norm of open-loop collocated

structural systems and the corresponding static output feed-

back control gain computation by providing an illustrative

example. Next, we validate the proposed integrated damping

parameter and control design methodology in an H2/H∞

setting using a computational example. The MATLAB Ro-

bust Control Toolbox is used to solve the corresponding LMI

optimization problems.

Example 1: We consider a simple 3-DOF structural sys-

tem of masses, dampers and springs as depicted in Figure 1.

The distribution matrix is given by F =

[

1 0 0
0 1 0

]T

, and

the system parameters are assumed to be mi = 1, ki = 1, and

di = βki for i = 1, 2, 3. We assume the desired H∞ norm

bound on the open-loop system to be 0.9. The objective is

to minimize the H2 norm of the system, while the condition

‖Gzw‖∞ ≤ 0.9 holds. Varying the value of the parameter

β, we plot the upper bounds on the achievable H2 norm of

the open-loop system determined from Theorem 1 compared

with the actual H2 norm of the system computed using

MATLAB, versus parameter β. For a known level of H∞

Fig. 1. Mass, spring and damper system
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0
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0.4

0.6

0.8

1

1.2
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1.6
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β

H
2
 n

o
rm

LMI solution

Proposed bound

Fig. 2. Comparison of the actual H2 norm and the H2 bound vs. the
parameter β.

norm γ, the H2 norm of the system is computed by solving

the optimization problem

min η

s.t. (4) − (7)

This comparison has been illustrated in Figure 2 where it is

observed that the proposed analytical bound of this paper

provides a good approximation for the H2 norm of the

system subject to an H∞ norm bound.

For synthesis purposes, we fix β = 0.015 and design

a mixed H2/H∞ controller that guarantees the H2 norm

of the system to be less than or equal to 1.15, and the

H∞ norm to be less than or equal to 2.32. Note that the

design becomes suboptimal and the feedback control gain is

determined, using the result of Theorem 2, to be

G ≥ G0 =





0.4175 0.0150 0
0.0150 0.4175 0.0150

0 0.0150 0.4325



 .

The actual H2 and H∞ norms of the closed-loop system

with the control law u(t) = −G0y(t) given above would be

1.0570 and 2.2346, respectively.
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Fig. 3. Profiles of the H2 norm upper bound and the actual H2 norm for
the optimized structure vs. the total damping capacity.

Example 2: For the mass-spring-damper system discussed

in Example 1, with the same M , K, and F matrices, and

E =
[

1 0 0
]T

, we use the integrated design procedure

presented in Theorem 3 to determine the optimized damping

coefficients and static output feedback controller gain so

that the H2 norm of the closed-loop system is minimized

subject to the H∞ norm of the closed-loop system to be

less than 1. As the first design scenario, we vary the total

available damping resource ccap and plot the H2 norm bound

µ obtained from the solution to the LMIs of Theorem 3,

as well as, the exact H2 norm of the closed-loop system

corresponding to each design versus the total damping in

Figure 3.

Next, we fix the parameters ccap = 10 and gbound = 10.

The objective here is to minimize H2 norm of the closed-

loop system for different levels of H∞ norm performance.

The simulation result is shown in Figure 4, where it verifies

the trade-off between robustness resulted from employing an

H∞ specification and average energy performance resulted

from an H2 specification. As observed, when the level of

robustness increases, the optimum level of achievable H2

performance will decrease. Interestingly, beyond γ = 1, the

H2 norm of the closed-loop system remains unchanged. This

indeed confirms the explicit bound results we presented in

Theorem 1, where we proved that for γ > 1 the H2 norm is

independent of γ.

VII. CONCLUSION

In this paper, we examined the mixed H2/H∞ analysis

and static output feedback control synthesis problems for

structural systems with collocated sensors and actuators. Us-

ing a particular solution to the BRL and the equivalent LMI

representation of the H2 norm for an open-loop collocated

structural system we obtained an explicit expression that is

useful to compute an explicit upper bound on the mixed

H2/H∞ norm of such systems. Next, we obtained an explicit

parametrization for the output feedback control gains that

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

γ

H
2
 n

o
rm

norm computed using integrated design

Fig. 4. optimum H2 norm vs. the bound on H∞ norm.

achieve a desired bound on the mixed H2/H∞ norm. The

paper also presented an efficient LMI-based computational

methodology for the simultaneous design of the damping

parameters and the control gain of a collocated structural

system with velocity feedback to satisfy closed-loop H2 and

H∞ performance specifications. The computational exam-

ples illustrated that the proposed norm bounds provide a

close approximation of the actual gains of the system and

were effective for structural parameter and control design.
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